
SF2812 Applied linear optimization, final exam
Thursday October 21 2010 14.00–19.00

Examiner: Anders Forsgren, tel. 790 71 27.

Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

Solution methods: Unless otherwise stated in the text, the problems should be solved
by systematic methods, which do not become unrealistic for large problems. If you use
methods other than what have been taught in the course, you must explain carefully.

Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Let (P ) and (D) be defined by

(P )
minimize cTx

subject to Ax = b,
x ≥ 0,

and (D)
maximize bTy

subject to ATy + s = c,
s ≥ 0.

For a fixed positive barrier parameter µ, consider the primal-dual nonlinear equations

Ax = b,

ATy + s = c,

XSe = µe,

where we in addition require x > 0 and s > 0. Here, X = diag(x), S = diag(s) and
e is an n-vector with all components one.

(a) Assume that x(µ), y(µ) and s(µ) solve the primal-dual nonlinear equations for
a given positive µ, with x(µ) > 0 and s(µ) > 0. Show that x(µ) is feasible to
(P ) and y(µ), s(µ) are feasible to (D) with duality gap nµ. . . . . . . . . . . . . . . (3p)

(b) Derive the system of linear equations that results when the primal-dual nonlin-
ear equations are solved by Newton’s method. . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(c) How are the implicit constraints x > 0 and s > 0 handled in a Newton-based
interior method that approximately solves the primal-dual system of nonlinear
equations for a sequence of decreasing values of µ? . . . . . . . . . . . . . . . . . . . . . . (2p)
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2. Consider the linear programming problem (LP ) defined as

(LP )
minimize cTx

subject to Ax = b,
x ≥ 0,

where

A =


3 1 −1 0 0
2 2 0 −1 0
1 3 0 0 −1

 , b =


12
16
16

 ,

c =
(
−1 1 1 0 0

)T
.

A friend of yours claims that she has computed an optimal solution x̂ = (3 5 2 0 2)T

by an interior method. However, she has then been asked to provide two optimal
basic feasible solutions.

Help your friend by providing two basic feasible solutions with the same objective
function value as x̂. Start from x̂. Finally, verify optimality of one of these basic
feasible solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Hint: Your may find one or several of the results below useful.


3 1 −1 0 0
2 2 0 −1 0
1 3 0 0 −1
0 0 1 0 0





1
−3

0
−4
−8


=


0
0
0
0

 ,


3 1 −1 0 0
2 2 0 −1 0
1 3 0 0 −1
0 0 0 1 0





1
−1

2
0

−2


=


0
0
0
0

 ,


3 1 −1 0 0
2 2 0 −1 0
1 3 0 0 −1
0 0 0 0 1





−3
1

−8
−4

0


=


0
0
0
0

 .

3. Consider the primal-dual pairs of linear programs defined as

(P )
minimize cTx

subject to Ax = b,
x ≥ 0,

and (D)
maximize bTy

subject to ATy ≤ c.
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Assume that both (P ) and (D) are feasible. Let x∗ be an optimal solution to (P )
and let y∗ be an optimal solution to (D).

Associated with (P ), consider a two-stage stochastic program (Pp) defined as

(Pp)

minimize cTx +
N∑

i=1

pid
T
i ui

subject to Ax = b,
piTix + piWiui = pihi, i = 1, . . . , N,
x ≥ 0,
ui ≥ 0, i = 1, . . . , N,

where A ∈ IRm×n, b ∈ IRm, c ∈ IRn, pi ∈ IR, Ti ∈ IRmi×n, Wi ∈ IRmi×ni , hi ∈ IRmi ,
di ∈ IRni , i = 1, . . . , N . The variables in (Pp) are thus x ∈ IRn and ui ∈ IRni ,
i = 1, . . . , N .

Assume that pi > 0, i = 1, . . . , N ,
∑N

i=1 pi = 1, and in addition assume that di ≥ 0,
i = 1, . . . , N . Finally assume that (Pp) is feasible.

(a) Derive a dual linear program, (Dp), associated with (Pp). . . . . . . . . . . . . . . . (3p)

(b) Give a feasible solution to (Dp). Make use of the known optimal solutions to
(P ) and (D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Show that optval(Pp) ≥ optval(P ). Make the argument based on comparing
(Pp) and (P ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(d) Once again, show that optval(Pp) ≥ optval(P ). This time, make use of the
feasible solution of (3b) in your argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

4. Consider the integer program (IP ) defined as

(IP )

minimize −x1 − 3x3 − x4

subject to −4x1 − 5x2 − 6x3 − 7x4 ≥ −10,
−x1 − x2 ≥ −1,
−x3 − x4 ≥ −1,
xj ∈ {0, 1}, j = 1, . . . , 4.

Assume that the constraints −x1 − x2 ≥ −1 and −x3 − x4 ≥ −1 are relaxed with
corresponding nonnegative multipliers v1 and v2. Let ϕ(v) denote the resulting dual
objective function. Finally, let v̂ = (1 2)T .

(a) Calculate ϕ(v̂). The corresponding Lagrangian relaxed problem for v = v̂ may
be solved in any way, that need not be systematic. Give all optimal solutions
to the Lagrangian relaxed problem for v = v̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) Use your result of (4a) to give two subgradients to ϕ at v̂. . . . . . . . . . . . . . . (3p)

(c) Use your result of (4b) to show that v̂ is an optimal solution to the dual problem.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)
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5. Consider a cutting-stock problem with the following data:

W = 14, m = 3, w1 = 3, w2 = 5, w3 = 7, b =
(

40 90 40
)T

.

Notation and problem statement are in accordance to the textbook. Given are
rolls of width W . Rolls of m different widths are demanded. Roll i has width wi,
i = 1, . . . ,m. The demand for roll i is given by bi, i = 1, . . . ,m. The aim is to cut
the W -rolls so that a minimum number of W -rolls are used.

Solve the LP-relaxed problem associated with the above problem. Use the pure cut
patterns to create an initial basic feasible solution, i.e., create one cut pattern with
only w1-rolls and correspondingly for w2 and w3.

You may utilize the fact that the subproblems that arise are small, and they may
be solved in any way, that need not be systematic. We suggest that you do not use
dynamic programming but instead solve the subproblem by enumeration and in case
of non-unique solution selects the one with the most w2-rolls. (As the requirement
for w2-rolls is the significantly largest.)

Finally create a “good” solution to the original problem based on your solution to
the LP-relaxed problem. Comment on the quality of this solution. . . . . . . . . . . (10p)

Good luck!


