
SF2812 Applied linear optimization, final exam
Thursday October 20 2011 14.00–19.00

Examiner: Anders Forsgren.
Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.
Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain carefully.
Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the linear programming problem (PLP ) and its dual (DLP ) defined as

(PLP )
minimize cTx

subject to Ax = b,
x ≥ 0,

(DLP )
maximize bTy

subject to ATy + s = c,
s ≥ 0,

where

A =

(
2 2 −1 0
1 −1 0 −1

)
, b =

(
6
1

)
, c =

(
3 1 0 0

)T
.

AF has implemented a primal-dual interior method in Matlab. He has tried to
solve the above linear program by his solver and obtained the following approximate
numbers for x, y, and s:

x’ = 3.0000 -0.0000 0.0000 2.0000

y’ = 1.5000 0.0000

s’ = 0.0000 -2.0000 1.5000 0.0000

AF is certain that he has entered the problem data correctly, and that his initial
estimates of x and s were strictly positive vectors. However, he is a bit confused by
the result.

(a) Which properties of the approximate solution should make AF suspicious? (2p)

(b) Based on the conditions that his approximate solution fulfills, what mistake do
you think AF has made in his implementation? . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
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(c) Which problem has AF in fact computed an approximate solution to? . . .(2p)

(d) Solve (PLP ) by the simplex method. Start with the basic feasible solution
that results by rounding the value of x that AF has computed to the nearest
integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

2. Consider the stochastic program (P ) given by

(P )

minimize cTx

subject to Ax = b,
T (ω)x = h(ω),
x ≥ 0,

where ω is a stochastic variable and T (ω)x = h(ω) is to be interpreted as an “in-
formal” stochastic constraint. Assume that ω takes on a finite number of values
ω1, . . . , ωN with corresponding probabilities p1, . . . , pN . Let Ti denote T (ωi) and let
hi denote h(ωi).

(a) Explain how the deterministically equivalent problem

minimize cTx +
N∑

i=1

piq
T
i yi

subject to Ax = b,
Tix + Wyi = hi, i = 1, . . . , N,
x ≥ 0,
yi ≥ 0, i = 1, . . . , N,

arises. (We assume, for simplicity, “fix compensation”, i.e., W does not depend
on i.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) Define VSS in terms of suitable optimization problems. . . . . . . . . . . . . . . . . . (2p)

(c) Define EVPI in terms of suitable optimization problems. . . . . . . . . . . . . . . . . (2p)

3. Consider the linear program (LP ) given by

(LP )
minimize 2x1 + 2x2 + x4

subject to 2x1 + x2 − x3 + 2x4 = 2,
−1 ≤ xj ≤ 1, j = 1, . . . , 4.

Solve (LP ) by Dantzig-Wolfe decomposition. Consider 2x1 + xx − x3 + 2x4 = 2
the complicating constraint, and consider −1 ≤ xj ≤ 1, j = 1, . . . , 4, the easy
constraints.

Use the extreme points v1 = (–1 –1 –1 1)T and v2 = (1 –1 –1 1)T for obtaining
an initial feasible solution to the master problem.

The subproblem(s) that arise may be solved in any way, that need not be systematic.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)
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4. Consider the integer program (IP ) defined as

(IP )

minimize −2x1 − x2 − 3x3 − x4

subject to −4x1 − 5x2 − 6x3 − 7x4 ≥ −10,
−x1 − x3 ≥ −1,
xj ∈ {0, 1}, j = 1, . . . , 4.

Assume that the constraint −x1−x3 ≥ −1 is relaxed with corresponding nonnegative
multiplier u. Let ϕ(u) denote the resulting dual objective function.

In this exercise, you may make use of the fact that the dual problem is one-dimensional,
and that the the Lagrangian relaxation problem is of small dimension. The methods
used need not be systematic.

(a) Formulate the Lagragian relaxation problem whose optimal value gives ϕ(u).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) Give an explicit expression of ϕ(u) for u ≥ 0 and show that the optimal solution
to the dual problem is given by u∗ = 2. You may for example enumerate all
feasible solutions to the Lagrangian relaxation problem and make use of them.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(c) Give two optimal solutions to the Lagrangian relaxation problem where u =
u∗ = 2. Finally, use these solutions to give two subgradients to ϕ at u∗. . . (3p)

5. Consider the linear programming problem (PLP ) and its dual (DLP ) defined as

(PLP )
minimize cTx

subject to Ax = b,
x ≥ 0,

(DLP )
maximize bTy

subject to ATy + s = c,
s ≥ 0.

Assume that c ≥ 0.

In the discussion below, we let optval(PLP ) = ∞ if (PLP ) is infeasible and anal-
ogously optval(DLP ) = −∞ if (DLP ) is infeasible, where “optval” denotes the
optimal value.

(a) Show that (DLP ) always has a feasible solution. Use this fact to give a lower
bound on the optimal value of (DLP ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Give a lower bound on the optimal value of (PLP ) with arguments based on
(PLP ) only. Is (PLP ) necessarily feasible? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Assume that there exists η ∈ IRm such that ATη ≤ 0 and bTη > 0. What is the
implication on (PLP ) and (DLP )? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(d) Assume that there exists no η ∈ IRm such that ATη ≤ 0 and bTη > 0. What is
the implication on (PLP ) and (DLP )? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Good luck!


