
SF2812 Applied linear optimization, final exam
Thursday October 18 2012 14.00–19.00

Examiner: Anders Forsgren, tel. 08-790 71 27.
Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.
Solution methods: Unless otherwise stated in the text, the problems should be solved by
systematic methods, which do not become unrealistic for large problems. Motivate your
conclusions carefully. If you use methods other than what have been taught in the course,
you must explain carefully.
Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the linear programming problem (LP ) defined as

(LP )
minimize cTx

subject to Ax = b,
x ≥ 0,

where

A =


2 1 −1 0 0
0 1 0 −1 0
1 2 0 0 −1

 , b =


5
1
7

 ,

c =
(
−1 1 1 0 0

)T
.

A friend of yours claims that she has computed an optimal solution x̂ = (3 2 3 1 0)T .
However, she is a bit confused since she would expect an optimal solution to have
at most three positive variables.

Help your friend by providing two basic feasible solutions with the same objective
function value as x̂. Start from x̂. Finally, verify optimality of one of these basic
feasible solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Hint: Your may find one or several of the results below useful.
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0 1 0 −1 0
1 2 0 0 −1
0 0 0 1 0
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2. Consider the linear program

(LP )
min cTx
s.t. Ax = b,

x ≥ 0,

where

A =

(
1 1 1 1
1 −1 1 −1

)
, b =

(
4
4

)
, c =

(
0 1 2 1

)T
.

Assume that we want to solve (LP ) using a primal-dual interior-point method. As-
sume further that we initially choose x(0) = (1 2 3 4)T , y(0) = (0 0)T , s(0) = (4 3 2 1)T .
Here, y and s denote the dual variables.

(a) Formulate the system of linear equations to be solved in the first iteration of the
primal-dual interior-point method for the given initial values. First formulate
the general form and then add explicit numerical values into the system of
equations. Select an appropriate value of the barrier parameter. . . . . . . . . . (7p)

(b) Assume that the system of linear equations has been solved, giving a solution
∆x(0), ∆y(0), ∆s(0). Assuming that ∆x(0), ∆y(0) and ∆s(0) are known, explain
how x(1), y(1) and s(1) would be determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

3. Consider the stochastic program (P ) given by

(P )

minimize cTx

subject to Ax = b,
T (ω)x = h(ω),
x ≥ 0,

where ω is a stochastic variable and T (ω)x = h(ω) is to be interpreted as an “in-
formal” stochastic constraint. Assume that ω takes on a finite number of values
ω1, . . . , ωN with corresponding probabilities p1, . . . , pN . Let Ti denote T (ωi) and let
hi denote h(ωi).
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(a) Explain how the deterministically equivalent problem

minimize cTx +
N∑

i=1

piq
T
i yi

subject to Ax = b,
Tix + Wyi = hi, i = 1, . . . , N,
x ≥ 0,
yi ≥ 0, i = 1, . . . , N,

arises. (We assume, for simplicity, “fix compensation”, i.e., W does not depend
on i.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) Define VSS in terms of suitable optimization problems. . . . . . . . . . . . . . . . . . (2p)

(c) Define EVPI in terms of suitable optimization problems. . . . . . . . . . . . . . . . . (2p)

4. Consider the linear program (LP ) given by

(LP )
minimize 2x1 − 2x2 + 3x3

subject to x1 + 4x2 − 3x3 = 0
−1 ≤ xj ≤ 1, j = 1, 2, 3.

Your task is to solve (LP ) using Dantzig-Wolfe decomposition taking into account
problem structure.

Treat the equality constraint x1 + 4x2 − 3x3 = 0 as the hard constraint. For S =
{x ∈ IR3 : −1 ≤ xj ≤ 1, j = 1, 2, 3}, write x ∈ S as a convex combination of the
extreme points of S. In the master problem, start with the basis that corresponds to
the extreme points (1 1 1)T and (−1 − 1 − 1)T . The subproblem(s) that arise(s)
may be solved by inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

5. Consider the integer program (IP ) given by

(IP )
minimize 2x1 − 2x2 + 3x3

subject to x1 + 4x2 − 3x3 = 0
xj ∈ {−1, 0, 1}, j = 1, 2, 3.

Associated with (IP ) we may define the dual problem (D) as

(D)
maximize ϕ(u)

subject to u ∈ IR,

where ϕ(u) = min{2x1− 2x2 + 3x3− u(x1 + 4x2− 3x3) : xj ∈ {−1, 0, 1}, j = 1, 2, 3}.

(a) Solve (D) by first determining ϕ(u) for u ∈ IR explicitly, and then using this ex-
pression for ϕ(u) to find an optimal solution u∗. You may solve the Lagrangian
relaxation problem(s) that gives ϕ(u) in any way, that need not be systematic.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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(b) At the optimal solution u∗, determine two subgradients to ϕ derived from opti-
mal solutions to the corresponding Lagrangian relaxation problem. Again, you
need not use a systematic method for generating the optimal solutions to the
Lagrangian relaxation problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(c) What can you say about the relationship between the optimal value of (D) and
the optimal value of (LP ) of question 4? Motivate the answer. . . . . . . . . . . (2p)

Good luck!


