

## SF2812 Applied linear optimization, final exam Monday March 17 2014 8.00–13.00

Examiner: Anders Forsgren, tel. 08-790 71 27.

Allowed tools: Pen/pencil, ruler and eraser.

*Note!* Calculator is not allowed.

*Solution methods:* Unless otherwise stated in the text, the problems should be solved by systematic methods, which do not become unrealistic for large problems. Motivate your conclusions carefully. If you use methods other than what have been taught in the course, you must explain carefully.

*Note!* Personal number must be written on the title page. Write only one exercise per sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing grade may be made within three weeks from the date when the results of the exam are announced.

1. Consider the linear program

(LP) minimize 
$$c^T x$$
  
subject to  $Ax = b$ ,  
 $x \ge 0$ ,

where

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ 1 \end{pmatrix}, \quad c = \begin{pmatrix} 4 & 2 & 3 \end{pmatrix}^T.$$

An optimal basic feasible solution has been computed for  $b_1 = 3$ . This solution is  $\tilde{x} = (0 \ 1 \ 1)^T$ . The corresponding dual optimal solution is  $\tilde{y} = (2 \ -1)^T$  and  $\tilde{s} = (3 \ 0 \ 0)^T$ .

Unfortunately, the value of  $b_1$  was not correct. The correct value is  $b_1 = 1$ . Solve the correct problem by the dual simplex method, making use of the already computed solutions. Motivate why the dual form of the simplex method is suitable. ... (10p)

## **2.** Consider the linear program (LP) defined by

$$(LP) \qquad \begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b, \\ & x \ge 0, \end{array}$$

where A is a given  $m \times n$ -matrix with linearly independent rows. Let  $S = \{x : Ax = b, x \ge 0\}$ .

| (a) | Define a convex set                                                                      |
|-----|------------------------------------------------------------------------------------------|
| (b) | Show that S is a convex set. $\dots$ (2p)                                                |
| (c) | Define a basic feasible solution to $(LP)$                                               |
| (d) | Show that $x$ is an extreme point to $S$ if and only if $x$ is a basic feasible solution |
|     | to ( <i>LP</i> )                                                                         |

**3.** Consider the linear program (LP) given by

(LP) minimize 
$$-x_1 + x_2 + x_3$$
  
subject to  $x_1 + 2x_2 + 3x_3 = 2,$   
 $x \in S,$ 

where  $S = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}.$ 

(a) Solve (LP) using Dantzig-Wolfe decomposition taking into account problem structure.

Treat the equality constraint  $x_1 + 2x_2 + 3x_3 = 2$  as the hard constraint. Write  $x \in S$  as a convex combination of the extreme points of S. You may make use of the fact that S is bounded. In the master problem, start with the basis that corresponds to the extreme points  $(1 \ 0 \ 0)^T$  and  $(0 \ 0 \ 1)^T$ . The subproblem(s) that arise(s) may be solved by inspection.

- 4. Consider the integer programming problem (*IP*) given by

(*IP*) minimize 
$$-2x_1 - 3x_2 - 3x_3$$
  
(*IP*) subject to  $x_1 + x_2 + x_3 \ge 1$ ,  
 $-x_1 - 2x_2 - 3x_3 \ge -2$ ,  
 $x_j \ge 0, x_j$  integer,  $j = 1, \dots, 3$ .

For  $u \in \mathbb{R}$ , let

$$\varphi(u) = \text{ minimize } -2x_1 - 3x_2 - 3x_3 - u(x_1 + x_2 + x_3 - 1)$$
  
subject to  $-x_1 - 2x_2 - 3x_3 \ge -2,$   
 $x_j \ge 0, x_j \text{ integer}, \quad j = 1, \dots, 3.$ 

You may throughout this exercise use the fact that the problem is small and your methods for solving subproblems that arise need not by systematic.

- (b) Your friend AF is a bit confused. By inspection, he can see that an optimal solution to (IP) is given by  $x = (2 \ 0 \ 0)^T$  so that optval(IP) = -4, where optval(IP) denotes the optimal value of (IP). By his calculations, he has  $\varphi(-1) = -3$ . Explain to him why it is not a contradiction to our theory on Lagrangian relaxation that there exists a  $u \in \mathbb{R}$  such that  $\varphi(u) > optval(IP)$ .

5. Consider the linear programming problem (PLP) and its dual (DLP) defined as

(*PLP*) minimize 
$$c^T x$$
 maximize  $b^T y$   
(*PLP*) subject to  $Ax = b$ , (*DLP*) subject to  $A^T y + s = c$ ,  
 $x \ge 0$ ,  $s \ge 0$ ,

where

$$A = \begin{pmatrix} 2 & 2 & -1 & 0 \\ 1 & -1 & 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 3 & -1 & 2 \end{pmatrix}^{T}.$$

AF has implemented a primal-dual interior method in Matlab. He has tried to solve the above linear program by his solver and obtained the following approximate numbers for x, y, and s:

Based on these results, AF claims that  $x = (2\ 2\ 4\ 0)^T$ ,  $y = (1\ -1)^T$  and  $s = (0\ 0\ 0\ 1)^T$  give optimal solutions to (PLP) and (DLP) respectively.

AF is a bit confused by the results based on conversations with TO, who gave him the problem.

$$\begin{pmatrix} 2 & 2 & -1 & 0 \\ 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$