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Abstract

The symmetric group, the group of signed permutations and the group of signed
permutations with even number of negative entries are Coxeter groups and can be
seen as partially ordered sets with respect to the Bruhat order. A result of Tenner
(2006) shows that the elements of those posets which have a boolean lower order ideal
are exactly those avoiding certain sets of patterns.

The theory of twisted involutions was developed by Richardson and Springer (1990)
and Hultman (2004). We show that a twisted involution having a boolean lower order
ideal can be characterized in terms of reduced twisted expressions. We also consider
the special case of involutions of the groups mentioned above and show that those are
again characterized by the avoidance of certain sets of patterns.

We enumerate the boolean involutions of the said groups recursively. For the in-
volutions of the symmetric group we can also give recursions with respect to some
well-known statistics and a bijection with a certain class of Motzkin paths.
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1 Introduction

The study of Coxeter groups and Bruhat order has produced a wide variety of results

concerning combinatorial, geometric and algebraic questions. For instance, the following

questions have been studied more or less recently. First, properties of lower intervals

in Coxeter groups of type A, B and D have been characterized by pattern avoidance.

Second, the theory of twisted involutions including the special case of involutions has

been developed. This work will try to connect both ideas and study connections be-

tween booleanness of lower ideals in the partially ordered set of involutions and pattern

avoidance.

In chapter 2 we present the notation used throughout this work with particular em-

phasis on partially ordered sets and permutations. Chapter 3 introduces the reader to

the theory of Coxeter groups. We provide basic definitions and properties of Coxeter

groups and the Bruhat order and acquaint the reader with the theory of twisted invo-

lutions. We try to include all material necessary to understand the work without any

prerequisites about Coxeter groups. However, the interested reader may be willing to

find more detailed treatises in [4] and [10]. Finally, chapter 4 introduces the notion

of permutation patterns and gives a short overview over known connections between

Bruhat order and pattern avoidance. All the material covered in those first chapters is

known and does not contain any contribution from the author.

The author’s results are presented in chapter 5 and 6. In chapter 5 we study con-

nections between boolean involutions and pattern avoidance. Section 5.1 gives a simple

result characterizing boolean twisted involutions in terms of reduced twisted expressions.

The result has been stated for a special case without proof already in [22]. In section 5.2

we apply the said result in order to characterize the boolean involutions of the symmetric

group in terms of pattern avoidance. A connection between twisted reduced expressions

of involutions in the symmetric group and the avoidance of certain patterns is proved

in section 5.3. This is very similar to a result in [23] and our proof just adjusts the

ideas used there to our situation. In section 5.4 the results of section 5.2 are used to

characterize boolean involutions in other Coxeter groups in terms of pattern avoidance.

This includes the group of signed permutations, the group of even signed permutations

and the affine permutation group.

Chapter 6 is devoted to the enumeration of boolean involutions. We count the number

of boolean involutions of the symmetric group with respect to some statistics in 6.1 using

the combinatorial description presented earlier. A more general approach is applied in

section 6.2 which enables us to count the boolean involutions of other Coxeter groups,

as well.

Finally, we summarize the work and ask some more questions in chapter 7.
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2 Notation

2 Notation

The set of non-negative integers is N = {0, 1, 2, . . .}. We write

[n] = {1, . . . , n}

and

[±n] = {−n, . . . ,−1, 1, . . . , n}.

A word over the letters Γ = {s1, . . . , sn} is an element of the free monoid generated

by Γ. By the word s1 . . . ŝk . . . sn we mean the word having letters s1, . . . , sn with the

letter ŝk left out.

The unit element of a group will always be denoted by e.

The used notation for partially ordered sets and permutations follows [21] and [4].

Partially ordered sets

A partially ordered set or poset (P,≤) is a set P together with an order relation ≤ on P

which satisfies the following axioms:

(i) p ≤ p for all p ∈ P (reflexivity).

(ii) p ≤ q and q ≤ p ⇒ p = q for all p, q ∈ P (anti-symmetry).

(iii) p ≤ q, q ≤ r ⇒ p ≤ r for all p, q, r ∈ P (transitivity).

An interval [p, q] in a poset P is of the form [p, q] = {r ∈ P : p ≤ r ≤ q}. Note that

[p, q] is non-empty if and only if p ≤ q. We say that q ∈ P covers p ∈ P if p < q and

there is no r ∈ P such that p < r < q. The covering relation is denoted by p � q. A

chain of length k is a totally ordered subset x0 < x1 < . . . < xk of P . A chain is called

saturated if xi � xi+1 for all i and it is called maximal if it is maximal with respect to

inclusion.

The Hasse diagram of a poset P is a graph with vertex set P and edges between p

and q where q is drawn above p for all covering relations p � q.

A poset P is called bounded, if P has a unique minimal and a unique maximal element,

which in that case are denoted by 0̂ and 1̂ in general. A poset is graded if every maximal

chain is of the same length. In that case, there exists a rank function r : P → N with

r(p) = 0 for all minimal elements p ∈ P and r(q) = r(p) + 1 for all covering relations

p � q.

An element z ∈ P is an upper bound (respectively lower bound) for x, y ∈ P if z ≥ x

and z ≥ y (respectively z ≤ x and z ≤ y). A lattice is a poset P in which any two

elements x, y ∈ P have a unique minimal upper bound, denoted by x ∨ y, and a unique

maximal lower bound, denoted by x ∧ y.
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The Möbius function of a locally finite poset P maps every ordered pair p ≤ q to an

integer µ(p, q) according to the recursion

µ(p, q) =

{

1 if p = q,

−∑

p≤r<q µ(p, r) if p < q.

The boolean lattice Bn is the poset (2[n],⊆) containing all subsets of [n] partially

ordered with respect to inclusion.

∅

{1} {2} {3}

{1, 2}
{1, 3}

{2, 3}

{1, 2, 3}

Figure 2.1: Hasse diagram of B3

The lower order ideal of p ∈ P is B(p) := {q ∈ P : q ≤ p}. We call p ∈ P boolean if

B(p) is isomorphic to Bn for some n ∈ N, otherwise we call p non-boolean. A boolean

p is maximal boolean if all q > p are non-boolean.

Assume that B(p) is graded with r(p) = n. Then, p is called rank-symmetric if

|{q ∈ B(p) : r(q) = k}| = |{q ∈ B(p) : r(q) = n − k}| for all k = 1, . . . , n.

A special matching on the poset P is an involutive bijection m : P → P such that

m(p) � p or p � m(p) for all p ∈ P and if p � q and m(p) 6= q then m(p) < m(q) for all

p, q ∈ P .

Permutations

A permutation of a set M is a bijection π : M → M . The symmetric group Sn is the

group consisting of all permutations of [n] with composition as the multiplication. The

identity element e of Sn is the identity map k 7→ k.

We will use two different notations for a permutation π ∈ Sn. In the one-line notation

we denote π ∈ Sn by π(1) . . . π(n). A cycle of π is of the form (i, π(i), π2(i), . . . , πp−1(i))

where p ∈ N is minimal such that πp(i) = i. If (i, j, k, . . . , l) is a cycle of π then π(i) = j,

π(j) = k and so on until finally π(l) = i. A cycle with k elements is called k-cycle.

3



2 Notation

In the cycle notation, π is denoted by writing up all cycles of π after each other. It is

clear that, in contrast to the one-line notation, the cycle notation is not unique. A cycle

containing only one element, called one-cycle, is a fixed point of π. We will usually omit

to write the one-cycles.

Thus, (i, j) with i, j ∈ [n] and i 6= j denotes the permutation that maps i to j and

j to i and leaves all other elements as fixed points. Such a permutation is called a

transposition. An adjacent transposition is given by (i, i + 1) for some i ∈ [n − 1].

A permutation π ∈ Sn can be illustrated by drawing points with coordinates (i, π(i))

for all i ∈ [n] in the plane. We call that the diagram representation of π.

1

1

2

2

3

3

4

4

5

5

(a) 31452 ∈ S5

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4

(b) 2413 ∈ S
B
4

Figure 2.2: Two diagram representations

An inversion of a permutation π is a pair (i, j) with i < j and π(i) > π(j). The

number of inversions of a permutation π is denoted by inv(π).

A signed permutation π is a permutation of the set [±n] such that π(−i) = −π(i) for

all i ∈ [n]. The group of all signed permutations (with composition as multiplication)

is denoted by SB
n . The symmetric group Sn can be identified as a subgroup of SB

n in a

natural way and SB
n can be identified as a subgroup of S([±n]) in a natural way.

Negative values in signed permutations will be denoted by underlining the absolute

value, i.e. −i is denoted by i. The one-line notation π(−n) . . . π(−1)π(1) . . . π(n) of a

signed permutation is also called complete notation. A signed permutation is already

uniquely defined by the values π(1) . . . π(n). We can thus use the window notation

[π(1) . . . π(n)] in order to denote a signed permutation π. When referring to an entry of

a signed permutation we mean an entry in the window notation.

A signed permutation π ∈ SB
n ⊆ S([±n]) can also be represented by a diagram,

drawing points with coordinates (i, π(i)) for all i ∈ [±n]. By definition the diagram of a

signed permutation will be symmetric with respect to (0, 0).

The subgroup of SB
n consisting of all signed permutations having an even number of

negative entries is denoted by SD
n .
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3 Coxeter groups and the Bruhat order

Coxeter groups are motivated by and studied in different areas of mathematics such

as geometry, algebra and combinatorics. They generalize the theory of finite reflection

groups (see [10]) that provide the examples which the later part of this work will focus

on.

After giving the basic definitions as well as some examples of Coxeter groups that

appear interesting or will be needed later we will introduce the Bruhat order and some

important properties.

3.1 Fundamentals

This section gives a short introduction to Coxeter groups. All facts are taken from [4]

and [10] which we also point out as references for further information.

3.1.1 Coxeter groups

Definition 3.1. A Coxeter system is a pair (W, S) of a group W with set of generators

S ⊂ W satisfying only relations of the form (ss′)m(s,s′) = e where m(s, s) = 1 for all

s ∈ S and m(s, s′) = m(s′, s) ≥ 2 for s 6= s′ in S. By convention we let m(s, s′) = ∞
if the pair s and s′ does not give rise to any relation. The group W is called a Coxeter

group.

Formally W is isomorphic to the quotient F/N where F is the free group generated

by S and F is the normal subgroup generated by all elements (ss′)m(s,s′) for all s, s′ ∈ S

with m(s, s′) < ∞.

In general W can have different generating sets S, which do not even need to have the

same cardinality (see [4, Exercise 1.2]). Anyway, we write W instead of (W, S) when the

choice of S is clear from the context.

A Coxeter system can be represented by the corresponding Coxeter graph with vertex

set S and undirected edges {s, s′} for all s, s′ ∈ S with m(s, s′) > 2. The edge {s, s′} is

labeled with m(s, s′) whenever m(s, s′) > 3. We note that the correspondence between

Coxeter systems and Coxeter graphs is one-to-one. A Coxeter system is called irre-

ducible if the corresponding Coxeter graph is connected, otherwise it is called reducible.

Reducible Coxeter systems decompose uniquely as products of irreducible ones.

For J ⊆ S, the subgroup WJ of W generated by the elements of J is called a standard

parabolic subgroup. The pair (WJ , J) is again a Coxeter system with Coxeter graph

isomorphic to the subgraph of the Coxeter graph of W induced by the vertices corre-

sponding to J .

Example 3.2 ([4, Example 1.2.7]). Fix some m ∈ N and consider the finite reflection

group I2(m) given by the symmetry group of a regular m-gon in the Euclidean plane.

Let rk denote the reflection with axis at angle kπ
m

with respect to a fixed line passing
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3 Coxeter groups and the Bruhat order

through the center and one vertex of the polygon and let Rk denote the rotation by

angle 2kπ
m

with respect to the center of the polygon. Then

I2(m) = {rk : k = 0, . . . , m − 1} ∪ {Rk : k = 0, . . . , m − 1}

and I2(m) is generated by r0 and r1, for example. Furthermore we have R0 = e as the

identity element of I2(m), r2
0 = r2

1 = e and (r0r1)
m = e. We call I2(m) the dihedral

group of order 2m.

��������

r0 r1

m

Figure 3.1: Coxeter graph of I2(m)

Example 3.3. For n ≥ 3 the affine symmetric group S̃n ⊂ S[Z] is the group of

permutations w : Z → Z of the integers such that w(i + n) = w(i) + n for all

i ∈ Z and
∑n

i=1 w(i) =
(

n+1
2

)

. It is generated by the periodic adjacent transpositions

s̃i =
∏

k∈Z
(i + kn, i + 1 + kn) for i = 1, . . . , n. Then, S̃n is a Coxeter group of type Ãn.

The corresponding Coxeter graph is shown in Figure 3.2.

We remark that in contrast to I2(m) and the Coxeter groups presented later, S̃n is

infinite. An affine permutation w is uniquely defined by the values w(1), . . . , w(n) and

we use the window notation [w(1) . . . w(n)] when representing an affine permutation.

������������������

s̃1 s̃2 s̃n−2 s̃n−1

s̃n

Figure 3.2: Coxeter graph of S̃n

Every element w ∈ W of a Coxeter group W can (not necessarily uniquely) be written

as product of generators s1 · · · sk with s1, . . . , sk ∈ S (not necessarily different). We call

s1 · · · sk a word or expression for w. If k is minimal such that w can be written as a

product of k generators then k is called the length of w and denoted by l(w). In that

case s1 . . . sk is called a reduced word or a reduced expression for w.

We will now present two important properties of Coxeter groups. Actually the state-

ments of propositions 3.4 and 3.5 are equivalent and do even characterize Coxeter systems

in the sense that every group W with generating set S consisting of elements of order 2

6



3.1 Fundamentals

that satisfies the statement of one of the following propositions will satisfy both of them

and be a Coxeter system.

Proposition 3.4 (Exchange property). Let w = s1 . . . sk be a reduced expression for

w ∈ W and let s ∈ S. Then l(sw) < l(w) if and only if sw = s1 . . . ŝi . . . sk for some

i ∈ [k].

Proposition 3.5 (Deletion property). If w = s1 . . . sk and l(w) < k then w =

s1 . . . ŝi . . . ŝj . . . sk for some 1 ≤ i < j ≤ k.

Let s1 . . . sk be an expression for some element w ∈ W . We call an expression of the

form si1 . . . sil with 1 ≤ i1 < . . . < il ≤ k a subexpression or subword of s1 . . . sk. We can

formulate a direct consequence of the deletion property as follows: every expression for

w ∈ W contains a reduced expression for w as a subword.

There exists a stronger version of the exchange property which also holds in all Coxeter

systems. Let T := {w−1sw : w ∈ W, s ∈ S} be the set of reflections, i.e. elements

conjugate to some generator. The exchange property actually holds for all reflections

t ∈ T and not only for all s ∈ S ⊆ T .

Proposition 3.6 (Strong exchange property). Let w = s1 . . . sk be a reduced ex-

pression for w ∈ W and let t ∈ T . Then l(tw) < l(w) if and only if tw = s1 . . . ŝi . . . sk

for some i ∈ [k].

The weaker as well as the stronger version of the Exchange Property are stated in

their left versions here. There also exists a right version which holds for all Coxeter

systems, just write wt instead of tw in all statements.

3.1.2 Bruhat order

We will now introduce the Bruhat order which turns a Coxeter group into a partially

ordered set with interesting properties. In particular, this partial order is compatible

with the length function. The Bruhat order is motivated by the connection to algebraic

geometry, where it is defined on the Weyl group of a semi-simple algebraic group via

inclusion of certain cell decompositions.

Definition 3.7. Let v, w ∈ W . Write v → w if there exists some t ∈ T with w = tv and

l(w) > l(v). Define v ≤ w if v = w0 → w1 → . . . → wm = w for some w0, . . . , wm ∈ W .

The resulting partial order on W is called Bruhat order.

Again, the definition is stated as a one-sided version and seems to favor left multipli-

cation. However, if w = tv for some t ∈ T , we have w = vt′ with t′ = v−1tv ∈ T . Thus,

the Bruhat order could equivalently be defined using right multiplication. From now on,

we will understand W as a Coxeter group partially ordered with respect to the Bruhat

order without further mentioning.

It turns out that the Bruhat order can be described by the notion of subwords in a

very natural way.

7



3 Coxeter groups and the Bruhat order

Proposition 3.8 (Subword property). Let w = s1 . . . sk ∈ W be a reduced expression

and let u ∈ W . Then u ≤ w if and only if there exists a reduced expression for u which

is a subword of s1 . . . sk.

The subword property can be used to prove the so-called chain property saying that

for every u, v ∈ W with u < v there is a chain u = x0 < x1 < . . . < xk = v such that

l(xi) = l(u) + i for i = 1, . . . , k. Thus, a Coxeter system with Bruhat order is a graded

poset with the length function as rank function. In particular, every interval [u, v] ⊆ W

is graded and finite.

The following property of the Bruhat order is a useful technical tool. In a sense it

even characterizes the Bruhat order in Coxeter systems.

u

su

v

sv

Figure 3.3: The lifting property of the Bruhat order

Proposition 3.9 (Lifting property). Let u, v ∈ W and s ∈ S be such that l(sv) < l(v)

and l(su) > l(u). Then the following are equivalent:

(i) u < v.

(ii) u ≤ sv.

(iii) su ≤ v.

Example 3.10. Remember the dihedral group I2(m) generated by a, b ∈ I2(m) with

(ab)m = e. It has exactly two elements of length k ∈ [2, m− 1] with reduced expressions

aba . . . and bab . . . (each having k letters). It holds that u < v (respectively u � v) for

some u, v ∈ I2(m) if and only if l(v) > l(u) (respectively l(v) = l(u) + 1).

Let’s make some short comments on the structure of intervals in Coxeter groups or-

dered by Bruhat order (see [4, Section 2.7 and 2.8] for more details). Besides many

topological properties of intervals and the corresponding order complexes, it is known

that the Möbius function in a Coxeter group is given by µ(u, v) = (−1)l(v)−l(u) for all

u ≤ v. Furthermore, every interval of length 2 is isomorphic to B2 and intervals of length

3 are isomorphic to so-called k-crowns.

8



3.2 Finite Coxeter groups

R0 = e

r0 r1

r2r3

R1

R2

R3

Figure 3.4: The Hasse diagram of I2(4)

3.2 Finite Coxeter groups

The finite Coxeter groups are exactly the finite reflection groups (see [10]). Here a

reflection is a linear operator on a Euclidean space that sends some nonzero vector to its

negative and fixes the hyperplane orthogonal to that vector pointwise. A finite reflection

group is a finite group generated by reflections.

In the finite case, there always exists a greatest element, which will be denoted by

w0. Thus, we have w0 ≥ w for all w ∈ W . This maximal element fulfills w2
0 = e and

l(w0) = |T |.
The finite and irreducible Coxeter groups have been classified (see [4, Appendix A1]).

We will present the classes that will be used frequently in this work.

3.2.1 The symmetric group Sn

The Coxeter system of type An−1 is determined by the Coxeter graph in Figure 3.5. The

corresponding finite reflection group is the symmetry group of the n-dimensional simplex

in R
n generated by the reflections with fixed hyperplanes xi = xi+1 for i = 1, . . . , n− 1.

����������������������������������
s1 s2 s3 sn−2 sn−1

Figure 3.5: Coxeter graph of Sn

In particular, the symmetric group Sn of all permutations on n elements generated

by the adjacent transpositions si = (i, i + 1) for i ∈ [n − 1] is of type An−1. Indeed, we

have s2
i = e for all i ∈ [n − 1] as well as (sisi+1)

3 = (si+1si)
3 = e for all i ∈ [n − 2] and

(sisj)
2 = (sjsi)

2 = e for all i, j ∈ [n − 1] such that |i − j| > 1. The set of reflections T

of Sn is exactly the set of all transpositions ti,j := (i, j) for i, j ∈ [n] with i 6= j.

9



3 Coxeter groups and the Bruhat order

We can describe the Bruhat order on Sn in a combinatorial way. The rank and length

function of Sn is given by l(w) = inv(w) for all w ∈ Sn. The smallest element is the

identity e = 12 . . . n and the maximal element is w0 = n(n − 1) . . . 21 with l(w0) =
(

n
2

)

.

From the definition it follows, that u → w for permutations u, w ∈ Sn if and only if

w = u · ti,j for some i, j ∈ [n] such that i < j and u(i) < u(j). Thus, u is covered by w

if and only if we have w = u · ti,j with i, j ∈ [n] as above and there is no k ∈ [n] with

i < k < j and u(i) < u(k) < u(j).

There is a simple way to check if two permutations u, v ∈ Sn are comparable. Define

w[i, j] := |{k ∈ [n] : k ≤ i, w(k) ≥ j}| for w ∈ Sn. Then, u ≤ v if and only if

u[i, j] ≤ v[i, j] for all i, j ∈ [n]. We remark that using the diagram representation of u

and v, u[i, j] counts the number of drawn points in the part of the plane given by x ≤ i

and y ≥ j.

The reader may note that the generators of the symmetric group Sn are denoted

by s1, . . . , sn. This can lead to some confusion when using indices for generators in

expressions later. Hopefully this can be avoided by the following convention: when

speaking about a Coxeter group in general, then si will denote any generator and si = sj

is possible for i 6= j. If we are speaking about the symmetric group or similar groups as

presented below, then si will always denote a certain generator and in particular si = sj

will imply i = j.

3.2.2 The signed symmetric groups SB
n and SD

n

The Coxeter graph in Figure 3.6 determines the Coxeter group of type Bn. It is the

symmetry group of the n-dimensional hyperoctahedron in R
n generated by the reflections

with fixed hyperplanes xi = xi+1 for i = 1, . . . , n − 1 as well as x1 = 0.

4
����������������������������������

s0 s1 s2 sn−2 sn−1

Figure 3.6: Coxeter graph of SB
n

The group of signed permutations SB
n is of type Bn. Its canonical set of generators

is given by si = (i, i + 1)(−i,−i − 1) for i ∈ [n − 1] and the sign change s0 = (1,−1).

We note that SB
n can be obtained as the semi-direct product of Sn with (Z/2Z)n and

contains 2nn! elements. We have m(si, sj) ∈ {1, 2, 3} for i, j ∈ [n − 1] as before and we

have (s0s1)
4 = e as well as (s0sj)

2 = e for all 2 ≤ j ≤ n − 1.

The length function lB of SB
n is given by

lB(w) = invB(w) := inv(w(1), . . . , w(n)) + neg(w(1), . . . , w(n))

+ nsp(w(1), . . . , w(n))

where neg(w(1), . . . , w(n)) := |{i ∈ [n] : w(i) < 0}| is the number of negative entries

of w and nsp(w(1), . . . , w(n)) := |{{i, j} ∈
(

[n]
2

)

: w(i) + w(j) < 0}| is the number of

10



3.3 Twisted involutions

negative sum pairs of w. The minimal and maximal elements of SB
n are e = [12 . . . n]

and w0 = [1 . . . n] with lB(w0) = n2.

The set of reflections of SB
n is given by

{(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n} ∪ {(i,−i) : i ∈ [n]}.

Again we can check if two elements u, v ∈ SB
n are comparable. Let

w[i, j] := |{a ∈ [−n, n] : a ≤ i, w(a) ≥ j}| where w(0) := 0. Then, u ≤ v if and

only if u[i, j] ≤ v[i, j] for all i, j ∈ [−n, n]. The interpretation using the diagram

representation of this fact is the same as for permutations in Sn.

The subgroup SD
n of SB

n is itself a Coxeter group with generators s1, . . . , sn−1 as before

and s′0 = s0s1s0. The corresponding Coxeter diagram determining the Coxeter group of

type Dn is shown in Figure 3.7.

����������������
s′0

s1

s2 s3 sn−2 sn−1

Figure 3.7: Coxeter graph of SD
n

3.3 Twisted involutions

3.3.1 Combinatorics of twisted involutions

Consider a Coxeter group W and a bijection θ : W → W . We call θ

(i) order-preserving automorphism if u ≤ v ⇔ θ(u) ≤ θ(v) for all u, v ∈ W .

(ii) group automorphism if it respects the group structure of W , i.e. θ(uv) = θ(u)θ(v)

for all u, v ∈ W .

(iii) graph automorphism if it is a group automorphism induced by an automorphism

of the Coxeter graph of W , i.e. a permutation of S which preserves the relations

between elements of S.

(iv) involutive if θ2 = id.

From the definition it is clear, that every graph automorphism is order-preserving.

The converse is not true, as for example the bijection w 7→ w−1 is order-preserving but

not a graph automorphism in general (because it fixes all s ∈ S, but not necessarily all

w ∈ W ).

11



3 Coxeter groups and the Bruhat order

Example 3.11. Remember the dihedral group I2(m). Two elements u and v of the

dihedral group I2(m) satisfy u ≤ v if and only if l(u) ≤ l(v). There are exactly two

elements of length k for every k = 1, . . . , m − 1. Thus, the group of order-preserving

automorphisms of I2(m) is isomorphic to (Z/2Z)m−1.

In [24] the automorphisms of the Bruhat order of a Coxeter group W are classified.

Interesting for us is the irreducible and non-dihedral case.

Proposition 3.12 ([24]). Let (W, S) be an irreducible Coxeter system with |S| ≥ 3.

Then every automorphism of the Bruhat order is either a graph automorphism or a

graph automorphism followed by group inversion.

We will now present the theory of twisted involutions. In [20], [17] and [18] the combi-

natorics of twisted involutions is developed for finite W and from an algebraical point of

view. For our purposes we will follow [8], where the theory is developed combinatorially

for general Coxeter groups.

From now on, θ : W → W denotes an involutive group automorphism such that

θ(S) = S. In particular, θ is order-preserving and because of Proposition 3.12 it is

induced by an automorphism of the Coxeter graph of W .

Definition 3.13. The set of twisted involutions of W with respect to θ is

I(W, θ) := {w ∈ W : θ(w) = w−1}.

For w ∈ W and s ∈ S define the action of the symbol s from the right on w by

ws =

{

ws if θ(s)ws = w,

θ(s)ws otherwise.

Define ws1 . . . sk := (. . . (ws1)s2 . . .)sk and write s1 . . . sk instead of es1 . . . sk. The fol-

lowing proposition justifies the use of the above expressions.

Proposition 3.14 ([8, Proposition 3.5]). Let w ∈ W . Then the following are equivalent:

(i) w ∈ I(W, θ).

(ii) There exist s1, . . . , sk ∈ S such that w = s1 . . . sk.

We call w = s1 . . . sk a twisted expression for w ∈ I(W, θ). If k is minimal such that

w = s1 . . . sk for some s1, . . . , sk ∈ S, then we write ρ(w) = k and call s1 . . . sk a reduced

twisted expression.

This reminds of the expressions for w ∈ W and there are indeed very useful similarities

in the behavior of expressions for Coxeter elements and twisted expressions for twisted

involutions as the next propositions illustrate. However, the set of twisted involutions is

in general not a Coxeter group.

12



3.3 Twisted involutions

Lemma 3.15 ([8, Lemma 3.8]). Let w ∈ I(W, θ) and s ∈ S. Then ρ(ws) < ρ(w) if and

only if l(ws) < l(w).

Proposition 3.16 (Exchange property in I(W, θ), [8, Proposition 3.10]). Let

s1 . . . sk be a reduced twisted expression and assume that s ∈ S fulfills ρ(s1 . . . sks) < k.

Then s1 . . . sks = s1 . . . ŝj . . . sk for some j ∈ [k].

Proposition 3.17 (Deletion property in I(W, θ), [8, Proposition 3.11]). Let s1 . . . sk

be a twisted expression with ρ(s1 . . . sk) < k. Then s1 . . . sk = s1 . . . ŝi . . . ŝj . . . sk for

some i, j ∈ [k] with i 6= j.

We use the notion of subwords of twisted expressions in the same way as for expressions

in W . Again, every twisted expression for w ∈ I(W, θ) contains a reduced twisted

expression for w as a subword.

From now on, consider I(W, θ) ⊆ W as a partially ordered set with respect to the

Bruhat order in W , i.e. u ≤ v in I(W, θ) if and only if u ≤ v in W for all u, v ∈ I(W, θ).

This makes it possible to use the symbol ≤ in both partially ordered sets W and I(W, θ)

without being ambiguous.

Again, a lifting property similar to Proposition 3.9 holds and is used to prove the

subword property which describes the partial order on I(W, θ) in terms of subwords.

Proposition 3.18 (Subword property in I(W, θ), [9, Theorem 2.8]). Let v =

s1 . . . sk ∈ I(W, θ) be a reduced twisted expression and let u ∈ I(W, θ). Then u ≤ v if

and only if there exists a reduced twisted expression for u which is a subword of s1 . . . sk.

The subword property for twisted expressions will play an essential role in chapter 5 in

order to examine the structure of lower order ideals in I(W, θ). The following proposition

will give some first information about those.

Proposition 3.19 ([8, Theorem 4.5]). Let w ∈ I(W, θ) and s ∈ S be such that ρ(ws) <

ρ(w). Then, the map v 7→ vs is a special matching on B(w) = [e, w] ⊆ I(W, θ).

From the existence of special matchings for all intervals [e, w] with w ∈ I(W, θ) and

w 6= e it follows that I(W, θ) is a zircon. Zircons are posets generalizing the notion of

Coxeter groups partially ordered by Bruhat order, see [16] for the exact definition. It

is known that in that case [e, w] is a lattice if and only if w ∈ I(W, θ) is boolean ([16,

Corollary 5.5]).

In [7], Hultman shows that I(W, θ) is graded and describes the rank function. Those

results were proved by Incitti in [11, 12, 13] for Coxeter groups of type A, B and D in

the case θ = id and conjectured to hold for arbitrary Coxeter groups. In [17] they are

proved for Weyl groups and arbitrary θ. In [9], the twisted absolute length function lθ

is described as follows: if w = s1 . . . sk ∈ I(W, θ) is a reduced twisted expression, then

lθ(w) = |{i ∈ [k] : s1 . . . si−1si = s1 . . . si−1si}|.

Proposition 3.20 ([7]). The poset I(W, θ) is graded. The rank of w ∈ I(W, θ) is given

by ρ(w) = l(w)+lθ(w)
2 .
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3 Coxeter groups and the Bruhat order

The following example illustrates that twisted involutions and their properties can be

considered as generalizations of Coxeter groups.

Example 3.21 ([17, 8]). Let W be any Coxeter group. Then W ×W is a Coxeter group

with componentwise multiplication and generating set (S × {e}) ∪ ({e} × S). Consider

the involutive automorphism θ : W × W → W × W given by (v, w) 7→ (w, v). Then

I(W ×W, θ) = {(w, w−1) : w ∈ W} is isomorphic to W and the corresponding bijection

w 7→ (w, w−1) is order-preserving. Furthermore, s1 . . . sk is a (reduced) expression for

w ∈ W if and only if (s1, e) . . . (sk, e) is a (reduced) twisted expression for (w, w−1) ∈
I(W × W, θ). If w ∈ W has length k, then (w, w−1) has length 2k as an element of

W × W and rank k as an element of I(W × W, θ), i.e. in that case lθ((w, w−1)) = 0 for

all w ∈ W .

3.3.2 The case θ = id

Let us consider θ = id. Then I(W, id) is the set of (ordinary) involutions in W . We will

restate some of the theory from above for θ = id, for example the action of s on w ∈ W

for s ∈ S.

Lemma 3.22. Let θ = id, w ∈ W and s ∈ S. Then, the action of the symbol s from the

right on w as defined in the general case is as follows:

ws =

{

ws if ws = sw,

sws otherwise.

Proof. This is clear by definition, because θ(s) = s for all s ∈ S.

We conclude s = s for all s ∈ S. In particular, s1 = s2 holds for some s1, s2 ∈ S if

and only if s1 = s2.

Lemma 3.23. Let w ∈ I(W, id). Then, every reduced twisted expression for w contains

the same set of letters.

Proof. Let s ∈ S be such that s is a letter of some reduced twisted expression for w. In

particular, we have s ≤ w. Let s1 . . . sk be any reduced twisted expression for w. From

the subword property it follows, that si = s for some i ∈ [k], i.e. si = s because of our

previous remark.

We want to state a simple property of twisted expressions for elements of I(W, id)

concerning the commutativity of its letters. This will later be used without further

remarks.

Lemma 3.24. Let (W, S) be a Coxeter system, θ = id and let s1, s2 ∈ S with s1 6= s2. If

s1 and s2 commute, then ws1s2 = ws2s1 holds for all w ∈ W . Furthermore s1s2 = s2s1

if and only if m(s1, s2) ≤ 3.
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3.3 Twisted involutions

Proof. The first part follows from Definition 3.13 about the action of s1 and s2 on

elements of W . Note that under our assumptions s2 commutes with w if and only if it

commutes with ws1 and conversely.

The second part follows from the first part for m(s1, s2) = 2 and from s1s2 = s2s1s2

and s2s1 = s1s2s1 for m(s1, s2) ≥ 3.

3.3.3 The involution set In

Let’s have a closer look at the involutions of the symmetric group Sn.

Definition 3.25. Define

In := I(Sn, id) ⊆ Sn

as the set of involutions of Sn partially ordered by the Bruhat order.

The involutions are exactly those permutations whose diagram representation is sym-

metric with respect to the main diagonal x = y. Aside from the diagram representation

for permutations we can represent an involution w ∈ In by an undirected graph on vertex

set [n] as well, where the vertices i, j ∈ [n] are joined by an edge if and only if w(i) = j.

We call this the graph representation of w. The graph representation is well-defined if w

is an involution.

1

1

2

2

3

3

4

4

5

5

(a) Diagram representation

1 2 3 4 5

(b) Graph representation

Figure 3.8: The involution 42513 ∈ I5

In [12], the poset In is characterized in a purely combinatorial way. In particular, the

paper gives an explicit description of the covering relations in In as follows.

Let w ∈ In. A pair (i, j) ∈ [n]2 is called a free rise of w if i < j and w(i) < w(j) and if

there is no k ∈ [n] with i < k < j and w(i) < w(k) < w(j). Depending on if i and j are

fixed points (f), excedances (e) or deficiencies (d), the rise (i, j) is called of type (f,f),

(f,e), (f,d) and so on. A free rise is suitable if it is of type (f,f), (f,e), (e,f), (e,e) or (e,d).

For every suitable rise (i, j), Incitti defines the covering transformation ct(i,j)(w) ∈ In

as in table 3.1. In the last column of the table both w and ct(i,j)(w) are represented in

a diagram: the black dots indicate w and the white dots indicate ct(i,j)(w). There are
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3 Coxeter groups and the Bruhat order

no other (black or white) dots in the gray shaded area due to the condition that (i, j) is

a free rise.

Type of (i, j) ct(i,j)(w) Diagram

(f,f)-rise w (i, j)

�
�
�
�

��������������
��������������
��������������
��������������
��������������
��������������
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��������������
��������������
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��������������
��������������

��������������
��������������
��������������
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��������������
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��������������
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�
�
�
�

i

i

j

j

(f,e)-rise w (i, j, w(j))

�
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�
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�
�
�
�

�
�
�
�

i

i

j

j w(j)

w(j)

(e,f)-rise w (i, j, w(i))
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�
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j

j

w(i)

w(i)

Non-crossing (e,e)-rise w (i, j) (w(i), w(j))
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��������������
��������������
��������������
��������������
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��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�
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�

�
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�
�

i

i

j

j w(i)
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Crossing (e,e)-rise w (i, j, w(j), w(i))
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�
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�
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�
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�
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j
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(e,d)-rise w (i, j) (w(i), w(j))
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�

�
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�
�

�
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�
�

�
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�
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i

i

j

jw(i)

w(i)
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w(j)

Table 3.1: The covering transformation, [12, Table 1]

The covering relation in In is completely described by the covering transformations.

Proposition 3.26 ([12, Theorem 5.1]). Let u, v ∈ In. Then u � v if and only if v =

ct(i,j)(u) for some suitable rise (i, j) of u.

Furthermore, the rank function of In is formulated combinatorially.

Proposition 3.27 ([12, Theorem 5.2]). The set of involutions In partially ordered with

respect to the Bruhat order is graded with rank function ρ given by

ρ(w) =
inv(w) + exc(w)

2

for all w ∈ In. Here exc(w) = |{i ∈ [n] : w(i) > i}| denotes the number of excedances in

w.
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4 Permutation patterns

4.1 Fundamentals

Definition 4.1. Let w ∈ Sn and p ∈ Sk for k ≤ n. The permutation w contains the

pattern p if there exist i1 < . . . < ik such that w(i1) . . . w(ik) is in the same relative

order as p(1) . . . p(k), i.e. if w(il) < w(im) ⇔ p(l) < p(m) for all l, m ∈ [k]. If w does

not contain the pattern p, then w avoids p or is p-avoiding.

The next piece of notation follows [23]. If w contains the pattern p with {i1, . . . , ik}
as in Definition 4.1, then w(i1) . . . w(ik) is called an occurrence of p in w. By 〈p(j)〉 and

〈p〉 we will denote the values w(ij) and w(i1) . . . w(ik), respectively.

Definition 4.1 can easily be extended to signed permutations where we only have to

add a clause concerning the signs.

Definition 4.2. Let w ∈ SB
n and p ∈ SB

k for k ≤ n. The signed permutation w contains

the signed pattern p if there exist i1 < . . . < ik such that |w(i1)| . . . |w(ik)| is in the

same relative order as |p(1)| . . . |p(k)|, i.e. if |w(il)| < |w(im)| ⇔ |p(l)| < |p(m)| for all

l, m ∈ [k], and such that w(il) and p(l) have the same sign for all l ∈ [k]. The notions

of an occurrence and avoiding the pattern p are as before.

There is a variety of studies concerning permutation patterns or closely connected

topics. In particular, one is interested in counting the number of permutations with a

certain number of occurrences of a pattern or a list of patterns. Pattern avoidance is

a special case of that question. We refer to [14] as a survey on that topic presenting a

detailed overview of known results and methods.

4.2 Pattern avoidance and Bruhat order

Several properties of permutations have been characterized by pattern avoidance and

containment (see [2] for more references). In [15] Lakshmibai and Sandhya showed, that

the Schubert variety corresponding to some permutation w ∈ Sn is smooth if and only

if p avoids 3412 and 4231. The connection to Bruhat order is given by the fact, that

B(w) encodes the cell incidence structure of that variety. Gasharov proved in [6] that

for w ∈ Sn the Poincaré polynomial of B(w) = [e, w] factors into certain polynomials if

and only if w avoids 3412 and 4231. A consequence is the following proposition.

Proposition 4.3 ([6, 3]). Let w ∈ Sn. Then, B(w) = [e, w] is rank-symmetric if and

only if w avoids the patterns 3412 and 4231.

Similar results were shown by Billey in [1] for SB
n and SD

n . In particular, also the

elements of SB
n and SD

n having rank-symmetric lower order ideals can be characterized

by avoiding a list of signed patterns (see [3]). However, the list of patterns is rather long

for SB
n and SD

n .

A stronger condition on w is to have a lower order ideal isomorphic to a boolean

lattice. Remember that we call those w boolean. It turns out that booleanness can be
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4 Permutation patterns

characterized in terms of patterns avoidance in Sn, SB
n and SD

n , as well. This is proved

by Tenner in [22]. Her results are stated in the following propositions. Again, the list of

patterns grows rather long for SB
n and SD

n .

Proposition 4.4 ([22, Theorem 5.3]). The permutation w ∈ Sn is boolean if and only

if w avoids the patterns 321 and 3412.

Proposition 4.5 ([22, Theorem 8.4]). The signed permutation w ∈ SB
n is boolean if and

only if w avoids the signed patterns 12, 21, 321, 3412, 321, 3412, 321, 3412, 12 and 321.

Proposition 4.6 ([22, Theorem 8.7]). The signed permutation w ∈ SD
n is boolean if and

only if w avoids the signed patterns 123, 132, 213, 231, 312, 321, 321, 3412, 321, 312,

3412, 3421, 321, 231, 3412, 4312, 12, 321, 321 and 3412.

Tenner also enumerates the boolean elements in Sn, SB
n and SD

n by counting certain

reduced expressions.

Another result of Tenner is used in her proofs of the Propositions 4.5 and 4.6. It con-

nects pattern avoidance with properties of reduced expressions. A factor is a consecutive

subword of a reduced expression. A shift of a reduced expression for some w ∈ Sn is the

reduced expression obtained by shifting all indices of the letters of the expression by the

same value.

Proposition 4.7. Let p ∈ Sk be 2143-avoiding. If the permutation w ∈ Sn contains a

p-pattern then there exists a reduced expression for w containing some shift of a reduced

expression for p as a factor.

Tenner’s results on boolean elements in Sn, SB
n and SD

n motivate our study of boolean

elements in the posets of twisted involutions of Coxeter groups. It will turn out that we

can make quite similar statements.
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Throughout this section let (W, S) be a Coxeter system and θ : W → W an involutive

graph automorphism. Remember, that this implies that θ is order-preserving and a

group automorphism. Furthermore, it holds that θ(S) = S.

If w ∈ I(W, θ) is boolean, then it obviously holds that [e, w] ∼= Bρ(w). Furthermore,

the set of boolean elements forms a lower order ideal of I(W, θ), i.e. if w ∈ I(W, θ) is

boolean and v ∈ I(W, θ) is such that v ≤ w, then v is boolean, too. This shows that

booleanness is quite a convenient property.

5.1 Reduced twisted expressions of boolean elements

The next proposition classifies the boolean elements in I(W, θ) in terms of their reduced

expressions. The statement is valid for all W and θ and thus the most general we can

make on boolean elements. It also provides a useful tool for further investigations about

boolean elements in more specific situations.

We have to make a comment on the equality of subwords here. Two subwords si1
. . . sil

and sj1
. . . sjm

of some reduced twisted expression s1 . . . sk are considered to be equal if

and only if l = m and io = jo for all o ∈ [l]. In particular, different subwords can be

twisted expressions for the same element in general.

Proposition 5.1. Let w ∈ I(W, θ) and let s1 . . . sk be a reduced expression for w. Then

the following are equivalent:

(i) w is boolean.

(ii) Every subword of s1 . . . sk is reduced and different subwords are reduced expressions

for different elements.

(iii) sp 6= sq for all p, q ∈ [k] with p 6= q.

Proof. (i) ⇒ (iii). Suppose that there are p 6= q with sp = sq. Then w is of rank k in

B(w) but B(w) has at most k − 1 elements of rank 1. Thus B(w) cannot be isomorphic

to a boolean lattice and w is not boolean.

(iii) ⇒ (ii). Assume that there are two different subwords of s1 . . . sk which are

reduced expressions for the same element v ∈ I(W, θ). Choose sp as a letter which is

contained in one of the words but not in both (with respect to the index). It holds that

sp ≤ v and using the subword property for I(W, θ) (Proposition 3.18) it follows that

there is some sq in the word that does not contain sp such that sp = sq. By the choice

of sp we have p 6= q.

Assume that there is a subword si1
. . . sil

of s1 . . . sk which is not reduced. Let m ∈ [l]

be minimal such that si1
. . . sim

is not reduced. The exchange property for I(W, θ)

(Proposition 3.16) implies that si1
. . . sim−1

= si1
. . . ŝip

. . . sim
. Both twisted expressions
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5 Boolean involutions and pattern avoidance

are reduced and we found two different subwords of s1 . . . sk which are reduced expres-

sions for the same element in I(W, θ). Again, the existence of p 6= q with sp = sq

follows.

(ii) ⇒ (i). Consider the mapping ϕ : 2[k] → B(w) that maps a subset {i1, . . . , il} ⊆ [k]

with i1 ≤ . . . ≤ il to si1
. . . sil

. The subword property for I(W, θ) and (ii) ensure that this

mapping is well-defined, order-preserving and bijective. Thus, we have B(w) ∼= Bk.

In [22, Section 5], Tenner mentions that w ∈ Sn is boolean if and only if no reduced

expression for w has repeated letters. We note that this notion of a boolean permutation

can be seen as special case of our considerations in the following way:

Example 5.2. Remember Example 3.21 with θ : W×W → W×W and θ(v, w) = (w, v).

From what we already have seen, it follows that W ⊇ [e, w] ∼= [e, (w, w−1)] ⊆ W × W

and thus w ∈ W is boolean if and only if (w, w−1) ∈ I(W × W, θ) is boolean. But

w = s1 . . . sk is a reduced twisted expression for w if and only if (s1, e) . . . (s1, e) is a

reduced twisted expression for (w, w−1). We have (sp, e) = (sq, e) if and only if sp = sq

and this implies that w ∈ W is boolean if and only if s1 . . . sk has no repeated letters.

In section 3.3.2 we studied twisted expressions in the special case θ = id. Applying

Proposition 5.1 to this special situation yields a more specific characterization of boolean

involutions.

Corollary 5.3. Let w ∈ I(W, id). Then w is boolean if and only if no reduced twisted

expression for w has repeated letters. This is the case if and only if there is a twisted

expression for w without repeated letters.

Proof. The first claim follows directly from Proposition 5.1 and the fact that s1 = s2

if and only if s1 = s2 for all s1, s2 ∈ S. The second part follows directly from Lemma

3.23.

5.2 Boolean involutions in In

We turn our attention to In = I(Sn, id) which was introduced in section 3.3.3. After

some preparing considerations we will be able to characterize booleanness in In in terms

of pattern avoidance.

Firstly, have a look at the considerably small example I4 with Hasse diagram as

in Figure 5.1. We note that there is only one non-boolean involution in I4, namely

w0 = 4321. Thus, 4321 is a minimal non-boolean involution of I4. We will soon see,

that 4321 in some sense is the only minimal non-boolean involution.

Definition 5.4. Let w ∈ In. The positions i, j ∈ [n] are called

(i) directly connected in w if i < j and w(i) > w(j) or i > j and w(i) < w(j).

(ii) connected if there exists a sequence i = i0, i1, . . . , ik = j such that il−1 and il are

directly connected for all l = 1, . . . , k.
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5.2 Boolean involutions in In

1234

1243 1324

1432

2134

2143 3214

3412 4231

4321

Figure 5.1: Hasse diagram of I4

Observe that this notion of connectedness induces an equivalence relation on [n]. We

call the equivalence classes with respect to this relation connected components of w and

denote the set of connected components of w by

C(w) = {C ⊆ [n] : C is a connected component of w}.

We claim that the connected components of w ∈ In are in fact intervals.

Lemma 5.5. Let w ∈ In and let i, j, k ∈ [n] with i < j < k be such that i and k are in

the same connected component of w. Then j is in that connected component, too.

Proof. From the definition of connectedness it follows that there are p, q ∈ [n] such

that p < j < q, p and q are connected with i and k and such that p and q are directly

connected. In particular, this implies w(p) > w(q). But then w(j) < w(p) or w(j) > w(q)

will hold, i.e. j is directly connected to p or q and thus in the same connected component

as i and k.

For w ∈ Sn and any subset D ⊆ [n] we define the restriction wD of w to D by

wD(i) :=

{

w(i) if i ∈ D,

i otherwise.

It is now easy to check that wC is an involution if C is a connected component (or the

union of connected components) of w ∈ In: if (i, j) is a cycle of w, then i and j are

directly connected and thus in the same connected component.

Let w ∈ In and C(w) = {C1, . . . , Ck}. Then wCi
belongs to the standard parabolic

subgroup of Sn generated by sai
, . . . , sbi

where Ci = [ai, bi + 1]. In particular, those
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5 Boolean involutions and pattern avoidance

subgroups are pairwise disjoint and generators of different subgroups commute. This

implies that the concatenation of reduced twisted expressions for wCi
and wCj

is a

reduced twisted expression for wCi∪Cj
for all i, j ∈ [k] with i 6= j. The following lemma

is now immediate.

Lemma 5.6. Let w ∈ In with C(w) = {C1, . . . , Ck}. Then the following holds

(i) If wi is a reduced twisted expression for wCi
for all i ∈ [k], then the permuted con-

catenation of those expressions wπ(1)wπ(2) . . . wπ(k) is a reduced twisted expression

for w for any π ∈ Sk.

(ii) [e, w] ∼= [e, wC1 ] × . . . × [e, wCk
].

(iii) w is boolean if and only if wCi
is boolean for all i ∈ [k].

We call w ∈ In connected if [n] is the unique connected component, i.e. if C(w) = {[n]}.
Using Lemma 5.6 we can restrict our further investigations to connected w ∈ In.

We want to classify the boolean involutions in In. After a useful technical definition

we make a sequence of propositions which construct the statements of the final theorem

step by step.

Definition 5.7. Let w ∈ In and i, j ∈ [n]. The pair (i, j) is long-crossing in w if

i < j < w(j) and w(i) > j + 1.

It is easy to see, that the elements i and j of a long-crossing pair (i, j) in some w ∈ In

are connected and thus in the same connected component of w.

Proposition 5.8 (A sufficient criterion). Let w ∈ In. If there is no long-crossing

pair (i, j) in w then w is boolean.

Proof. From Lemma 5.6 we know, that w is a boolean involution if and only if all

connected components of w are boolean. Our above remark tells us that there is a

long-crossing pair (i, j) in w if and only if there is one in some connected component of

w. Therefore, we can assume that w is connected (otherwise consider each connected

component separately).

Assume that {(il, w(il)) : l = 1, . . . , k} is the set of 2-cycles of w and that il < w(il)

for all l ∈ [k] and i1 < i2 < . . . < ik. The non-existence of long-crossing pairs yields

directly that w(i1) < . . . < w(ik). If w(il) < il+1 for some l ∈ [k − 1] then w is not

connected. Thus w(il) > il+1 for all l ∈ [k − 1]. But (il, il+1) is a long-crossing pair if

w(il) > il+1 + 1 and it follows from our assertion that w(il) = il+1 + 1 for all l ∈ [k − 1].

Connectedness of w implies i1 = 1 and w(ik) = n.

Let Cm = ∪m
l=1{il, w(il)} and for ease of notation ik+1 = w(ik)−1 = n−1. Then wCm

is an involution for all m ∈ [k]. We claim that

s1s2 . . . si2−1si2+1si2
si2+2 . . . sim−1sim+1sim

sim+2 . . . sim+1
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5.2 Boolean involutions in In

is a twisted expression for wCm for all m ∈ [k] where the twisted expression contains all

letters s1, . . . sim+1
in lexicographically increasing order except sil and sil+1 which are

switched for all l = 2, . . . , m. We will prove that inductively.

We check that wC1 = ti1,w(i1) = si1
si1+1 . . . si2

. This settles the case m = 1. For

m > 1 we have wCm = wCm−1tim,w(im). For brevity let w′
Cm−1

= wCm−1sim
, i.e.

w′
Cm−1

= si1
si1+1 . . . si2−1si2+1si2

si2+2 . . . sim−1−1sim−1+1sim−1
sim−1+2 . . . sim−1.

We compute

wCm = wCm−1tim,w(im)

= w′
Cm−1

sim
tim,w(im)

= sim+1 . . . sim+2simw′
Cm−1

simsim+1simsim+1 . . . sim+1

= sim+1 . . . sim+2simw′
Cm−1

sim+1sim . . . sim+1

= w′
Cm−1

sim+1sim
. . . sim+1

= si1
si1+1 . . . si2−1si2+1si2

si2+2 . . . sim−1sim+1sim
sim+2 . . . sim+1

.

Setting m = k we conclude that there exists a twisted expression for w which does

not have repeated letters. Applying Corollary 5.3 this implies that w is a boolean

involution.

Actually, the above criterion is also necessary for booleanness. We will prove this

using some knowledge about the combinatorics of In. Let w ∈ In and let i ∈ [n] not

be a fixed point in w, i.e. (i, w(i)) is a 2-cycle of w. Then, we can delete that cycle by

multiplication of w with ti,w(i) from the right. This does not change the entries of w

except in the positions i and w(i) and we have v = w ti,w(i) < w.

If w is as before such that i ∈ [n] is an excedance, i.e. w(i) > i, and j ∈ [n] is a fixed

point with i < j < w(i), then we can shrink the cycle (i, w(i)) by conjugation with tj,w(i)

without changing w except in the positions i, j and w(i). We get v = tj,w(i) w tj,w(i) < w,

(i, j) and w(i) are a cycle respectively a fixed point of v.

Proposition 5.9 (A necessary criterion). Let w ∈ In. If there is a long-crossing

pair (i, j) in w then w is not boolean.

Proof. Fix i, j ∈ [n] such that (i, j) is a long-crossing pair in w. Following our remarks

above we can delete all cycles except (i, w(i)) and (j, w(j)) and get an involution v ≤ w

whose only non-fixed points are i, j, w(i), w(j). Now we can shrink the remaining two

cycles such that we finally get an involution x with cycles (j−1, j+2) and (j, j+1) in the

following way: conjugation of v with tj+1,w(j) yields u ≤ v with u(j) = j + 1. Then we

can conjugate u with ti,j−1 and tj+2,w(i) and get x ≤ u having the 2-cycles (j − 1, j + 2)

and (j, j +1) and fixed points in all other positions. (Multiplication or conjugation with

tk,k for any k ∈ [n − 1] is just the identity map.) A reduced twisted expression for x

is given by sj−1sjsj+1sj and thus x is not boolean. But we have x ≤ u ≤ v ≤ w and

therefore w is not boolean either.
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5 Boolean involutions and pattern avoidance

The proof shows that for every non-boolean element w ∈ In, the lower order ideal

B(w) contains some v ∈ In which just is a shift of s1s2s3s2 = 4321 ∈ I4. This explains

our remark about 4321 in some sense being the unique minimal non-boolean involution.

Proposition 5.10 (A pattern criterion). Let w ∈ In. There is a long-crossing pair

(i, j) in w if and only if w contains of one the patterns 4321, 45312 and 456123.

Proof. ”⇒”. Let (i, j) be a long-crossing pair in w. If w contains the pattern 4321

we are done. Thus, we can assume, that w avoids 4321. In particular, this implies

w(i) < w(j). If j + 1 is a fixed point then w contains the pattern 45312. Otherwise, we

have w(j + 1) < i or w(j + 1) > w(j) because we assumed w to be 4321-avoiding. But

then w contains 456123.

”⇐”. We distinguish three cases. First, assume that w contains 4321 and that 〈4321〉
is an occurrence. Then, 〈3〉 or 〈2〉 is not a fixed point of w, denote that value by k.

If w(k) > k, then w(〈1〉) > w(k) > k > 〈1〉 and (〈1〉, k) is a long-crossing pair in w.

Otherwise, it follows that w(〈4〉) < w(k) < k < 〈4〉 and (w(〈4〉), w(k)) is such a pair.

The second case is that w avoids 4321 but contains 45312. Let 〈45312〉 be an oc-

currence. Then 〈3〉 is a fixed point, because otherwise w will contain 4321 by similar

arguments as in the first case. This implies that (〈1〉, 〈2〉) is a long-crossing pair.

Finally, assume that w avoids 4321 and 45312 and let 〈456123〉 be an occurrence of

456123 in w. The fact, that w avoids 45312 implies that none of 〈1〉, 〈2〉, . . . 〈6〉 is a

fixed point. Furthermore, if 〈1〉, 〈2〉 or 〈3〉 is a deficiency, denote that value by k. Then

w(〈4〉) < w(k) < k < 〈4〉 and w contains 4321 in contradiction to our assumption. Thus,

〈1〉, 〈2〉 and 〈3〉 are excedances. If w(〈1〉) > 〈3〉 then (〈1〉, 〈2〉) are a long-crossing pair

in w. Otherwise, (w(〈5〉), 〈3〉) are one.

1 2 3 4

(a) 4321

1 2 3 4 5

(b) 45312

1 2 3 4 5 6

(c) 456123

Figure 5.2: Bad patterns for In
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5.3 Patterns and factors in In

All preparation is done and we can summarize what we learned about boolean invo-

lutions in In in the following theorem.

Theorem 5.11. Let w ∈ In. The following are equivalent:

(i) w is boolean.

(ii) There is a twisted expression for w without repeated letters.

(iii) No reduced twisted expression for w has repeated letters.

(iv) There is no long-crossing pair (i, j) in w.

(v) w is 4321-,45312- and 456123-avoiding.

Proof. Follows from the propositions 5.3, 5.8, 5.9 and 5.10.

5.3 Patterns and factors in In

In Proposition 4.7 we presented a result of Tenner, that connects the occurrence of a

2143-avoiding pattern p in some permutation w ∈ Sn with the existence of a reduced

expression for w containing some shift of a reduced expression for p as a factor. We will

prove a similar result for the set of involutions In in this section. For that we need to

introduce the notion of an induced pattern as well as some more notation defined in [23].

Definition 5.12. Let p ∈ Ik and w ∈ In with k ≤ n. We call an occurrence 〈p〉 in

w induced in the case that p(i) = j if and only if w(〈p(i)〉) = w(〈j〉) for all i, j ∈ [k].

Then, we say that w contains the induced pattern p or is induced-p-containing if there

exists an induced occurrence of p in w. Otherwise we call w induced-p-avoiding.

We remark, that an involution containing an induced p-pattern also is p-containing

by definition but the converse is not true in general.

Definition 5.13 ([23, Definition 2.6]). If 〈p〉 is an occurrence of the pattern p in w and

w(j) ∈ 〈p〉, then w(j) is called a pattern entry in w. Otherwise w(j) is a non-pattern

entry. A non-pattern entry is said to be inside the pattern if it lies between two pattern

entries in the one-line notation of w.

When saying that any value w(j1) is to the left or right of w(j2) for some j1, j2 ∈ [n],

we always refer to the one-line notation of w.

Definition 5.14 ([23, Definition 2.7]). Let 〈p〉 be an occurrence of the pattern p ∈ Sk

in w ∈ Sn and suppose that x is a non-pattern entry inside the pattern, that 〈m〉 < x <

〈m + 1〉 for some m ∈ [k − 1] and that the values 〈m〉, x, 〈m + 1〉 appear in increasing

order in the one-line notation of w. Let a, b ∈ N be maximal so that the values

{〈m − a〉, 〈m − a + 1〉, 〈m〉, x, 〈m + 1〉, . . . , 〈m + b − 1〉, 〈m + b〉}
appear in increasing order. The entry x is called obstructed to the left if a pattern entry

smaller than 〈m − a〉 appears between 〈m − a〉 and x in w. Likewise, x is obstructed to

the right if a pattern entry larger than 〈m + b〉 appears between x and 〈m + b〉 in w.
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5 Boolean involutions and pattern avoidance

We remark, that if w contains the 2143-avoiding pattern p and x is as in Definition 5.14,

then x cannot simultaneously be obstructed to the left and to the right ([23, Proposition

3.3]).

We will now present the algorithm IPACC (Induced Pattern As Connected Compo-

nent) which takes an involution w ∈ In containing an induced 2143-avoiding pattern

p ∈ Sk and constructs an involution w̃ ∈ In satisfying

(P1) w̃ = wsi1
. . . sir

for some r ∈ N and i1, . . . , ir ∈ [n − 1].

(P2) ρ(w̃) = ρ(w) − r.

(P3) w̃(1 + M) . . . w̃(k + M) is an induced p-occurrence for some M ∈ [n − k] and

{1+M, . . . , k+M} is a connected component (or a union of connected components)

in w.

IPACC has very close connections to the algorithm VEX presented by Tenner in [23].

VEX is constructed for permutations, reduced expressions and permutation patterns

in general. In particular, VEX will not necessarily return an involution when given

some w ∈ In. Our algorithm applies the ideas used there to involutions, their twisted

expressions and induced patterns. IPACC will be the main tool in the proof of our actual

result.

Algorithm 5.15. IPACC

Input: w ∈ In with an induced occurrence 〈p〉 of p ∈ Ik, where p is 2143-avoiding

Output: w̃ ∈ In satisfying (P1), (P2) and (P3)

1: w[0] := w and i := 0

2: if there is an entry x > 〈k〉 which is not to the right of 〈p〉 then

3: Let S = {y > 〈k〉 : y is not to the right of 〈p〉}.
4: Consider the elements of S in decreasing order. Let sw(y)sw(y)+1 . . . s〈p(k)〉−1 act

from the right on w[i] to move each element y to the right of 〈p(k)〉.
5: Let w[i+1] be the resulting involution. Set i := i + 1.

6: end if

7: if there is an entry x < 〈1〉 which is not to the left of 〈p〉 then

8: Let S = {y < 〈1〉 : y is not to the left of 〈p〉}.
9: Consider the elements of S in increasing order. Let sw(y)−1sw(y)−2 . . . s〈p(1)〉 act

from the right on w[i] to move each element y to the right of 〈p(k)〉.
10: Let w[i+1] be the resulting involution. Set i := i + 1.

11: end if

12: if there is no entry inside the pattern then

13: return w[i]

14: else

15: Choose x[i] inside the pattern.

16: end if

17: Let m ∈ [k − 1] be the unique value such that 〈m〉 < x[i] < 〈m + 1〉.
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5.3 Patterns and factors in In

18: if 〈m + 1〉 is to the left of x[i] then

19: Let sl act from the right on w[i] repeatedly for appropriate l ∈ [x[i], 〈m + 1〉) to

increase x[i] and decrease 〈m + 1〉 until x[i] > 〈m + 1〉.
20: Let w[i] be the resulting involution. Set i := i + 1 and goto line 2.

21: else if 〈m〉 is to the right of x[i] then

22: Let sl act from the right on w[i] repeatedly for appropriate l ∈ [〈m〉, x[i]) to decrease

x[i] and increase 〈m〉 until x[i] < 〈m〉.
23: Let w[i] be the resulting involution. Set i := i + 1 and goto line 2.

24: else if 〈m〉, x[i] and 〈m + 1〉 appear in increasing order in w[i] then

25: Define a and b as in Definition 5.14.

26: if x[i] is unobstructed to the right then

27: Let sl act from the right on w[i] repeatedly for appropriate l ∈ [w(x[i]), 〈m + b〉)
until x[i] is immediately to the right of 〈m + b〉 or the right neighbor of x[i]

is y > x[i]. In the latter case interchange the roles of x[i] and y and continue

moving this new x[i] to the right. Note that this interchange can redefine the

induced occurrence 〈p〉 if y is a pattern entry.

28: Let w[i+1] be the resulting permutation with the occurrence 〈p〉 possibly rede-

fined after the interchange of roles and let x[i+1] be the non-pattern entry after

the final move and any interchange of roles.

29: else if x[i] is unobstructed to the left then

30: Let sl act from the right on w[i] repeatedly for appropriate l ∈ [〈m− a〉, w(x[i]))

until x[i] is immediately to the left of 〈m − a〉 or the left neighbor of x[i] is

y < x[i]. In the latter case interchange the roles of x[i] and y and continue

moving this new x[i] to the left. Note that this interchange can redefine the

induced occurrence 〈p〉 if y is a pattern entry.

31: Let w[i+1] be the resulting permutation with the occurrence 〈p〉 possibly rede-

fined after the interchange of roles and let x[i+1] be the non-pattern entry after

the final move and any interchange of roles.

32: end if

33: if 〈1〉 < x[i+1] < 〈k〉 and x[i] is inside the pattern then

34: goto line 17 with i := i + 1

35: else

36: goto line 2 with i := i + 1.

37: end if

38: end if

Lemma 5.16. The algorithm IPACC is correct.

Proof. Firstly, we observe that IPACC stops by returning some w̃ if and only if the

pattern p occurs at consecutive positions 1 + M, . . . , k + M for some M ∈ [n − k] such

that there is no x ∈ [n] with x to the left of 〈p〉 and w̃(x) to the right of 〈p〉. Because p

is an induced pattern, 1+M, . . . , k +M will be a connected component of w̃ (or a union

of such if p is not connected). Thus, w̃ satisfies (P3).
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(P1) holds by construction of w̃. Furthermore, every action of some si from the right

on w[i] reduces the number of inversions and thus (P2) holds.

We claim, that w[i] has an induced occurrence of p for every i. Every time we let some

si act from the right on w[i] we exchange position or values of a non-pattern entry with

an adjacent or lexicographically consecutive entry, respectively. However, this does not

destroy the occurrence of the pattern p. When interchanging the roles of x[i] and y in

line 27 or line 30 and when y is a pattern entry, then the condition 〈m〉 < x[i] < 〈m + 1〉
ensures that the occurrence of p is not destroyed.

Finally, IPACC is finite. Every time the conditions of line 2 or line 7 are satisfied, the

algorithm reduces the number of non-pattern entries which are in a connected component

together with some pattern entry. All other possible steps do not increase that number

and can only be applied a finite number of times before the conditions of line 2 or line

7 are fulfilled again or the algorithm stops at line 13.

Before using IPACC to prove a connection between induced patterns and reduced

twisted expressions we want to demonstrate how the algorithm works for a simple ex-

ample.

Example 5.17. Let w = 789654123 ∈ I9 and p = 45312 ∈ I5. Then IPACC may

proceed as described in table 5.1. Throughout the example, the current occurrence of p

is marked in bold in the one-line notation and with crosses in the corresponding figures.

IPACC returns w̃ = 453127698 such that w̃(1) . . . w̃(5) is an induced occurrence of

p = 45312. Furthermore, the algorithm tells us that

w = w̃ s5s4s3s6s5s7s6s5s4s3.

Tenner’s algorithm VEX is used to prove a result about the existence of certain reduced

twisted expressions for a permutation w ∈ Sn if w contains a 2143-avoiding pattern. We

presented that result in Proposition 4.7. With the help of our algorithm IPACC we

can now make a similar statement about induced 2143-avoiding patterns and reduced

twisted expressions of involutions.

Proposition 5.18. Let p ∈ Ik be 2143-avoiding and let w ∈ In contain an induced

p-pattern. Then there exists a reduced twisted expression for w which begins with a shift

of some reduced expression for p.

Proof. Let the algorithm IPACC run on w and get w̃ satisfying (P1), (P2) and (P3).

It follows from (P3) and Lemma 5.6 that there is a reduced twisted expression for w̃

beginning with a shift of a reduced twisted expression for p. (P1) and (P2) yield that

this also is true for w.

Finally, we want to remark the following. The involutions 4321, 45312 and 456123

are all 2143-avoiding and have reduced twisted expressions s1s2s3s2, s1s2s4s3s2 and

s1s3s5s2s4s3, respectively. Thus, we can directly conclude from the previous proposition,

that every involution having an induced 4321-, 45312- or 456123-pattern is not boolean.
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line 1 w[0] = 789654123

line 15 x[0] = 8

line 17 〈m〉 = 7, m = 4

line 27 a = 0, b = 1

line 29 interchange roles

of 8 and 9

line 30 w[1] = 789654123

x[1] = 9

line 3 S = {9}
line 5 w[2] = w[1]s3s4s5s6s7

w[2] = 675431298

line 15 x[2] = 5

line 17 〈m〉 = 7, m = 4

line 20 w[3] = w[2]s5

w[3] = 576413298

line 15 x[3] = 6

line 17 〈m〉 = 5, m = 4

line 20 w[4] = w[3]s6

w[4] = 567412398

line 3 S = {7}
line 5 w[5] = w[4]s3s4s5

w[5] = 453127698

line 13 return 453127698

1 2 3 4 5 6 7 8 9

w[0] :

1 2 3 4 5 6 7 8 9

w[1] :

1 2 3 4 5 6 7 8 9

w[2] :

1 2 3 4 5 6 7 8 9

w[3] :

1 2 3 4 5 6 7 8 9

w[4] :

1 2 3 4 5 6 7 8 9

w[5] :

Table 5.1: IPACC runs for w = 789654123

In fact, in the proof of Proposition 5.10 we showed, that having an induced occurrence

of one of those patterns is equivalent to having any occurrence of one of those (although

not necessarily the same) patterns. Thus, the previous theorem can also be used as a

tool for proving the characterization of boolean involutions in In.

5.4 Other Coxeter groups

The knowledge we gained in section 5.2 about boolean involutions in In can be used to

classify boolean involutions in I(W, id) for some other W .
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5 Boolean involutions and pattern avoidance

5.4.1 Signed boolean involutions

Consider IB
n := I(SB

n , id). Because SB
n is a subgroup of the permutation group S([±n]),

we can consider IB
n as a subset of I±n := I(S([±n]), id) in a natural way. We will denote

the inclusion map from IB
n into I±n by φ and the canonical generators of S([±n]) by

s′i = (i, i + 1) and s′i = (−i,−i − 1) for i ∈ [n − 1] as well as s′0 = (1,−1).

Lemma 5.19. Let w ∈ IB
n and w′ = φ(w) ∈ I±n. Then φ(ws0) = w′s′0 and for i ∈ [n−1]

φ(wsi) =

{

w′s′i if w′s′i = w′s′i,

w′s′is
′
i otherwise.

Proof. We have φ(s0) = φ(s0) = s′0 = s′0 and φ(si) = φ(si) = s′is
′
i = s′is

′
i. Now the claim

follows directly from Definition 3.13 about the action of the symbols si and s′i on w and

w′, respectively.

This means, that we can translate twisted expressions for w ∈ IB
n into certain twisted

expressions for w′ ∈ I±n. From [4, Corollary 8.1.9] we know that φ is order-preserving.

Thus, it is even true, that a reduced twisted expression for w is translated into a reduced

twisted expression for w′. We can conclude the following

Lemma 5.20. The involution w ∈ IB
n is boolean if and only if φ(w) = w′ ∈ I±n is

boolean.

Proof. Consider any reduced twisted expression for w and the corresponding ’transla-

tion’, which is a reduced twisted expression for w′. From the previous lemma we deduce

that one of them contains repeated letters if and only if the other one contains repeated

letters.

Finally, we want to translate the notion of patterns in w′ into signed patterns in w.

We can already characterize the booleanness of w′ ∈ I±n
∼= I2n in terms of avoiding the

patterns 4321, 45312 and 456123. The following lemma will be the final step toward our

desired result.

Lemma 5.21. Let w ∈ IB
n and w′ = φ(w) ∈ I±n. The involution w′ avoids the patterns

4321, 45312 and 456123 if and only if w avoids all of the following signed patterns.

4321 45312 456123

12 132 321

213 4231 4321

3412 45312 45312

4321 54321 456123

546213
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5.4 Other Coxeter groups

Proof. ”⇐”. We know that w′ contains 4321, 45312 or 456123 if and only if it has an

induced occurrence of one of those three patterns. We will show that such an induced

occurrence implies that w has an induced occurrence of one of the signed patterns listed

in the lemma. Assume that w′ contains an induced 4321-pattern. An occurrence of

this pattern causes an induced pattern according to one of the graph representations

in Figure 5.3, because the graph representation of w′ is symmetric with respect to the

perpendicular bisector of the segment between 1 and −1. In the figures the original

induced occurrence is drawn with thick lines. Thus, w contains one of the signed patterns

4321, 4321, 3412, 213 or 12. Similarly, one can check that if w′ does not contain 4321 but

〈1〉〈2〉〈3〉〈4〉

(a) w contains 4321

〈1〉〈2〉〈3〉〈4〉

(b) w contains 4321

〈1〉〈2〉〈3〉〈4〉

(c) w contains 3412

〈1〉〈2〉〈3〉〈4〉

(d) w contains 213

〈1〉〈2〉〈3〉〈4〉

(e) w contains 12

Figure 5.3: Possible graph representations for w′ which contains 4321

contains 45312 as induced pattern then w contains one of the signed patterns 45312, 132,

4231 and 45312. Finally, we can deduce the existence of a signed 321-, 4321-, 45312-,

456123 or 546213-pattern in w in the case that w′ avoids 4321 and 45312 but contains

456123 as induced patterns.

”⇒”. It is easy to check, that if w contains any of the signed patterns listed in the

lemma then w′ contains 4321, 45312 or 456123. We show this only for one such pattern,

it follows in the same way for the others. Assume that w contains 213. Then it follows

from the definition of φ that w′ contains 312213, which then again contains 4321.

Proposition 5.22. Let w ∈ IB
n . Then w is boolean if and only if it avoids the signed

patterns listed in Lemma 5.21.

Proof. w is boolean ⇔ there is a reduced twisted expression for w with no repeated

letters ⇔ there is a reduced twisted expression for w′ with no repeated letters ⇔ w′

is boolean ⇔ w′ avoids the patterns 4321, 45312 and 456123 ⇔ w avoids the signed

patterns from Lemma 5.21.
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5 Boolean involutions and pattern avoidance

5.4.2 Boolean involutions in ID
n

Consider ID
n := I(SD

n , id) ⊂ IB
n . This is the set of signed involutions having an even

number of negative values in the window notation, of course partially ordered by the

Bruhat order. Unfortunately, we cannot use the same methods as for IB
n , because the

corresponding natural injection ID
n → I±n does not map boolean elements of ID

n to

boolean ones in I±n in general. For example, s′0s1 = [12] is boolean in ID
n but s1s0s1 =

2112 is non-boolean in I±2.

Instead, we examine the structure of boolean involutions in ID
n and in particular their

window notations. From that we can conclude a list of signed patterns that have to be

avoided by a boolean involution in ID
n . Finally, we show that containing a signed pattern

from that list is necessary for being non-boolean, too.

Proposition 5.23. Let w ∈ ID
n be such that s′0 ≤ w. Then w is boolean if and only if it

has one of the following forms (in window notation).

(D1) [k2 . . . (k − 1)1 . . .] for k ≥ 2 or [k2 . . . (k − 2)l1 . . .] for l > k ≥ 3.

(D2) [1k3 . . . (k − 1)2 . . .] for k ≥ 3 or [1k3 . . . (k − 2)l2 . . .] for l > k ≥ 4.

(D3) [k324 . . . (k − 1)1 . . .] for k ≥ 4 or [k324 . . . (k − 2)l1 . . .] for l > k ≥ 5.

(D4) [12 . . . (k − 1)k . . .] for k ≥ 2 or [12 . . . (k − 2)lk . . .] for l > k ≥ 3.

(D5) [k324 . . . (k − 1)1 . . .] for k ≥ 4 or [k324 . . . (k − 2)l1 . . .] for l > k ≥ 5.

Here the last . . . always mean that the following entries are arbitrary but with no more

negative entries than already indicated and such that w is 4321-, 45312 and 456123-

avoiding.

Proof. ”⇒”. Let w ∈ ID
n be boolean and such that s′0 ≤ w. Because s′0 occurs exactly

once in every reduced expression for w and s2 is the only letter which does in general

not commute with s′0 in twisted expressions, there is a reduced twisted expression for w

which has s′0 either as first or as last letter.

Assume first, that w has a reduced expression with s′0 as its last letter. Then ws′0 �w

is a boolean involution in In and ws′0 has one of the following forms (in one-line notation

where . . . in the end means the same as in the statement of the proposition):

(i) ws′0 = 1k3 . . . (k − 1)2 . . . for some k ≥ 2 or ws′0 = 1k3 . . . (k − 2)l2 . . . for some

l > k ≥ 3, in this case w has a window-notation as in case (D1) (remember Definition

3.13 about the action of s′0 from the right).

(ii) ws′0 = 21 . . .. Then w has a form as in case (D4) with k = 2.

(iii) ws′0 = k2 . . . (k − 1)1 . . . for some k ≥ 3 or ws′0 = k2 . . . (k − 2)l1 . . . for some

l > k ≥ 4. Then w is as in case (D2).
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5.4 Other Coxeter groups

(iv) ws′0 = 3k14 . . . (k − 1)2 . . . for some k ≥ 4 or ws′0 = 3k14 . . . (k − 2)l2 . . . for some

l > k ≥ 5, which yields that w is as in case (D3).

If on the other hand w does not have a reduced twisted expression with s′0 in the

end, then it will have a reduced twisted expression beginning with one of the following

factors:

(i) s′0s1s2 or s′0s1s3s2. Then w has a form as in case (D4) for k ≥ 3.

(ii) s′0s3s2 and s1 6≤ w. Then w is as in case (D1) for k = 3 and l > k.

(iii) s′0s3s2s1. Then w is as in case (D5).

In all cases we see that w has one of the claimed forms.

”⇐”. Assume that w is of the form (D1)-(D5). We actually exposed a reduced twisted

expression for every case already in the first part and all of those expressions contain

every letter at most once. Thus, in any case, w is boolean.

We can now state a list of signed patterns that a boolean w ∈ ID
n will avoid.

Proposition 5.24. Let w ∈ ID
n . Then w is boolean if and only if w avoids all of the

following signed patterns.

4321 45312 456123

123 1243 1324 2143 3214 3412

4231 4321 15342 15432 45312 52431

54321 156423 456123 546213 564312

1234 1243 1324 1342 1423 1432

2134 2143 2314 2341 2413 2431

3124 3142 3214 3241 3412 3421

4123 4132 4213 4231 4312

15432 52431 54321 546213 564312 654321

654321

Proof. ”⇒”. Suppose that w is boolean. If s′0 6≤ w, then w will be boolean in In as well

and thus avoid the patterns 4321, 45312 and 456123. It avoids all remaining patterns

from above because it does not have any negative entries in the window-notation. If

s′0 ≤ w, then w has one of the forms presented in Proposition 5.23. The reader may

check, that indeed none of the listed patterns occurs as a pattern in any of the possible

forms.

”⇐”. Suppose that w avoids all patterns from the above list. By definition, w ∈ SD
n

has an even number of negative entries. If w does not have any negative entries at all,

then w ∈ In and w is boolean, because it avoids 4321, 45312 and 456123.
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5 Boolean involutions and pattern avoidance

Assume now that w has exactly two negative entries i and j with i < j and that i is

to the left of j. It follows that i and j are in positions i and j because there are no other

negative entries. As w avoids the signed patterns 123, 3214 and 4231, we have i = 1.

But w also avoids 1324, 15342 and 156423 which leads to the conclusion that w has a

form as in (D4).

All other cases with w having exactly two negative entries can be treated similarly

and always lead to w having one of the forms (D1)-(D5) from Proposition 5.23.

If w has exactly four negative entries, then those form the signed pattern 4321. Fur-

thermore, w avoids 2143, 3412, 4321, 15432, 52431, 54321, 546213, 564312 and 654321

which yields that the first three entries w(1), w(2) and w(3) of w are negative and w

has a form as in (D3).

Finally, w does not have more than 4 negative entries.

Our list of bad signed patterns is rather long and indeed we can shorten it a little.

The list contains all signed patterns with exactly four entries and all of them negative

except 4321. A signed permutation which avoids all those patterns does not contain any

signed pattern with three and all of them negative entries except possibly 321 either.

Conversely, if a signed permutation w ∈ SD
n avoids the patterns 123, 132, 213, 231 and

312 then w also avoids the patterns with four and all of them negative entries except

possibly 4321. Thus, we can substitute the 23 signed patterns with four and all negative

entries in our list by the five signed patterns with three and all negative entries from

above.

Using similar arguments we can replace

• 3214, 1324 and 2143 by 213.

• 15342, 3412 and 52431 by 312.

• 4321, 45312, 54321 by 321.

• 156423, 546213 and 564312 by 4312.

• 546213 and 564312 by 3421.

This reduces the list of signed patterns characterizing booleanness in ID
n to the fol-

lowing.

Corollary 5.25. Let w ∈ ID
n . Then w is boolean if and only if it avoids all of the

following signed patterns.

4321 45312 456123 123 213 312

321 123 132 213 231 312

1243 3421 4231 4312 15432 15432

52431 54321 456123 654321 654321

34



5.4 Other Coxeter groups

5.4.3 Affine boolean involutions

As one more example, consider Ĩn := I(S̃n, id), the set of affine involutions. This is

an infinite poset but we will still be able to characterize booleanness of its elements

by avoidance of finitely many patterns. However, the window notation introduced in

Example 3.3 is not sufficient to decide if an element is boolean by pattern avoidance as

the following example shows.

Example 5.26. Consider w = [0165] = s̃4s̃3s̃1s̃4 ∈ Ĩ4, which is minimal non-boolean.

Then w(1)w(2)w(3)w(4) contains exactly the same patterns as v(1)v(2)v(3)v(4) where

v = [2143] = s̃1s̃3 is boolean.

Let w ∈ Ĩn and let s̃i1
. . . s̃ik

be a reduced twisted expression for w. We define the

projection φm(w) of w into Im (with respect to the chosen expression) for m > n large

by

φm(w) :=
∏

l∈[k]

∏

0≤p<
m−il

n

s̃il+pn

where the product here means concatenation of the symbols. This means that we inter-

prete the twisted expression for w as an infinite twisted expression using the generators

si = (i, i+1), i ∈ Z, and throw away all generators with negative index or with index at

least m. In particular, φm(w) depends on the choice of the reduced twisted expression

for w in general. We make the following observations which follow directly from our

definition of the projection φm:

• The affine involution w ∈ Ĩn is boolean if and only if its projection φm(w) is boolean

for all m.

• We have pointwise convergence of φm(w) to w on the set of positive integers, i.e.

(φm(w))(l) → w(l) for m → ∞ for all l > 0.

• The sequence w(1) . . . w(l) contains 4321, 45312 or 456123 for some l ∈ N if and

only if φm(w) contains one of those patterns for large m.

We conclude that w is boolean if and only if w(1)w(2) . . . w(l) avoids the patterns

4321, 45312 and 456123 for all l ∈ N. This means, that we have to check if an infinite

sequence avoids those three patterns. Fortunately, this can be done by looking at a finite

subsequence only (for n fixed).

Lemma 5.27. Let w ∈ S̃n and n ≥ 3. Then, w(1)w(2) . . . w(k) avoids the patterns 4321,

45312 and 456123 for arbitrary large k ∈ N if and only if w(1)w(2) . . . w(6n) avoids them.

Proof. ”⇒” is trivial.

”⇐”. Assume that w(1) . . . w(k) contains 4321 for some k ∈ N. We show that we can

choose an occurrence of 4321 in the first 4n entries. If the positions of 〈4〉 and 〈3〉 differ
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5 Boolean involutions and pattern avoidance

by more than n then we can choose another occurrence of 〈321〉 which is a multiple of n

positions to the left of the original occurrence such that 〈4〉 and 〈3〉 lie ”close enough”.

In the same way we can ensure that 〈2〉 and 〈1〉 are at most 2n respectively 3n positions

to the right of 〈4〉. Figure 4(a) shows the part of the diagram representation of w

corresponding to the original and the ”shifted” occurrence. We can finally choose the

occurrence of 4321 such that 〈4〉 is in position at most n. Then w(1) . . . w(4n) contains

4321.

Similar methods are successful if w(1) . . . w(k) contains 45312 or 456123. In Figure

4(b) and 4(c) we show how to choose the ”shifted” occurrence of both patterns if the

positions of the first and last pattern entry are too far from each other. Thus, the

occurrence of 45312 and 456123 can be chosen such that 〈4〉 is in position at most n and

〈2〉 respectively 〈3〉 in position at most 5n respectively 6n.

original occurrence
shifted occurrence

(a) 〈4321〉

original occurrence
shifted occurrence

(b) 〈45312〉

original occurrence
shifted occurrence

(c) 〈456123〉

Figure 5.4: Shifting occurrences in w ∈ S̃n

We showed that we can dedice if an affine involution w ∈ Ĩn is boolean by looking at

the sequence w(1)w(2) . . . w(6n).

Proposition 5.28. The affine involution w ∈ Ĩn with n ≥ 2 is boolean if and only if

w(1)w(2) . . . w(6n) avoids the patterns 4321, 45312 and 456123.
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6 Enumeration

Let P be a poset. We denote by b(P ) and bmax(P ) the number of boolean elements in

P and the number of maximal boolean elements in P , respectively.

b(P ) := |{x ∈ P : x is boolean}|
bmax(P ) := |{x ∈ P : x is maximal boolean}|

Furthermore, for k ∈ N and f1, . . . , fk : P → N given, let

bf1,...,fk(P, i1, . . . , ik) := |{x ∈ P : x is boolean, f1(x) = i1, . . . , fk(x) = ik}|

be the number of boolean elements with respect to the statistics f1, . . . , fk.

We will derive formulas for b(P ) with P ∈ {In, IB
n , ID

n , Ĩn} and see, that bmax(P ) plays

a significant role. For In we can give some more detailed statistics.

6.1 Boolean involutions in In

The reader is by now well-acquainted with the combinatorial structure of In. It should

not be a big surprise that this knowledge enables us to compute the number of boolean

elements of In in total and with respect to the statistics ρ, exc and inv.

Proposition 6.1. The number of boolean involutions in In can be computed recursively

by b(I1) = 1, b(I2) = 2, b(I3) = 4 and

b(In) = 2b(In−1) + b(In−2) − b(In−3)

for all n ≥ 4. In particular, the sequence b(In) can be found in [19, Sequence A052534].

Proof. All involutions in In are boolean for n = 1, 2, 3. Thus, b(I1) = |I1| = 1, b(I2) =

|I2| = 2 and b(I3) = |I3| = 4.

We will count the number of boolean involutions in In depending on the entries at

positions n, n − 1, n − 2. For that, let

q(n) := |{w ∈ In : w boolean, w(n) = n}|,
r(n) := |{w ∈ In : w boolean, w(n) = n − 1}|,
s(n) := |{w ∈ In : w boolean, w(n) 6= n, w(n − 1) = n − 1}|,
t(n) := |{w ∈ In : w boolean, w(n) = n − 2, w(n − 1) 6= n − 1}|.

Because of the characterization of boolean elements in In, we have b(In) = q(n)+ r(n)+

s(n) + t(n). Obviously the number of boolean involutions w ∈ In with w(n) = n is

equal to the number of boolean involutions w′ ∈ In−1, i.e. q(n) = b(In−1). Using similar

arguments, we deduce

r(n) = b(In−2)

s(n) = b(In−1) − q(n − 1)

t(n) = s(n − 1)
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6 Enumeration

for n ≥ 4 and compute

b(In) = 2b(In−1) + b(In−2) − b(In−3).

n 1 2 3 4 5 6 7 8 9 10

b(In) 1 2 4 9 20 45 101 227 510 1146

Table 6.1: Values of b(In) for n ≤ 10

The concept of generating functions is explained in [21]. We note that the method of

computing the generating function of a sequence from its recursion formula used there

can be applied to sequences with higher dimensional indices as well. From the recursion

formula and the values for n = 1, 2, 3 it is straightforward to compute the generating

function of b(In) as follows.

Corollary 6.2. The generating function of b(In) is

F (x) =
∑

n≥1

b(In)xn =
x(1 − x2)

1 − 2x − x2 + x3

We found a recursive formula for the number of boolean involutions in In. The corre-

sponding sequence is referred to as the number of Motzkin paths with certain properties

in [19]. We will present a bijection between those paths and the boolean involutions in

In. This yields another proof of our formula.

A lattice path from v1 to vn is a sequence L = (v1, . . . , vn) where vi ∈ N
2 and vi+1 − vi

is in a certain set of allowed steps (for example {(1, 0), (0,−1)} in [21, Section 2.7]).

Definition 6.3. A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) with

steps (1, 0), (1, 1), and (1,−1) that never goes below the x-axis. Letting l, u, and d

represent the steps (1, 0), (1, 1), and (1,−1) respectively, we encode such a path with a

word over {l, u, d} (where the k-th letter of the word corresponds to the k-th step in the

path). The set of Motzkin paths of length n is denoted by Mn.

Let M r
n ⊆ Mn denote the set of Motzkin paths of length n with (1, 0) steps occurring

only on level at most 1 and which never go higher than level 2. We call a path in M r
n a

restricted Motzkin path of length n.

Proposition 6.4. It holds that b(In) = |M r
n| for all n ∈ N.

Proof. We establish a bijection between the boolean involutions in In and the restricted

Motzkin paths of length n. Consider the mapping φ : In → Mn which maps an involution
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6.1 Boolean involutions in In

w to the Motzkin path φ(w) with l,u and d as k-th letter if w(k) is a fixed point, an

excedance or a deficiency, respectively.

For every w ∈ In, φ(w) is a lattice path by definition. It goes from (0, 0) to (n, 0),

because w has the same number of excedances and deficiencies in w, and it obviously

doen not go below the x-axis. Thus, φ(w) is a Motzkin path for all w ∈ In and φ is

well-defined.

Assume that the k-th step of φ(w) is (1, 0) and on level p (i.e. it goes from (k − 1, p)

to (k, p)). Then there are exactly p elements l in [k − 1] such that w(l) > k. If p > 1

there are l1, l2 ∈ [k − 1] such that w(l1) > k and w(l2) > k. Assuming l1 < l2, we have

l2 < k < w(l1). Thus, if φ(w) is a path with a (1, 0) step on level 2 or higher, then w is

not boolean. Similarly, it follows that if φ(w) goes to a level > 2, then w is not boolean.

Therefore every boolean involution is mapped to a restricted Motzkin path and

φ({w ∈ In : w is boolean}) ⊆ M r
n.

For showing the reverse inclusion, fix a restricted Motzkin path. We construct an

involution w ∈ In such that φ(w) is exactly this path. For k ∈ [n] define w(k) = k if the

k-th letter of the corresponding Motzkin word is l. If the k-th letter is u or d and it is

the m-th occurrence of u or d, respectively, then define w(k) = p where p is such that

the p-th letter in the word is the m-th occurrence of d or u, respectively. This obviously

defines a unique involution in In. Observe that the given restrictions on the Motzkin

path ensure that the constructed involution is boolean. This proves φ(In) = M r
n.

Observe that by Theorem 5.11 a boolean involution is uniquely determined by its sets

of excedances and deficiencies. Thus, φ yields a bijection between the boolean elements

of In and M r
n.

Furthermore, we can compute the rank ρ(w) of a boolean w ∈ In from the restricted

Motzkin path φ(w).

Proposition 6.5. Let w ∈ In be boolean and let φ(w) be the corresponding restricted

Motzkin path as defined above. Let a(w) denote the area of the region lying below φ(w)

and between the lines y = 0 and y = 1. Then it holds that ρ(w) = a(w).

Proof. Because w ∈ In is boolean, no reduced twisted expression for w contains any

letter more than once. We conclude ρ(w) = {k ∈ [n − 1] : sk = sk ≤ w}.
On the other hand, we note that a(w) = (n − 1) − |{k ∈ [n − 1] : (k, 0) ∈ φ(w)}|.

From the definition of φ(w) we conclude that (k, 0) ∈ φ(w) if and only there is no

i ∈ [n] with i ≤ k and w(i) > k. This is the case if and only if sk 6≤ w. Thus,

a(w) = (n − 1) − |{k ∈ [n − 1] : sk 6≤ w}| = |{k ∈ [n − 1] : sk ≤ w}| = ρ(w).

Example 6.6. Consider the boolean involution 4261573598 ∈ I9 with graph represen-

tation as in Figure 1(a). Then φ(w) is shown in Figure 1(b) and the gray shaded area

determines ρ(w) = a(w) = 7.
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1 2 3 4 5 6 7 8 9

Figure 6.1: A boolean involution and the corresponding restricted Motzkin path

In a completely analogous way to Proposition 6.1 it is possible to count boolean

involutions in In with respect to the most natural statistics ρ, inv and exc. We will state

those results without their proofs, as all of them build on the same strategy as the proof

of Proposition 6.1 and use knowledge about how shrinking or deleting cycles changes the

rank or number of inversions and excedances.

With respect to the rank ρ we get the recursion

bρ(In, k) = bρ(In−1, k) + bρ(In−1, k − 1) + bρ(In−2, k − 2) − bρ(In−3, k − 2) (6.1)

for n ≥ 4 and k ≥ 2. The values of bρ for n < 4 or k < 2 can be found in table 6.2. The

generating function of bρ(In, k) is

F ρ(x, y) =
∑

n≥1

∑

k≥0

bρ(In, k)xnyk =
x(1 − x2y2)

(1 − x2y2)(1 − x) − xy
.

bρ(In, k) k = 0 k = 1 k ≥ 2

n = 1 1 0 0

n = 2 1 1 0

n = 3 1 2 1

n ≥ 4 1 n − 1 equation (6.1)

Table 6.2: Distribution of bρ(In, k) for small n and k

binv,exc(In, k, l) k = 0 k = 1 k = 2 k = 3

l = 0 l = 1 l = 2 l = 1

n = 1 1 0 0 0

n = 2 1 1 0 0

n = 3 1 2 0 1

n ≥ 4 1 n − 1 1
2(n2 − 5n + 6) equation (6.2)

Table 6.3: Distribution of binv,exc(In, k, l) for small n, k and l
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6.2 Counting reduced twisted expressions

The recursion with respect to the number of inversions and excedances is

binv,exc(In, k, l) = binv,exc(In−1, k, l) + binv,exc(In−2, k − 1, l − 1)

+ binv,exc(In−1, k − 2, l) − binv,exc(In−2, k − 2, l)

+ binv,exc(In−2, k − 3, l − 1) − binv,exc(In−3, k − 3, l − 1) (6.2)

for n ≥ 4, k ≥ 3 and l ≥ 1. Table 6.3 contains the non-zero values of binv,exc for smaller

n, k or l. We compute the corresponding generating function as

F inv,exc(x, y, z) =
∑

n≥1

∑

k≥0

∑

l≥0

binv,exc(In, k, l)xnykzl

=
x2yz + x − x2y2 − x3y3z

1 − x − x2yz − xy2 + x2y2 − x2y3z + x3y3z
.

Actually, we could have deduced F I,ρ from F I,inv,exc and the formula for the rank

function of In saying ρ(w) = 1
2(inv(w) + exc(w)). Indeed, we have

F ρ(x, y) = F inv,exc(x,
√

y,
√

y)

and by definition

F (x) = F ρ(x, 1) = F inv,exc(x, 1, 1).

6.2 Counting reduced twisted expressions

We want to develop a more general method to compute the number of boolean involutions

of a Coxeter group W . Remember that WT denotes the standard parabolic subgroup of

the Coxeter group W generated by T ⊆ S. In particular, WS = W .

Proposition 6.7. Let (W, S) be a Coxeter system. Then

b(I(W, id)) =
∑

T⊆S

bmax((I(WT , id)))

and

bρ(I(W, id), k) =
∑

T⊆S,|T |=k

bmax((I(WT , id))).

Proof. Every boolean involution w ∈ I(W, id) determines the set T ⊆ S of generators

which is used in the reduced twisted expressions for w. We have w ∈ I(WT , id) and that

w is a maximal boolean involution in I(WT , id). Thus, every boolean involution is a

maximal boolean involution in some parabolic subgroup of W . Of course, the converse

is also true. Furthermore, w is of rank k in I(W, id) if and only if it is maximal in some

I(WT , id) with |T | = k.
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6 Enumeration

In Proposition 6.1 and equation (6.1) we deduced a recursive formula for the number

of (maximal) boolean elements in In using the combinatorial structure of the involved

permutations. However, we do not have such a nice combinatorial description as for

In for the more complex cases of signed and affine involutions. Instead, we need to

work with reduced twisted expressions to derive formulas for the number of boolean

involutions.

We will apply Proposition 6.7 to the Coxeter groups Sn, SB
n , SD

n and S̃n. Therefore

we have to find the number of maximal boolean involutions of those groups and their

standard parabolic subgroups.

It is easy to see from the Coxeter graph of Sn that all standard parabolic subgroups

of Sn are products of smaller symmetric groups. Similarly, the standard parabolic sub-

groups of SB
n and SD

n are products of smaller groups of type A, B or D. Thus, it suffices

to know the number of maximal boolean elements of Im, IB
m and ID

m for arbitrary m ∈ N

and this is what we compute first.

Let Fk denote the k-th Fibonacci number defined by F1 = F2 = 1 and Fk = Fk−1 +

Fk−2 for all k ≥ 3. It will prove useful later to let Fk = 0 for all k ≤ 0.

Proposition 6.8. The numbers of maximal boolean elements of In, IB
n and ID

n are as

follows.

(i) bmax(In) = Fn−1 for all n ≥ 2 and bmax(I1) = 1,

(ii) bmax(I
B
n ) = Fn+1 for all n ≥ 1,

(iii) bmax(I
D
n ) = 2Fn−1 + Fn−3 for all n ≥ 3 and bmax(I

D
1 ) = bmax(I

D
2 ) = 1.

Proof. (i). We will count maximal boolean involutions by counting certain reduced

twisted expressions. Every involution has a lexicographically first reduced twisted ex-

pression, where we consider the set of generators s1, . . . , sn−1 as lexicographically or-

dered. We will see that the lexicographically first reduced twisted expressions of maximal

boolean involutions have quite a special form.

Let w ∈ In be maximal boolean and let si1
. . . sin−1

be a reduced and lexicographically

first expression for w. Thus, we have ik ≤ ik+1 + 1 for all k ∈ [n− 2], because otherwise

we would get a lexicographically smaller expression by exchanging the positions of sik

and sik+1
. (This would be possible because both would commute in that case.) Assume

that we have ik > ik+1 for some k ∈ [n − 2] such that sik and sik+1
commute with

si1
. . . sik−1

. Then we have

si1
. . . sik+1

= sik+1
si1

. . . sik−1
siksik+1

= siksi1
. . . sik−1

sik+1
sik

= si1
. . . sik−1

sik+1
sik

This is a contradiction to our assumption because we constructed a lexicographically

smaller reduced expression. From the last observation we can deduce, that there is no
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6.2 Counting reduced twisted expressions

decreasing subsequence ik > ik+1 > ik+2 of length 3 in si1
. . . sin−1

and that i1 = 1. The

reader may observe that the reduced expressions which we constructed in the proof of

Proposition 5.8 are exactly the lexicographically first ones.

Consider the lexicographically first reduced twisted expressions for maximal boolean

involutions in In with n ≥ 4 which have sn−1 as last letter and observe that they are

in bijection with corresponding expressions for elements of In−1 by deleting the last

letter. Similarly, we have a bijection between the expressions for elements in In which

have sn−1sn−2 as last two letters (in this order) and those of elements in In−2. But

there are no more possibilities for the last letters because of our characterization of

lexicographically minimal expressions. Thus, bmax(In) = bmax(In−1) + bmax(In−2) for

n ≥ 4. It is easy to check that bmax(I1) = bmax(I2) = bmax(I3) = 1.

(ii). Analogous to (i) with the exception that the given recursion already holds for

n ≥ 3. The initial values are bmax(I
B
1 ) = 1 = F2 and bmax(I

B
2 ) = 2 = F3.

(iii). Let n ≥ 3. We count the number of maximal boolean w ∈ ID
n having a reduced

twisted expression ending with s′0 first. This is the case if and only if ws′0 is a maximal

boolean element of In and we can conclude that there are exactly bmax(In) of those

w ∈ ID
n . If w ∈ ID

n is maximal boolean and does not have a reduced twisted expression

ending with s′0, it will have a reduced twisted expression starting with s′0s1 or s′0s3s2s1.

The first case is counted by bmax(I
B
n−2) and the latter one by bmax(I

B
n−4) as we can

interpret the words without the first letters from above as maximal boolean elements of

IB
n−2 or IB

n−4 after shifting all indices by −2 and −4 respectively. We conclude

bmax(I
D
n ) = bmax(In) + bmax(I

B
n−2) + bmax(I

B
n−4) = Fn−1 + Fn−1 + Fn−3

for all n ≥ 3. Of course, it holds that bmax(I
D
1 ) = bmax(I

D
2 ) = 1.

We can now compute the number of boolean elements of In, IB
n and ID

n using Propo-

sition 6.7. It makes the expressions much nicer if we let b(I0) = 1 so we do this here

although we did not take n = 0 into account in the previous computations of b(In).

Proposition 6.9. The numbers of boolean elements of In, IB
n and ID

n are

(i) b(In) = b(In−1) +
∑n

k=2 Fk−1b(In−k) for all n ≥ 1,

(ii) b(IB
n ) =

∑n
k=0 Fk+1b(In−k) for all n ≥ 1,

(iii) b(ID
n ) = 2b(In) − b(In−1) + b(In−2) +

∑n
k=3(2Fk−1 + Fk−3)b(In−k) for all n ≥ 2.

Proof. (i). Let (In)T = I((Sn)T , id) and iT := min({i : si 6∈ T} ∪ {n}). Then

b(In) =
∑

T⊆S

bmax((In)T )

=
n

∑

i=1

∑

T⊆S,iT =i

bmax((In)T ).
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6 Enumeration

If si is the first generator missing, then every element is a product of a maximal element

of the subgroup generated by the first i − 1 generators and an element of the subgroup

generated by the last n − i generators. Hence,

b(In) =
n

∑

i=1

bmax(Ii)
∑

T⊆{si+1,...,sn−1}

bmax((In)T )

=
n

∑

i=1

bmax(Ii)b(In−i)

= b(In−1) +
n

∑

i=2

Fi−1b(In−i).

(ii). Follows in the same way as (i).

(iii). Let n ≥ 2. With iT as defined in (i), we compute

b(ID
n ) =

∑

T⊆S

bmax((I
D
n )T )

=
∑

T⊆S\{s′0}

bmax((I
D
n )T ) +

∑

T⊆S\{s1}

bmax((I
D
n )T )

−
∑

T⊆S\{s′0,s1}

bmax((I
D
n )T )

+
n

∑

k=2

∑

{s′0,s1}⊆T⊆S,iT =k

bmax((I
D
n )T )

= b(In) + b(In) − b(In−1) +
n

∑

k=2

bmax(I
D
k )b(In−k)

= 2b(In) − b(In−1) + b(In−2) +
n

∑

k=3

(2Fk−1 + Fk−3)b(In−k).

We have seen that we can compute b(IB
n ) and b(ID

n ) from the numbers b(Im) for

m = 1, . . . , n. However, this is not very useful as long as we do not have an explicit

formula for b(Im) which is easy to compute. Instead it turns out that b(IB
n ) and b(ID

n )

fulfill the same recursion as b(In) which we deduced in Proposition 6.1. This is not just

accidental. Recall that for a graph G = (V, E) and a vertex v ∈ V , the set of neighbors

of v is denoted by N(v) following [5].

Proposition 6.10. Let W be a Coxeter group with Coxeter graph G and set of generators

S = {s1, . . . , sn}. Let sn, sn−1, sn−2 ∈ S = V (G) be such that N(sn) = {sn−1} and

N(sn−1) = {sn, sn−2}. Then G is as in Figure 6.2. Write Wi = WS\{si+1,...,sn} for the
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6.2 Counting reduced twisted expressions

standard parabolic subgroup generated by all generators except si+1, . . . , sn and f(i) =

b(I(Wi, id)) for the number of boolean involutions in Wi. Then it holds that

f(n) = 2f(n − 1) + f(n − 2) − f(n − 3).

��������������
snsn−1sn−2

G − {sn, sn−1}

Figure 6.2: Coxeter graph of Wn

Proof. Let w ∈ I(Wn, id) be boolean. If sn 6≤ w then w is a boolean involution in Wn−1.

There are exactly f(n−1) such w. Otherwise, consider the lexicographically first reduced

twisted expression for w. If this expression ends with sn then wsn ∈ I(Wn−1, id). The

converse is also true. Thus, those w are counted by f(n − 1), too. If the expression

does not end with sn, it ends with snsn−1. This is the case if and only if wsn−1sn ∈
I(Wn−2, id)\I(Wn−3, id). There are f(n− 2)− f(n− 3) such w. It now follows directly

that

f(n) = 2f(n − 1) + f(n − 2) − f(n − 3).

Corollary 6.11. It holds that

b(IB
n ) = 2b(IB

n−1) + b(IB
n−2) − b(IB

n−3)

for all n ≥ 4 and that

b(ID
n ) = 2b(ID

n−1) + b(ID
n−2) − b(ID

n−3)

for all n ≥ 5.

Obviously the previous proposition does not help for Ĩn. The situation is a little

different here because the graph of S̃n is not a tree but a cycle. Nevertheless, the

method of counting reduced expressions still works.

Proposition 6.12. The number of maximal boolean elements in Ĩn is given by

bmax(Ĩn) = Fn−1 + Fn+1 − 1

for all n ≥ 3.
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6 Enumeration

Proof. Let n ≥ 3 and let

k = max{i ∈ [n] : w(i) > i + 1, w(i + 1) < i}.

If there is a reduced twisted expression for w ending with s̃l, then w(l) > l + 1 and

w(l + 1) < l because w is maximal boolean. This means that k is well-defined and

1 ≤ k ≤ n.

If k ≥ 2 then the lexicographically first reduced twisted expression for w is given by

s̃i1
. . . s̃ik−1

s̃n . . . s̃k where v = si1
. . . sik−1

is the lexicographically first reduced twisted

expression for a maximal boolean involution v ∈ Ik.

Conversely, if k = 1 then s̃i1
. . . s̃in−1

s̃1 is the lexicographically first reduced twisted ex-

pression for w where v = si1
. . . sin−1

with {i1, . . . , in−1} = {2, . . . , n} is the lexicograph-

ically first twisted reduced expression for a maximal boolean involution v ∈ I{2,...,n+1}.

We conclude

bmax(Ĩn) =
n

∑

k=2

bmax(Ik) + bmax(In) =
n

∑

k=2

Fk−1 + Fn−1

= Fn−1 +
n−1
∑

k=1

Fk = Fn−1 + Fn+1 − 1

where the last step follows from the identity
∑m

i=1 Fi = Fm+2 − 1.

Corollary 6.13. The number of boolean elements of Ĩn is given by

b(Ĩn) = Fn−1 + Fn+1 − 1 +

n−1
∑

k=0

n

n − k
bρ(In, k)

for all n ≥ 3.

Proof. Let T ⊂ S and si 6∈ T . Then ĨT
n := I((S̃n)T , id) is isomorphic to a subposet of

I{i+1,...,i+n+1}
∼= In and every maximal boolean element w ∈ ĨT

n can be identified with a

boolean element of In. If |T | = k then si can be chosen in n−k different ways. Applying

an idea used in [21, Lemma 2.3.4] we conclude

(n − k)
∑

T⊆S,|T |=k

bmax(Ĩ
T
n ) = nbρ(In, k)

for all k = 0, . . . , n − 1 and thus

b(Ĩn) = bmax(Ĩn) +
n−1
∑

k=0

∑

T⊂S,|T |=k

bmax(Ĩ
T
n ) = Fn−1 + Fn+1 − 1 +

n−1
∑

k=0

n

n − k
bρ(In, k).
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7 Conclusion and perspectives

We showed that the property of having a boolean lower order ideal in the partially

ordered set of involutions induced by the Bruhat order can be completely characterized

by pattern avoidance for Coxeter groups of type A, B and D. The main theorem has

been proved using the combinatorial properties of the symmetric group. It implies the

result for the signed permutations. The even signed permutations have been treated a

little differently. We can even give some characterization for type Ã.

A similar question arises for twisted involutions. There are exactly two graph auto-

morphisms of Sn and the non-trivial one is given by θ0 : Sn → Sn with θ0(w) = w0ww0

for all w ∈ W . There is also exactly one non-trivial order-preserving automorphism

of SD
n induced by the graph automorphism θ1 mapping s′0 to s1 and having all other

vertices as fixed points. In both cases, we can ask if the boolean twisted involutions can

be characterized via pattern avoidance.

Problem 7.1. Can the boolean twisted involutions of I(Sn, θ0) or I(SD
n , θ1) be char-

acterized in terms of pattern avoidance?

There is an order-reversing bijection between In and I(Sn, θ0) given by ϕ : In →
I(Sn, θ0) with ϕ(w) = w0w for all w ∈ In. Thus, the boolean elements of I(Sn, θ0)

are in bijection with the elements of In having an upper order ideal isomorphic to some

boolean lattice. Furthermore, we can see that w ∈ In avoids a pattern p ∈ Sk if and only

if ϕ(w) ∈ I(Sn, θ0) avoids the pattern w0,kp where w0,k denotes the maximal element

of Sk. We can thus characterize the boolean elements of I(Sn, θ0) in terms of pattern

avoidance if and only if we can express the property of having an upper order ideal

[w, w0] by pattern avoidance for all w ∈ In. Computer experiments have verified the

following conjecture for n ≤ 10.

Conjecture 7.2. The involution w ∈ In has an upper order ideal [w, w0] isomorphic to

some boolean lattice if and only if it avoids all of the patterns below.

1234 1243 1324 2134

14523 21354 34125

214365 215634 216543

321654 341265 351624

426153 432165 456123

5276143 5471263 65872143

In section 4.2 we presented results, that characterize the elements with rank-symmetric

lower order ideal in terms of pattern avoidance for Coxeter groups of type A, B and D.

This leads directly to the corresponding question for involutions.

Problem 7.3. Can the property of having a rank-symmetric lower order ideal be char-

acterized in terms of pattern avoidance for the (twisted) involutions in In, IB
n or ID

n ?
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7 Conclusion and perspectives

It would not be less interesting to find a characterization in terms of reduced twisted

expressions valid for any Coxeter group W and involutive group automorphism θ.

In section 6.1 we found a recursive formula for the number of boolean involutions

in In. From the recursion it is easy to deduce an explicit formula which unfortunately

involves irrational complex numbers raised to high powers and thus is not really useful to

compute b(In) for large n. In section 6.2 we deduced formulas for the number of boolean

involutions in IB
n and ID

n using the numbers b(In). Thus, it would be very interesting

to find an explicit combinatorial formula for b(In), because it would immediately yield

explicit formulas for b(IB
n ) and b(ID

n ), as well.

Problem 7.4. Find an explicit combinatorial formula for b(In).

Although the method of counting reduced twisted expressions that we used in section

6.2 can be applied for any Coxeter group, the necessary argumentation will depend on

the structure of the corresponding Coxeter graph in every single case. It would be helpful

to find a general formula for the number of (maximal) boolean involutions at least for

certain classes of Coxeter graphs such as trees or anything related. Using Proposition

6.10 we can compute the number of boolean involutions for all Coxeter groups whose

Coxeter graph is a tree if we can do it for all trees which do not have leaves adjacent to

a vertex of degree 2. This includes for example the following graph.

��������������������

Figure 7.1: A tree with no leaf adjacent to a vertex of degree 2
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Theses

• A twisted involution w ∈ I(W, θ) is boolean if and only if for every reduced twisted

expression s1 . . . sk for w and every i, j ∈ [k] with i 6= j it holds that si 6= sj .

• An involution w ∈ I(W, id) is boolean if and only if there is a twisted expression

for w without repeated letters.

• An involution w ∈ In is boolean if and only if w avoids the patterns 4321, 45312

and 456123.

• If an involution w ∈ In contains an induced p-pattern and p ∈ Ik is 2143-avoiding

then there is a reduced twisted expression for w which begins with a shift of a

reduced twisted expression for p.

• A signed involution w ∈ IB
n is boolean if and only if it avoids all of the following

signed patterns.

4321 45312 456123 12 132 321

213 4231 4321 3412 45312 45312

4321 54321 456123 546213

• An even signed involution w ∈ ID
n is boolean if and only if it avoids all signed

patterns below.

4321 45312 456123 123 213 312

321 123 132 213 231 312

1243 3421 4231 4312 15432 15432

52431 54321 456123 654321 654321

• The number of boolean elements in Pn, fulfills the recursion

b(Pn) = 2b(Pn−1) + b(Pn−2) − b(Pn−3)

for all n ≥ nP for some nP ∈ N if P ∈ {I, IB, ID}.

• The generating function of the number of boolean involutions in In with respect to

the rank is
∑

n≥1

∑

k≥0

bρ(In, k)xnyk =
x(1 − x2y2)

(1 − x2y2)(1 − x) − xy
.

• There is a bijection between the boolean involutions w ∈ In and certain restricted

Motzkin paths.

• The number of maximal boolean involutions of Sn, SB
n and SD

n respectively can be

computed from the Fibonacci numbers.


