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Abstract
A maximal partial Hamming packing of Zn

2 is defined by us to be a family S of
mutually disjoint translates of Hamming codes of length n, such that any translate
of any Hamming code of length n intersects at least one of the translates of Hamming
codes in S. The number of translates of Hamming codes in S is the packing number,
and a partial Hamming packing is strictly partial if the family S does not constitute
a partition of Zn

2 .
A simple and useful condition describing when two translates of Hamming codes

are disjunct or not disjunct is proved. This condition depends on the dual codes of
the corresponding Hamming codes. Partly by using this condition, it is shown that
the packing number p, for any maximal strictly partial Hamming packing of Zn

2 ,
n = 2m − 1, satisfies m + 1 ≤ p ≤ n− 1.

It is also proved that for any n equal to 2m−1, m ≥ 4, there exist maximal strictly
partial Hamming packings of Zn

2 with packing numbers n−10, n−9, n−8, . . . , n−1.
This implies that the upper bound is tight for any n = 2m − 1, m ≥ 4.

All packing numbers for maximal strictly partial Hamming packings of Zn
2 , n = 7

and 15, are given by a computer search. In the case n = 7 the packing number is 5,
and in the case n = 15 the possible packing numbers are 5, 6, 7, . . . , 13 and 14.

(Supervised by Olof Heden, Department of Mathematics, KTH.)
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1 Introduction

In this section we give a brief introduction of the concepts and methodology used in this
Master of Science Thesis. The concepts that are introduced here will be explained with
more details in later sections.

1.1 Coding theory

Coding theory is concerned with how to encode, decode and transfer information from
one place to another in an efficient and accurate manner. The study of coding theory
began in the 1940’s with works of Golay, Hamming and Shannon.

A subarea of coding theory is the theory of error correcting codes. The theory of error
correcting codes has been developed for many different applications. For example, error
correcting codes are used in CD-players and in the Voyager spacecraft which have sent
pictures of Jupiter and Saturn to Earth.

A perfect e-error correcting binary code of length n, is a subset C of Zn
2 , such that

for every x̄ ∈ Zn
2 there is a unique c̄ ∈ C, satisfying that the number of positions for

which x̄ and c̄ differ is less than or equal to e. In this thesis we will study perfect 1-error
correcting binary codes, which we simply will call perfect codes. A linear perfect code is
called a Hamming code, i.e. a perfect code C is a Hamming code if c̄, c̄′ ∈ C implies that
c̄ + c̄′ ∈ C.

It is well known, (as will be explained in Section 2), that if C is a perfect 1-error
correcting binary code of length n, then n = 2m − 1 for some integer m. Hence the
possible lengths for perfect codes are 1, 3, 7, 15, 31, . . . . There is a general construction
for all Hamming codes of every possible lengths, (this construction is given in Section 2).
However, there only exist non linear perfect codes of length n ≥ 15 and there is no general
construction for all of them. There are many different constructions on perfect codes, see
e.g. [14].

Perfect codes are fascinating. Although the basic structure of a perfect code is simple,
it is a finite set of elements that satisfies a conceptual simple condition, there are many
relations within each perfect code and with other perfect codes. For example, there is no
known classification of perfect codes of length n ≥ 15. Further, from [9], the number of
different perfect codes of length n ≥ 15, is greater than

22
n+1

2 −log2(n+1) · 32
n−3

4 · 22
n+5

4 −log2(n+1)

.

The number of atoms in the observable universe is estimated to be about 1080, which is
much less than the number of different perfect codes of length 31 which is, by the equation
above, at least 10682.

The properties in the paragraph above show that it is hard to order, enumerate and
classify perfect codes. There are many interesting problems concerning perfect codes that
still remain open.
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1.2 Methodology and disposition

The main subject of our investigations in this thesis is the packing number of maximal
strictly partial Hamming packings.

A partial Hamming packing of Zn
2 is a family S of mutually disjoint translates of, not

necessarily different, Hamming codes in Zn
2 . Further, a partial Hamming packing of Zn

2

is strictly partial and maximal if the following conditions are satisfied:
(i) The union of the sets in the corresponding family S is a strict subset of Zn

2 .
(ii) There does not exist any translate of any Hamming code of length n which is

disjunct to the union of the sets in the corresponding family S.
The packing number of a partial packing is the number p of translates of Hamming codes
in the partial packing.

To our knowledge there have not been any studies on maximal strictly partial Hamming
packings so far. However, in other areas of mathematics, similar objects have been studied.
For example, maximal partial spreads in P (3, q). A maximal partial spread in P (3, q) is a
set S of mutually skew lines in the projective 3-dimensional geometry, such that any line
in this geometry intersects at least one of the lines in S. That study started by Mesner
in 1967 and has continued since then, [10]. Further, there have been studies on partitions
of Zn

2 with translates of Hamming codes and translates of any perfect codes, which may
be seen as full partial Hamming packings respectively full partial packings. For example,
in [12], by using a computer study, Phelps gives all inequivalent partitions of Z7

2 with
perfect codes. (All perfect codes of Z7

2 are translates of Hamming codes. Two partitions
are equivalent if we can obtain one of the partitions from the other by a permutation
of the coordinate set of Z7

2 and the addition of one element x̄ ∈ Z7
2 .) These partitions

are significant for one of the more important constructions of perfect codes, namely the
Phelps construction, see e.g. [11].

In this study we will use both theoretical and computer based methods. The main
results of the study are:

- Corollary 3 of Section 5, that gives a necessary and sufficient condition for when a
set of translates of Hamming codes is a partial Hamming packing.

- Corollary 4 and Corollary 6 of Section 6, that gives a lower and an upper bound for
the packing numbers of maximal strictly partial Hamming packings.

- Theorem 9 and Theorem 10 in Section 7, which give, by use of a computer search,
the packing numbers that exist for maximal strictly partial Hamming packings of
Z7

2 and Z15
2 .

- Corollary 7 of Section 7, which gives an existence result for some packing numbers
of maximal strictly partial Hamming packings of Zn

2 , n ≥ 15.

As mention before, even though perfect codes are conceptually easy to handle, there
are many different relations between perfect codes and there are many different perfect
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codes. These properties may cause problems when dealing with perfect codes in practice.
For example, the number of different translates of Hamming codes of length 31 equals

32 · 31!

31 · 30 · 28 · 24 · 16
≈ 3 · 1030,

(see Proposition 5 of section 2). Suppose we could execute one of these translates every
clock cycle on a 5 GHz personal computer. Then it would take approximate 2 · 1013 years
to execute all of the translates. This shows that the computer search we are using in this
study for maximal strictly partial Hamming packings of Zn

2 , n = 7, 15, is impossible to
perform when n is greater than or equal to 31.

This thesis is organized in the following way. Section 2 contains some basic facts
concerning coding theory in general and perfect codes in particular. This will introduce
the casual reader to the subject, and give the necessary basic knowledge needed for later
sections. In Section 3 and 4 we give some results concerning more specific topics that we
will use when we prove the main results in this thesis. The main results will be given in
Section 5, 6 and 7. In Section 8, we summarize the results we have obtained and list some
open problems.

(As this is a Master of Science Thesis we also include some elementary proofs, that
are normally not included in regular research reports in mathematics.)

2 Preliminaries and notation

In this section we shall give some basic definitions, results and notation concerning coding
theory in general and perfect codes in particular.

The results in this section are well known and covered in many books about error-
correcting codes. For a general introduction to coding theory see for example [13].

2.1 Binary codes

A binary code is a subset of Zn
2 ,

Zn
2 = Z2 × Z2 × . . .× Z2︸ ︷︷ ︸

n

,

where Z2 is the finite field with two elements. These elements will be denoted by 0 and
1. Note, that by a code, C, we will always mean a binary code.

Following are some definitions and notation concerning the elements of Zn
2 . By a word

we mean an element x̄ = (x1, x2, . . . , xn) ∈ Zn
2 . The number n is called the length of the

word. Addition and scalar multiplication will be defined by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

and
λ(a1, a2, . . . , an) = (λa1, λa2, . . . , λan).
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Hence, with the addition and scalar multiplication above, Zn
2 is a vector space.

The dot product of two words ā, b̄ ∈ Zn
2 is defined by,

ā · b̄ ≡ a1b1 + a2b2 + . . . + anbn (mod 2).

This dot product will be used to define orthogonality and dual codes.

Example. Consider the words ā = (101), b̄ = (001) in Z3
2 . Then

ā + b̄ = (100)

and
ā · b̄ ≡ 1 · 0 + 0 · 0 + 1 · 1 ≡ 1 (mod 2).

A code C is linear, if for any x̄, x̄′ ∈ C, the word (x̄ + x̄′) ∈ C. This means that C is
linear if and only if C is a subspace of the vector space Zn

2 .

Example. Let C be the code {(000), (110)(001)(111)} and C ′ the code {(110)(001)(111)}.
Then C is a linear code and C ′ is a non linear code, as for example (110)+(110) = (000) /∈
C ′.

There are some frequently used words that will have a special notation. Let, for
i = 1, 2, . . . , n, ēi be the word in Zn

2 with a 1 in the position i and with 0:s in the
remaining coordinate positions. Also, let ē0 = 0̄ = (00 . . . 0) and 1̄ = (11 . . . 1).

Further, to every word x̄ = (x1, x2, . . . , xn) ∈ Zn
2 , we associate a word that is denoted

as x̄∗,
x̄∗ = (x∗0, x

∗
1, x

∗
2, . . . , x

∗
n) = (0, x1, x2, . . . , xn).

Example. Consider the words ē0, ē2 and 1̄ in Z3
2 . Then

ē0 = (000), ē2 = (010), 1̄ = (111) and ē∗2 = (0010).

For any integer n, let

[n] = {1, 2, . . . , n} and [n]∗ = {0, 1, 2, . . . , n}.
When considering the distance between two words, different definitions of distances may
be used in general. However, here we will only consider the Hamming distance. By d(x̄, x̄′)
we denote the Hamming distance between the words x̄, x̄′ ∈ Zn

2 ,

d(x̄, x̄′) = | {i ∈ [n] | xi 6= x′i} | .
The support of any word x̄ ∈ Zn

2 , supp(x̄), is defined to be the set

supp(x̄) = {i ∈ [n] | xi = 1},
and the weight, w(x̄), to be the integer

w(x̄) = | supp(x̄) | .
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An e-sphere with center x̄, where e is an integer and x̄ ∈ Zn
2 , is the set

Se(x̄) = {c̄ ∈ Zn
2 | d(x̄, c̄) ≤ e}.

Example. Consider the words ā = (101), b̄ = (001) in Z3
2 . Then

d(ā, b̄) = 1, supp(ā) = {1, 3}, w(ā) = 2 and S1(ā) = {(101), (001), (111), (100)}.

2.2 Perfect 1-error correcting binary codes

As mention in the introduction, coding theory is concerned with how to encode, decode
and transfer information from one place to another in an efficient and accurate manner.
When information is transmitted, disturbance on the transmission channel may cause the
received information to differ from the originally transmitted information. When this
happens we need to be able to detect and correct the errors.

With an e-error correcting code we are able to detect and correct e or less errors in a
code word. For example, if we have a 1-error correcting code we are able to detect and
correct one error in a code word, i.e. if one of the 0:s of a transmitted code word has been
changed to 1 or if one of the 1:s have been changed to 0.

A code C is an e-error correcting code, if

c̄, c̄′ ∈ C and c̄ 6= c̄′ ⇒ Se(c̄) ∩ Se(c̄
′) = ∅.

Example. If the messages that will be sent over a channel is, yes or no, then we can
encode the messages with the code C = {(000), (111)}, where yes = (000) and no = (111).
The code C is a 1-error correcting code.

Now suppose the message that will be sent is yes, i.e. (000), but the word that the
receiver gets is (010), then a 1-error has occurred. Because there is only one unique code
word in C at a distance less than or equal to 1 from (010), the receiver should correct
the received word to (000). (We assume that the probability of errors are small, thus the
probability for multiple errors are much smaller.)

We are now ready to define the main object of this thesis, perfect 1-error correcting
binary codes. A perfect 1-error correcting binary code of length n is a subset C of Zn

2

satisfying the following condition:

For every word x̄ ∈ Zn
2 there is a unique word c̄ ∈ C, such that d(x̄, c̄) ≤ 1.

By a perfect code we will always mean a perfect 1-error correcting binary code. Note
that by the definition above of perfect codes we may conclude that a subset C of Zn

2 is a
perfect code if and only if ⋃̇

c̄∈C

S1(c̄) = Zn
2 . (1)
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(The notation ∪̇ means here that all the sets in the union are mutually disjoint. For
example, all the sets S1(c̄), c̄ ∈ C above, constitute a partition of Zn

2 .)
A perfect code C, such that 0̄ ∈ C, is sometimes called a normal perfect code. This

terminology will be used in this thesis.
A rather simple method for constructing all linear perfect codes was given in a paper

from 1950 by Hamming, see [4]. Hence, a perfect code that is linear is called a Hamming
code. For example, the code C = {(000), (111)} is a Hamming code. Below we explain
the method that Hamming invented.

Construction. Consider the space Zn
2 , n = 2m − 1. Let the matrix H consist of m rows

and n columns, such that the n columns consist of all non zero words of Zm
2 . Then the

set
C = {c̄ = (c1, c2, . . . , cn) ∈ Zn

2 | Hc̄T = 0̄T}, (2)

is a Hamming code of length n. To see this we note the following: Due to the fact that
each word in Zm

2 \{0̄} is equal to a unique column of the matrix H above, we may observe
that for any word x̄ ∈ Zn

2 \C there is a unique i ∈ [n] such that Hx̄T = HēT
i . This implies

that
Hx̄T = HēT

i ⇔ H(x̄ + ēi)
T = 0̄T ⇔ x̄ + ēi ∈ C.

Hence for all x̄ ∈ Zn
2 there is a unique c̄ ∈ C such that d(c̄, x̄) ≤ 1. Consequently C is a

perfect code.
Note that the rows in the matrix H above are linear independent.

Example. Take

H =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 .

Then

C = {(c1, c2, . . . , c7) |



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1







c1

c2
...
c7


 =




0
0
0


}.

Thus we get the Hamming code

C = {(0000000), (1110000), (1001100), . . . , (0110011), (0001111), (1111111)}.
A matrix H is called a parity-check matrix for a code C of length n, if the rows in H

are linear independent and C consists precisely of all words c̄ ∈ Zn
2 such that Hc̄T = 0̄T .

Hence, the matrix H in the construction (2) is a parity-check matrix to the corresponding
perfect code C.

A straightforward result on parity-check matrices is the following proposition:

Proposition 1. Consider two different parity-check matrices H and H ′, the correspond-
ing codes C and C ′ respectively are the same if and only if the linear span of the rows in
each matrix are the same.
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Consider any two subsets A,B ∈ Zn
2 , then

A + B = {ā + b̄ | ā ∈ A, b̄ ∈ B}.

(Note that A + B is not a multiset.)
A translate of a perfect code C of length n is any set

C + x̄ = {c̄ + x̄ | c̄ ∈ C},

where x̄ is a fixed word of Zn
2 .

Note that a translate of a perfect code is also a perfect code, as will be proved in
Corollary 2 on page 8. Further, from the definition of perfect codes we get that for any
perfect code C, | S1(0̄) ∩ C | = 1. These properties imply that any perfect code of any
length n is a translate, C + ēi, where i ∈ {0, 1, . . . , n} and C is a normal perfect code of
length n.

Also, by trivial verifications we get that any translate, C + x̄, of a Hamming code C
of length n is equal to one of the following sets

C + ēi = {c̄ + ēi | c̄ ∈ C}, i = 0, 1, . . . , n.

Example. Consider the Hamming code C = {(000), (111)} of length 3. There are four
translates of C, namely:

C + ē1 = {(100), (011)},
C + ē2 = {(010), (101)},
C + ē3 = {(001), (110)},
C + ē0 = {(000), (111)} = C.

2.3 Partial packings

In coding theory there is a well known upper bound for the number of words in any e-error
correcting codes. This bound is called the sphere packing bound and it states that for any
e-error correcting code A of length n

| A | ≤ 2n

1 +
(

n
1

)
+

(
n
2

)
+ . . . +

(
n
e

) ,

see for example [13]. The number of words in any perfect code attains this upper bound.
This property will be stated as condition (i) in the theorem below.

Theorem 1. Let C be a subset of Zn
2 . Then C is a perfect code of length n if and only

if both of the following conditions are satisfied:

(i) | C | = 2n/(1 + n),
(ii) c̄, c̄′ ∈ C and c̄ 6= c̄′ ⇒ S1(c̄) ∩ S1(c̄

′) = ∅.
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Proof. From (1) on page 5, C is a perfect code of length n if and only if

⋃̇
c̄∈C

S1(c̄) = Zn
2 .

This is equivalent to

S1(c̄) ∩ S1(c̄
′) = ∅ if c̄, c̄′ ∈ C, c̄ 6= c̄′

and

2n = | Zn
2 | =

∑
c̄∈C

| S1(c̄) | = | C | · | S1(0̄) | = | C | ·(1 +

(
n

1

)
).

The next corollary is an immediate consequence of Theorem 1.

Corollary 1. If C is any perfect code of length n, then n = 2m − 1 for some integer
m ≥ 1 and | C | = 2n−m.

The next corollary is also a well known result.

Corollary 2. Any translate of any perfect code is a perfect code.

Proof. Let C be any perfect code of length n. Then

| C + x̄ | = | C | = 2n/(n + 1), x̄ ∈ Zn
2 .

If there exist any two words (c̄ + x̄), (c̄′ + x̄) ∈ (C + x̄), c̄ 6= c̄′, and any word x̄′ ∈ Zn
2 such

that x̄′ ∈ S1(c̄ + x̄) ∩ S1(c̄
′ + x), then (x̄′ + x̄) ∈ S1(c̄) ∩ S1(c̄

′), which is a contradiction.
Hence by Theorem 1 the corollary is proved.

Now we define the main topic of this thesis, partial packings. A partial packing of Zn
2

with translates of perfect codes, is a family of mutually disjoint translates of perfect codes
of length n. By a partial packing we will always mean a partial packing with translates of
perfect codes and by a partial Hamming packing we will always mean a partial packing
with translates of Hamming codes. Note that a partial Hamming packing is also a partial
packing.

We will write PP (C0, C1, . . . , Ck; π; n) for the following partial packing of Zn
2 ,

(C0 + ēπ(0)) ∪̇ (C1 + ēπ(1)) ∪̇ . . . ∪̇ (Ck + ēπ(k)), (3)

where C0, C1, . . . , Ck are normal perfect codes of length n and π is a permutation of the
set {0, 1, 2, . . . , n}.

Further, if the perfect codes C0, C1, . . . , Ck in (3) are Hamming codes, then we have a
partial Hamming packing of Zn

2 which we may denote by PHP (C0, C1, . . . , Ck; π; n).
Note that the perfect codes C0, C1, . . . , Ck in (3) do not need to be distinct.
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Example. Let C0, C1 and C2 be the Hamming code {(000), (111)}. Also let π be the
permutation of {0, 1, 2, 3} where π(0) = 1, π(1) = 3, π(2) = 0 and π(3) = 2. Then

(C0 + ēπ(0)) = {(100), (011)},
(C1 + ēπ(1)) = {(001), (110)},
(C2 + ēπ(2)) = {(000), (111)}.

Thus, we get a partial Hamming packing, PHP (C0, C1, C2; π; 3), and consequently a
partial packing, PP (C0, C1, C2; π; 3), such that these packings equal

{(100), (011)} ∪̇ {(001), (110)} ∪̇ {(000), (111)}.

The number of translates of perfect codes in a partial packing is called the packing
number. Hence, the packing number of a PP (C0, C1, . . . , Ck; π; n) equals k + 1.

By Corollary 1, we may conclude that for any partial packing of Zn
2 , n = 2m− 1, with

packing number p the number of words in the partial packing equals p·2n−m. Consequently,
the packing number for any partial packing of Zn

2 is less than or equal to n+1, with equality
if and only if the partial packing is a partition of Zn

2 .
A PP (C0, C1, . . . , Ck; π; n) is a maximal partial packing, if for any perfect code C of

length n and any j ∈ {0, 1, 2, . . . , n}
(⋃̇ k

i=0
(Ci + ēπ(i))

)
∩ (C + ēj) 6= ∅. (4)

Further, a PHP (C0, C1, . . . , Ck; π; n), is a maximal partial Hamming packing if condi-
tion (4) above is satisfied for any Hamming code C of length n and any j ∈ {0, 1, 2, . . . , n}.
Example. If C is a perfect code of length n, then to any word x̄ ∈ Zn

2 there is a unique
word c̄ ∈ C such that d(x̄, c̄) ≤ 1. This implies that

C ∪̇ (C + ē1) ∪̇ (C + ē2) ∪̇ . . . ∪̇ (C + ēn) = Zn
2 .

Thus, for any perfect code of length n and any permutation π of {0, 1, . . . , n} we get a
maximal PP (C0, C1, . . . , Cn; π; n) if C = C0 = C1 = . . . = Cn.

Note that a maximal partial Hamming packing does not need to be a maximal partial
packing.

A maximal strictly PP (C0, C1, . . . , Ck; π; n) is a maximal partial packing with a pack-
ing number less than (n + 1), i.e.

(C0 + ēπ(0)) ∪̇ (C1 + ēπ(1)) ∪̇ . . . ∪̇ (Ck + ēπ(k)) $ Zn
2 .

Also, a maximal strictly PHP (C0, C1, . . . , Ck; π; n) is a maximal partial Hamming packing
with packing number less than (n + 1).
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2.4 Rank, kernel and dual code

The set of all linear combinations of the words in a code C is denoted by < C >. This
set is called the linear span of C. Further, the rank of a code C, denoted by rank(C), is
the dimension of the linear span < C >. A full rank code is a code C of length n with
rank(C) = n.

The kernel of a code C of length n is the set of periods, i.e.

ker(C) = {p̄ ∈ Zn
2 | p̄ + c̄ ∈ C ∀c̄ ∈ C}.

This set is a subspace of Zn
2 . Also, C is a linear code if and only if ker(C) = C.

The set of words of Zn
2 orthogonal to all words in a linear code C of length n, denoted

by C⊥, is the dual code of C, i.e.

C⊥ = {x̄ ∈ Zn
2 | x̄ · c̄ ≡ 0 (mod 2) ∀c̄ ∈ C}.

It is straightforward to show, that C⊥ is also a linear code and that for any linear codes
A,B of length n

(A ∩B)⊥ = A⊥ + B⊥ (5)

and
A⊥ = (A⊥)⊥. (6)

Example. Let C = {(1100), (0010)}, then

< C > = {(0000), (1100), (0010), (1110)},
< C >⊥ = {(0000), (0001), (1100), (1101)},
ker(C) = {(0000), (1110)},
rank(C) = 2.

By the construction (2) on page 6, we get a Hamming code of length n = 2m − 1,
by using a parity-check matrix with m independent rows. The generated subspace of the
rows in this parity-check matrix is the dual of the associated Hamming code. Hence, if
we have a Hamming code C of length n, then

C = {c̄ ∈ Zn
2 | x̄ · c̄ ∀x̄ ∈ C⊥}.

The proposition below is a well known result in coding theory, see for example [13].

Proposition 2. For any linear code A of length n

dim(A) = n− dim(A⊥).

By Corollary 1 on page 8, we get that for any perfect code C of length n = 2m − 1,

rank(C) ≥ log2(2
n−m) = n−m, (7)
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where rank(C) = n − m if and only if C is a Hamming code. Thus, by Proposition 2
above, for any perfect code C of length n = 2m − 1,

dim(< C >⊥) ≤ m, (8)

where dim(C) = m if and only if C is a Hamming code.
The next proposition is a consequence of some elementary results concerning vector

spaces and we will use this proposition frequently in Section 5.

Proposition 3. Let A and B be any linear codes of length n. Then

dim(A ∩B) = n− dim(A⊥)− dim(B⊥) + dim(A⊥ ∩B⊥).

Proof. An elementary result in linear algebra, that may be proved by a straightforward
verification, states that for any subspaces V and W of a vector space,

dim(V + W ) + dim(V ∩W ) = dim(V ) + dim(W ).

This implies, by (5), that

dim((A ∩B)⊥) + dim(A⊥ ∩B⊥) = dim(A⊥) + dim(B⊥).

The proposition now follows from Proposition 2.

3 Simplex codes and the associated extended funda-

mental partition to a simplex code

In [8], Hergert shows that if C is a perfect code, then < C >⊥ is a simplex code. To
any simplex code we may associate a special partition that will be called the extended
fundamental partition. The concepts of simplex code and extended fundamental partition
will be used frequently. We will in this section give the basic facts about these subjects.

We define a simplex code D to be a subspace of Zn
2 , n = 2m − 1, such that

d̄ ∈ D \ {0̄} ⇒ w(d̄) =
n + 1

2
.

Note that any subspace of a simplex code is also a simplex code.

Example. The space spanned by the two words of length seven in the matrix below is a
simplex code, (

0 0 0 1 1 1 1
0 1 1 0 0 1 1

)
.
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In [1], the term fundamental partition I0, I1, . . . , It of {1, 2, . . . , n} is defined for any
simplex code D of length n = 2m− 1, when 1 ≤ dim(D) ≤ m− 1. The existence of these
extended partitions for simplex codes is also a result of [2]. By Lemma 1 below, we extend
this definition to a partition of {0, 1, . . . , n} such that it works for any simplex code of
length n = 2m − 1, with dimension less than or equal to m. This extended partition will
be called the extended fundamental partition and will be denoted by I∗0 , I∗1 , . . . , I

∗
t .

The lemma below is a straightforward result from e.g. [1] or [2].

Lemma 1. To any simplex code D of length n = 2m − 1 and 0 ≤ dim(D) ≤ m, there is
a partition of the set {0, 1, . . . , n},

I∗0 ∪̇I∗1 ∪̇ . . . ∪̇I∗t = {0, 1, . . . , n},
where t = 2dim(D) − 1, such that the following conditions are satisfied:

(i) | I∗0 | = | I∗1 | = . . . = | I∗t | = (n + 1)/2dim(D),
(ii) d̄ ∈ D ⇒ I∗0 ∩ supp(d̄) = ∅,
(iii) d̄ ∈ D ⇒ either I∗i j supp(d̄) or I∗i ∩ supp(d̄) = ∅, i = 1, 2, . . . , t.

Another result concerning the extended fundamental partition to a simplex code is
the following property, which is also a straightforward result from e.g. [1] or [2].

Proposition 4. Let D =< d̄1, d̄2, . . . , d̄k > be a simplex code of length n = 2m − 1 such
that dim(D) ≤ m − 1. Also, let the associated extended fundamental partition of D be
denoted by I∗0 , I

∗
1 , . . . , I

∗
t . If d̄ /∈ D is a word such that < d̄1, d̄2, . . . , d̄k, d̄ > constitutes a

simplex code, then for i = 0, 1, . . . , t,

| I∗i ∩ supp(d̄) | = | I∗0 | /2.

Note, that if D is a simplex code of length n = 2m − 1, then 0 ≤ dim(D) ≤ m. Also
note, that if C is a perfect code of length n = 2m − 1, then the dimension of the simplex
code < C >⊥ equals m if and only if C is a Hamming code.

Example. The simplex code spanned by the two words of length seven in the matrix
(

0 0 0 1 1 1 1
0 1 1 0 0 1 1

)
,

has the associated extended fundamental partition

I∗0 = {0, 1}, I∗1 = {2, 3}, I∗2 = {4, 5} and I∗3 = {6, 7}.

Example. The simplex code spanned by the three words of length seven in the matrix



1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1


 ,
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is the dual of a Hamming code and has the associated extended fundamental partition

I∗0 = {0}, I∗1 = {1}, I∗2 = {2}, I∗3 = {3}, I∗4 = {4}, I∗5 = {5}, I∗6 = {6} and I∗7 = {7}.
The following proposition is needed for our computer search in Section 7. We use some

of the properties of simplex codes to prove it.

Proposition 5. The number of different Hamming codes of length n = 2m − 1 is

n!

(2m − 20) · (2m − 21) · (2m − 22) · . . . · (2m − 2m−1)
.

Proof. The number of different parity-check matrices in the construction (2) on page
6, is equal to n!, since we have to order n different columns. Further, in general if A is
any subspace of Zn

2 , then we may construct a base b̄1, b̄2, . . . , b̄k, k = dim(A), of A by
successively choosing

b̄1 ∈ A \ {0̄}, b̄2 ∈ A\ < b̄1 > , . . . , b̄k ∈ A\ < b̄1, b̄2, . . . , b̄k−1 > .

Thus, by elementary linear algebra, the number of ways to choose a base by the procedure
above for a subspace A of Zn

2 equals

(2dim(A) − 20) · (2dim(A) − 21) · (2dim(A) − 22) · . . . · (2dim(A) − 2dim(A)−1). (9)

From Hergert [8], we know that the subspace of Zn
2 generated by the rows of any

parity-check matrix in the construction (2) is a simplex code. Hence, we may conclude
that if b̄1, b̄2, . . . , b̄k is a base of A, then the matrix




− b̄1 −
− b̄2 −

...
− b̄k −




is a parity-check matrix of a type that is used in the construction (2). The proposition is
now proved.

The next lemma is a key result in the proof of Theorem 11 in Section 7. Observe that
in this lemma the words x̄(1), x̄(2), . . . , x̄((n+1)/2) are not necessarily distinct.

Lemma 2. Suppose D is a simplex code of length n = 2m − 1 and d̄ ∈ D \ {0̄}. Let
supp(d̄) = {i1, i2, . . . , i(n+1)/2} and let j be a fixed integer in {0, 1, . . . , n} \ supp(d̄).

If D′ is a linear code of length n, with the property that for each k = 1, 2, . . . , (n+1)/2
there is a word

x̄(k) = (x1k, x2k, . . . , xnk) ∈ D ∩D′ such that x∗ikk 6= x∗jk,

then d̄ ∈ D′
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Proof. Suppose d̄ /∈ D′. Then the fact that D′ is a linear code implies that

< x̄(1), x̄(2), . . . , x̄((n+1)/2) > $ < x̄(1), x̄(2), . . . , x̄((n+1)/2), d̄ > j D. (10)

Since every subspace of a simplex code is a simplex code we get that the linear code
< x̄(1), x̄(2), . . . , x̄((n+1)/2) > is a simplex code with an associated extended fundamental
partition I∗0 , I

∗
1 , . . . , I

∗
t . By (10),

dim(< x̄(1), x̄(2), . . . , x̄((n+1)/2) >) < dim(D) ≤ m.

Thus by Proposition 4 on page 12,

| supp(d̄) ∩ I∗i | = | I∗0 | /2, i = 0, 1, 2, . . . , t.

Hence there exists an element ik of supp(d̄) and a set I∗s in the extended fundamental
partition I∗0 , I

∗
1 , . . . , I

∗
t , such that j, ik ∈ I∗s . This implies that no word x̄(k) ∈ D ∩ D′

exists such that
x∗ikk 6= x∗jk,

which is a contradiction. The lemma is now proved.

Example. We use the same notation as in the lemma above. Assume that d̄ = (1111000),
j = 0 and D is the simplex code of length 7 generated by the rows in the following matrix:

(
1 1 1 1 0 0 0
1 1 0 0 1 1 0

)
.

Also, let D′ be a linear code of length 7 in which there exist, not necessarily distinct,
words x̄(1), x̄(2), x̄(3), x̄(4) ∈ D ∩D′, such that

x∗11 6= x∗01, x∗22 6= x∗02, x∗33 6= x∗03 and x∗44 6= x∗04.

Then by Lemma 2 above, the word d̄ = (1111000) ∈ D′.

4 Fourier coefficients

The technique with Fourier coefficients can be a very useful method when proving results
concerning perfect codes. In Section 6 we will use this method to prove Theorem 8.

This section consists of two subsections. In the first subsection the basic definitions
and results that we need concerning Fourier coefficients in connection with perfect codes
in general are given. In the second subsection some more specific results on Fourier
coefficients in connection with Hamming codes are given.
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4.1 Fourier coefficients and perfect codes

Most of the material in this subsection is covered in [5] and [6].
We consider a group algebra R[x1, x2, . . . , xn]. The elements in R[x1, x2, . . . , xn] are

polynomials in n variables x1, x2, . . . , xn, over the real numbers R. Thus, for any polyno-
mial r(x1, x2, . . . , xn) of R[x1, x2, . . . , xn],

r(x1, x2, . . . , xn) =
∑

t̄∈Zn
2

rt̄x
t1
1 xt2

2 . . . xtn
n ,

where t̄ = (t1, t2, . . . , tn) and rt̄ ∈ R.
The addition of polynomials in R[x1, x2, . . . , xn] is defined in the usual way. The

multiplication of polynomials is defined by extending the multiplication of monomials to
multiplication of polynomials in the usual way. If (s1, s2, . . . , sn), (t1, t2, . . . , tn) ∈ Zn

2 ,
then

xs1
1 xs2

1 . . . xsn
1 · xt1

1 xt2
1 . . . xtn

1 = xu1
1 xu2

1 . . . xun
1 ,

where ui ≡ si + ti (mod 2) for i = 1, 2, . . . , n.
To connect Zn

2 with the group algebra above we represent any word in Zn
2 as a mono-

mial in R[x1, x2, . . . , xn],

t̄ = (t1, t2, . . . , tn) ∈ Zn
2 ←→ xt1

1 xt2
2 . . . xtn

n .

A subset A of Zn
2 is represented by a polynomial A(x̄) in R[x1, x2, . . . , xn]. This polynomial

will be
A(x̄) =

∑

t̄∈A

xt1
1 xt2

2 . . . xtn
n . (11)

Example. Let A be the subset {000, 101, 111} of Z3
2 , then

A(x̄) = 1 + x1x3 + x1x2x3.

Now we define the set of polynomials in R[x1, x2, . . . , xn] needed in order to define the
Fourier coefficient:

yt̄(x̄) =
1

2n

n∏
i=1

(1− xi)
ti(1 + xi)

1−ti ,

where t̄ = (t1, t2, . . . , tn) and x̄ = (x1, x2, . . . , xn).

Example. If t̄ = (101), then yt̄(x̄) is equal to

1

23
(1− x1)(1 + x2)(1− x3) =

1

8
(1− x1 + x2 − x3 − x1x2 + x1x3 − x2x3 + x1x2x3).

We are now ready to define the Fourier coefficient for any subset of Zn
2 and to state

the Propositions 6 - 11. The proofs of the Propositions 6, 7 and 9 - 11 may be found in
e.g. [5] or [6].
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Proposition 6. The group algebra R[x1, x2, . . . , xn] defined above, may be considered as
a vector space of dimension 2n over the real numbers. Further, the set of polynomials
{yt̄(x̄) | t̄ ∈ Zn

2 }, constitutes a base for the vector space R[x1, x2, . . . , xn].

Thus from the proposition above, we get that for any subset C of Zn
2 there is a unique

subset of real numbers At̄(C), t̄ ∈ Zn
2 , such that

C(x̄) =
∑

t̄∈Zn
2

At̄(C)yt̄(x̄).

The coefficients At̄(C), t̄ ∈ Zn
2 above, are the associated Fourier coefficients to the subset

C.

Example. From the definition of yt̄(x̄), we observe that

Zn
2 (x̄) = (1 + x1)(1 + x2) · . . . · (1 + xn) = 2ny0̄(x̄). (12)

Hence the Fourier coefficients of the set Zn
2 satisfy

At̄(Z
n
2 ) =

{
2n if t̄ = 0̄,
0 if t̄ 6= 0̄,

t̄ ∈ Zn
2 .

Proposition 7. For any t̄ ∈ Zn
2 and any subset C of Zn

2 , the associated Fourier coefficient
At̄(C), may be calculated by using the following formula:

At̄(C) =| {c̄ ∈ C | c̄ · t̄ = 0} | − | {c̄ ∈ C | c̄ · t̄ = 1} | .

The zero word is orthogonal to any word of Zn
2 , i.e. for any t̄ ∈ Zn

2 , t̄ · 0̄ = 0.
Consequently At̄(C) ≥ − | C | + 1 for any subset C of Zn

2 where 0̄ ∈ C. Further, for
any subset C of Zn

2 , a word t̄ is in the dual code of the linear span of C if and only if t̄ is
orthogonal to all words of C. Thus by Proposition 7, the following proposition is true.

Proposition 8. For any t̄ ∈ Zn
2 and any subset C of Zn

2 , such that 0̄ ∈ C,

− | C | +1 ≤ At̄(C) ≤ | C |

and
t̄ ∈< C >⊥ ⇐⇒ At̄(C) = | C | .

Note that Corollary 1 in Section 2 gives that for any perfect code C of Zn
2 , n = 2m−1,

| C | = 2n−m.

Proposition 9. For any t̄ ∈ Zn
2 and any subset C of Zn

2 , such that 0̄ ∈ C,

At̄(C + ēi) =

{
At̄(C) if ti = 0,
−At̄(C) if ti = 1,

i = 1, 2, . . . , n.
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Note that for any perfect code C of Zn
2 , n = 2m − 1, the corresponding Fourier

coefficient A0̄(C) equals 2n−m.
The next proposition gives a very particular and important result concerning Fourier

coefficients and perfect codes.

Proposition 10. The Fourier coefficients of any perfect code C in Zn
2 satisfy,

At̄(C) = 0 if w(t̄) /∈ {0, n + 1

2
}.

Let for any subset C of Zn
2 , the set {t̄ ∈ Zn

2 | At̄(C) 6= 0} be denoted by A(C).

Proposition 11. For any perfect code C of length n,

ker(C) =< A(C) >⊥ .

4.2 Fourier coefficients and Hamming codes

Proposition 12. For any t̄ = (t1, t2, . . . , tn) ∈ Zn
2 and any Hamming code C of length

n = 2m − 1,

At̄(C) =

{
2n−m if t̄ ∈ C⊥,
0 if t̄ /∈ C⊥,

and

At̄(C + ēi) =





2n−m if t̄ ∈ C⊥ and ti = 0,
−2n−m if t̄ ∈ C⊥ and ti = 1,
0 if t̄ /∈ C⊥,

i = 1, 2, . . . , n.

Proof. Note that C = ker(C) for any Hamming code C. This implies by (6) on page
10 and Proposition 11, that C =< {t̄ ∈ Zn

2 | At̄(C) 6= 0} >⊥= (C⊥)⊥. We thus get, by
Proposition 8 and equation (8) on page 11 that

At(C) = 2n−m if t̄ ∈ C⊥ and At(C) = 0 if t̄ /∈ C⊥.

The proposition now follows from Proposition 9.

Proposition 13. If C is a perfect code of length n = 2m − 1, such that

At̄(C) ∈ {0,−2n−m, 2n−m}
for all t̄ ∈ Zn

2 , then C is a translate of some Hamming code.

Proof. Without loss of generality we may assume that 0̄ ∈ C, since by Proposition 9, we
get that for any normal perfect code C ′ of length n and any t̄ ∈ Zn

2

At̄(C
′ + ēi) ∈ {−At̄(C

′), At̄(C
′)} i = 1, 2, . . . , n}.
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We remind that A(C) = {t̄ ∈ Zn
2 | At̄(C) 6= 0}. Further, equation (6) and Proposition

11 implies that < A(C) >= ker(C)⊥.
Most trivially, as 0̄ ∈ C, the subspace ker(C) of Zn

2 is a subset of C. Now we assume
that C is a non linear perfect code. This implies that dim(ker(C)) ≤ n − m − 1. (In
fact one can, as an easy exercise, prove that for any non linear perfect code C of length
n = 2m − 1, dim(ker(C)) ≤ n−m− 2.) Consequently by Proposition 2 in Section 2

dim(< A(C) >) = dim(ker(C)⊥) ≥ m + 1.

Since dim(< C >⊥) ≤ m − 1 we get by the equation above that there exists a word
t̄ ∈ A(C) such that t̄ /∈< C >⊥. Hence At̄ 6= 0 and by Proposition 8 and the fact that
| C |= 2n−m,

−2n−m + 1 ≤ At̄(C) ≤ 2n−m − 1.

The proposition now follows from Proposition 12.

5 Disjunct perfect codes

Given two subsets A and B of Zn
2 , the intersection number of A and B is defined as

η(A,B) =| A ∩B | .

In this section we will obtain some results which deal with the question whether two
perfect codes are disjunct or not disjunct. The results here will concern both Hamming
codes and perfect codes in general.

In the rest of this thesis, even though we denote perfect codes as Ci and Cj where i 6= j,
Ci and Cj does not necessarily have to be different perfect codes. Further, (since there
only exists one normal perfect code of length 1 and one of length 3), we will henceforth
only consider perfect codes of length n ≥ 7.

5.1 Disjunct translates of Hamming codes

The key result in our investigations of maximal partial Hamming packings is Corollary 3
in this subsection. However, we need some more results before we prove that corollary.

The following results will be used in the proof of Lemma 3. For any Hamming code
C of length n = 2m − 1 and i = 1, 2, . . . , n

< C + ēi > = C ∪̇ (C + ēi). (13)

Hence dim(< C + ēi >) = n−m + 1, and consequently by Proposition 2 in Section 2, we
get that

dim(< C + ēi >⊥) = m− 1. (14)
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Let C be any Hamming code of length n = 2m − 1. From the construction (2) on page 6,
we also get that for any set of base vectors of C⊥, there exists for each i ∈ {1, 2, . . . , n} a
base vector d̄(i) such that the i : th coordinate of d̄(i) equals 1. Define

Di = {(d1, d2, . . . , dn) ∈ C⊥ | di = 0}, i = 1, 2, . . . , n.

The set Di is a subspace of C⊥ and we may conclude that C⊥ = Di ∪̇ (d̄(i) + Di). We
thus get that

| {(d1, d2, . . . , dn) ∈ C⊥ | di = 0} | = | {(d1, d2, . . . , dn) ∈ C⊥ | di = 1} | .

Hence from equation (14) and the fact that dim(C⊥) = m, we get that

< C + ēi >⊥ = {x̄ ∈ C⊥ | xi = 0}. (15)

Lemma 3. Assume that Ci and Cj are any two Hamming codes of length n = 2m − 1,
where i, j ∈ {0, 1, . . . , n} and i 6= j. Then the following conditions are equivalent:

(i) η(Ci + ēi , Cj + ēj) 6= 0,
(ii) η(Ci + ēi , Cj + ēj) = η(Ci ∩ Cj),
(iii) < Ci + ēi >⊥ ∩ C⊥

j = C⊥
i ∩ < Cj + ēj >⊥ .

Proof. The proof will be divided into two main cases. The first case deals with when
j = 0. In the second case both i and j are non zero.

First we state some results that will be used in the proof of the first case. Let C and C ′

be any two Hamming codes of length n, not necessarily different, and let i = 1, 2, . . . , n.
By Proposition 3 of Section 2,

dim(< C + ēi > ∩C ′) = n− dim(< C + ēi >⊥)− dim(C ′⊥) + dim(< C + ēi >⊥ ∩C ′⊥)

and

n = dim(C ∩ C ′) + dim(C⊥) + dim(C ′⊥) − dim(C⊥ ∩ C ′⊥).

We know that dim(C⊥) = dim(C ′⊥) = m and dim(< C + ei >⊥) = m − 1, hence from
the equations above we get that

dim(< C+ ēi > ∩C ′) = 1+dim(C∩C ′)−dim(C⊥∩C ′⊥)+dim(< C+ ēi >⊥ ∩C ′⊥). (16)

Also, from equation (13), we may conclude that

< C + ēi > ∩C ′ = (C ∩ C ′) ∪̇ ((C + ēi) ∩ C ′).

Hence,
η(C + ēi , C ′) = 2dim(<C+ēi>∩C′) − 2dim(C∩C′). (17)
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Case 1, i ∈ {1, 2, . . . , n} and j = 0: Assume

< Ci + ēi >⊥ ∩ C⊥
0 = C⊥

i ∩ C⊥
0 .

Then, by combining the equations (16) and (17), we get

η(Ci + ēi , C0) = 2dim(Ci∩C0)+1 − 2dim(Ci∩C0) = η(Ci , C0).

Now we assume that

< Ci + ēi >⊥ ∩ C⊥
0 6= C⊥

i ∩ C⊥
0 .

Then, due to the fact that < Ci + ēi >⊥$ C⊥
i and dim(< Ci + ēi >⊥) = dim(C⊥

i )− 1, we
may conclude that

dim(< Ci + ēi >⊥ ∩C⊥
0 ) = dim(C⊥

i ∩ C⊥
0 )− 1.

Thus by combining the equations (16) and (17),

η(Ci + ēi , C0) = 2dim(Ci∩C0) − 2dim(Ci∩C0) = 0.

We have now proved that in the case j = 0, the conditions (i), (ii) and (iii) are equiv-
alent.

Case 2, i, j ∈ {1, 2, . . . , n} where i 6= j: To prove the lemma in case 2, we divide
this case into the following four different subcases:

(2.1) C⊥
i ∩ C⊥

j = < Ci + ēi >⊥ ∩C⊥
j = C⊥

i ∩ < Cj + ēj >⊥ .

(2.2) C⊥
i ∩ C⊥

j = < Ci + ēi >⊥ ∩C⊥
j ,

C⊥
i ∩ C⊥

j 6= C⊥
i ∩ < Cj + ēj >⊥ .

(2.3) C⊥
i ∩ C⊥

j 6= < Ci + ēi >⊥ ∩C⊥
j ,

< Ci + ēi >⊥ ∩C⊥
j = C⊥

i ∩ < Cj + ēj >⊥ .

(2.4) C⊥
i ∩ C⊥

j 6= < Ci + ēi >⊥ ∩C⊥
j ,

C⊥
i ∩ C⊥

j 6= C⊥
i ∩ < Cj + ēj >⊥,

< Ci + ēi >⊥ ∩C⊥
j 6= C⊥

i ∩ < Cj + ēj >⊥ .

For any Hamming code C, the dual code of any translate of C is a subspace of the dual
code of C. Thus we get the following implication

< Ci + ēi >⊥ ∩C⊥
j = C⊥

i ∩ < Cj + ēj >⊥ ⇒
< Ci + ēi >⊥ ∩ < Cj + ēj >⊥=< Ci + ēi >⊥ ∩C⊥

j = C⊥
i ∩ < Cj + ēj >⊥ .

By the implication above, and due to the facts that for any Hamming code C of length
n, dim(C⊥) = dim(< C + ēi >⊥) + 1 and < C + ēi >⊥$ C⊥ for i = 1, 2, . . . , n, we get
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the following relations in the four subcases.

(2.1) dim(< Ci + ēi >⊥ ∩ < Cj + ēj >⊥) = dim(C⊥
i ∩ C⊥

j ).
(2.2) dim(< Ci + ēi >⊥ ∩ < Cj + ēj >⊥) = dim(C⊥

i ∩ C⊥
j )− 1.

(2.3) dim(< Ci + ēi >⊥ ∩ < Cj + ēj >⊥) = dim(C⊥
i ∩ C⊥

j )− 1.
(2.4) dim(< Ci + ēi >⊥ ∩ < Cj + ēj >⊥) = dim(C⊥

i ∩ C⊥
j )− 2.

With the same argument used to prove equation (16), we get that

dim(< Ci + ēi > ∩ < Cj + ēj >) =
2 + dim(Ci ∩ Cj)− dim(C⊥

i ∩ C⊥
j ) + dim(< Ci + ēi >⊥ ∩ < Cj + ēj >⊥).

(18)

From (13) we may conclude that

< Ci+ēi > ∩ < Cj+ēj >= (Ci∩Cj)∪̇((Ci+ēi)∩Cj)∪̇(Ci∩(Cj+ēj))∪̇((Ci+ēi)∩(Cj+ēj)).

Hence,

η(Ci+ ēi, Cj + ēj) = 2dim(<Ci+ēi>∩<Cj+ēj>)−η(Ci, Cj)−η(Ci+ ēi, Cj)−η(Ci, Cj + ēj). (19)

Now, by combining (18) and (19) in the four subcases (2.1), (2.2), (2.3) and (2.4) we
get the following relations:

(2.1) η(Ci + ēi , Cj + ēj) = η(Ci, Cj) and < Ci + ēi >⊥ ∩C⊥
j = C⊥

i ∩ < Cj + ēj >⊥ .
(2.2) η(Ci + ēi , Cj + ēj) = 0 and < Ci + ēi >⊥ ∩C⊥

j 6= C⊥
i ∩ < Cj + ēj >⊥ .

(2.3) η(Ci + ēi , Cj + ēj) = η(Ci, Cj) and < Ci + ēi >⊥ ∩C⊥
j = C⊥

i ∩ < Cj + ēj >⊥ .
(2.4) η(Ci + ēi , Cj + ēj) = 0 and < Ci + ēi >⊥ ∩C⊥

j 6= C⊥
i ∩ < Cj + ēj >⊥ .

The lemma is proved.

Note that in the lemma above and in the theorem below and its corollary, the Hamming
codes Ci and Cj, i 6= j, are not necessarily distinct.

Theorem 2. Let Ci and Cj be any two Hamming codes of length n, and i, j two different
elements of the set {0, 1, . . . , n}. Then η(Ci + ei, Cj + ej) = 0 if and only if there exists a
word x̄ ∈ C⊥

i ∩ C⊥
j such that x∗i 6= x∗j .

Proof. From (15) on page 19, for any Hamming code C of length n,

< C + ēk >⊥ = {x̄ ∈ C⊥ | x∗k = 0}, k = 0, 1, . . . , n.

Thus we get that

< Ci + ei >⊥ ∩ C⊥
j = {x̄ ∈ C⊥

i ∩ C⊥
j | x∗i = 0}

and
C⊥

i ∩ < Cj + ej >⊥= {x̄ ∈ C⊥
i ∩ C⊥

j | x∗j = 0}.
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This implies that there exists a word x̄ ∈ C⊥
i ∩ C⊥

j such that

x∗i 6= x∗j ⇐⇒ < Ci + ei >⊥ ∩C⊥
j 6= C⊥

i ∩ < Cj + ej >⊥ .

The theorem now follows from Lemma 3.

An immediate consequence of Theorem 2 is Corollary 3 below. This corollary is
fundamental for our investigations of partial Hamming packings.

The following definition will be used in the corollary below. For any family of nor-
mal perfect codes C0, C1, . . . , Ck of length n, where k ≤ n, and any permutation π of
{0, 1, . . . , n} let the set Sij be defined for each pair i, j ∈ {0, 1, . . . , k}, i 6= j, as

Sij = {x̄ ∈< Ci >⊥ ∩ < Cj >⊥| x∗π(i) 6= x∗π(j)}. (20)

Corollary 3. Consider any family S of Hamming codes C0, C1, . . . , Ck of length n, k ≤ n,
and any permutation π of {0, 1, . . . , n}. The family S and the permutation π constitute
a partial Hamming packing, PHP (C0, C1, . . . , Ck; π; n), if and only if for each pair i, j ∈
{0, 1, . . . , k}, i 6= j, the associated set Sij 6= ∅.

5.2 Disjunct translates of perfect codes in general

As mentioned before, in his thesis [8], Hergert shows that if C is a perfect code, then
< C >⊥ is a simplex code. It would therefore be interesting to know if Theorem 2 is also
valid for non linear perfect codes.

In this subsection we will show that the (⇐) - implication of Theorem 2 is true in
general for all perfect codes. This will be proved by using Theorem 3 below. We will here
also show that the (⇒) - implication of Theorem 2 is not true in general for all perfect
codes. This will be proved by an example where we use the construction of Vasil’ev codes
[15].

In [7], the following theorem was showed by Heden. We state it for the extended
fundamental partition instead of the fundamental partition as in [7].

Theorem 3. Let L be a simplex code in Zn
2 , L % {0̄}, with an associated extended

fundamental partition consisting of the sets I∗0 , I
∗
1 , . . . , I

∗
t .

If C0, C1, . . . , Ct are any normal perfect codes in Zn
2 satisfying

L j < Cj >⊥, j = 0, 1, 2, . . . , t

then the family S of n + 1 perfect codes Cj + ēi, where i ∈ I∗j for j = 0, 1, . . . , t, constitutes
a partition of the set Zn

2 .

A special case of the theorem above is when L = {0̄, x̄} is a simplex code of dimension
one, C0 and C1 are normal perfect codes of length n and L is a subspace of < C0 >⊥ ∩
< C1 >⊥. The associated extended fundamental partition to L is

I∗0 = {0, 1, . . . , n} \ supp(x̄) and I∗1 = supp(x̄)
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In this case, by Theorem 3 above, the family S of perfect codes,

S = {C0 + ēi | i ∈ I∗0}∪̇{C1 + ēi | i ∈ I∗1},

constitutes a partition of Zn
2 . Hence the (⇐) - implication of Theorem 2 is true for every

perfect code. Thus the following theorem is valid.

Theorem 4. Assume that Ci and Cj are any two normal perfect codes of length n and
assume i, j ∈ {0, 1, . . . , n}, where i 6= j. If there exists a word x̄ ∈< Ci >⊥ ∩ < Cj >⊥

such that x∗i 6= x∗j , then (Ci + ēi) ∩ (Cj + ēj) = ∅.

However, the (⇒) - implication of Theorem 2 is not true in general for perfect codes,
as will be illustrated by some examples below. In these examples the lengths of the perfect
codes will be at least 15.

Let C be any non linear normal perfect code and I∗0 , I
∗
1 , . . . , I

∗
t be the extended funda-

mental partition associated with < C >⊥. We know from equation (8) on page 11, that
the dimension of < C >⊥ is smaller than or equal to m−1. Thus, by Lemma 1 in Section
2,

| I∗k | ≥ 2, k = 0, 1, 2, . . . , t.

Hence, there exist for example in I∗0 , different elements i, j such that (C+ēi)∩(C+ēj) = ∅.
However, there does not exist any word x̄ ∈< C >⊥ such that x∗i 6= x∗j . Therefore the
(⇒) - implication of Theorem 2 is not true if we take Ci = C and Cj = C.

The (⇒) - implication of Theorem 2 is obviously not true for two disjunct translates
of different normal perfect codes of full rank codes. However, this (⇒) - implication
is not even true in general when Ci and Cj are different normal perfect codes, where
dim(< Ci >⊥) = dim(< Cj >⊥) = m− 1, as will be shown by the example below. In this
example we will use the construction of Vasil’ev from 1962, see [15]. This construction
was the first example of a non linear perfect code.

Theorem 5. (Vasil’ev) For any perfect code C of length n and for any function λ : C →
Z2, the following set is a perfect code of length 2n + 1:

V (C, λ) = {(x̄ | x̄ + c̄ | σ(x̄) + λ(c̄)) | x̄ ∈ Zn
2 , c̄ ∈ C},

where σ(x̄) ≡ x1 + x2 + . . . + xn (mod 2).

Example. We will construct two non linear Vasil’ev codes of length 2n − 1, V (C0, λ0)
and V (Ci, λi), where i is a fixed integer in the set {1,2,. . . ,n}, such that

< V (C0, λ0) >⊥ ∩ < V (Ci, λi) >⊥= {0̄}

and
V (C0, λ0) ∩ (V (Ci, λi) + ēn+i) = ∅.
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In [3], Etzion and Vardy proved that for each m ≥ 3, there exist two Hamming codes
C, C ′ of length n = 2m − 1, such that

η(C, C ′) = 2n−r for r = m + 1, m + 2, . . . , 2m.

Let i be a fixed integer in i ∈ {1, 2, . . . , n} and let C0 and Ci denote any two Hamming
codes of the length n = 2m− 1, where m ∈ {3, 4, . . .}, such that η(C0, Ci) = 2n−2m. Then
by Proposition 3 in Section 2, C⊥

0 ∩ C⊥
i = {0̄}. This implies that

C⊥
0 ∩ C⊥

i = C⊥
0 ∩ < Ci + ēi >⊥,

since {0̄} j< Ci + ēi >⊥j C⊥
i . Thus, by Proposition 3 in Section 2 and Lemma 3,

η(C0, Ci + ēi) = η(C0, Ci) = 2n−dim(C⊥0 )−dim(C⊥i )+dim(C⊥0 ∩C⊥i ) = 2n−2m. (21)

Now we define the functions λ0 : C0 → Z2 and λi : Ci → Z2 as follows:

λ0(c̄) =

{
0 if c̄ = 0̄,
1 else,

and

λi(c̄) =

{
0 if c̄ = 0̄,
0 if c̄ + ēi ∈ C0,
1 else.

Assume that there exist a word (x̄ | x̄ + c̄ | σ(x̄) + λ0(c̄)) ∈ V (C0, λ0) and a word
(x̄′ | x̄′ + c̄′ | σ(x̄′) + λi(c̄

′)) ∈ V (Ci, λi) such that

(x̄ | x̄ + c̄ | σ(x̄) + λ0(c̄)) = (x̄′ | x̄′ + c̄′ | σ(x̄′) + λi(c̄
′)) + ēn+i.

Then x̄ = x̄′ and c̄ = c̄′ + ēi. Consequently, as evidently c̄ 6= 0̄ and c̄′ + ēi ∈ C0,

σ(x̄) + λ0(c̄) = σ(x̄) + 1 6= σ(x̄) + 0 = σ(x̄′) + λi(c̄
′).

This is a contradiction, and we may therefore conclude that

V (C0, λ0) ∩ (V (Ci, λi) + ēn+i) = ∅.
Trivially, for any Hamming code C of length n = 2m− 1, the rank of the Vasil’ev code

V (C, λ) equals 2n + 1−m if and only if λ is a non linear map, see e.g. [1].
By equation (21), we get that the cardinality of the set {c̄ ∈ Ci | λi(c̄) = 0} is 2n−2m+1.

This cardinality is not a divisor of 2n =| Zn
2 |. Hence, by elementary linear algebra, the

set {c̄ ∈ Ci | λi(c̄) = 0} is not a subspace of Zn
2 , and clearly the function λi is non linear.

Similarly we get that the function λ0 is also a non linear function.
By [1], if C is a Hamming code of length n = 2m − 1 and V (C, λ) is non linear, then

dim(< V (C, λ) >) = 2n+1−m. Hence from Proposition 2 in Section 2, we may conclude
that

dim(< V (C0, λ0) >⊥) = dim(< V (Ci, λi) >⊥) = m.

Therefore, by a straightforward verification, we get that the following m-dimensional
subspaces of Z2n+1

2 , {(c̄ | c̄ | 0) | c̄ ∈ C⊥
0 } and {(c̄′ | c̄′ | 0) | c̄′ ∈ C⊥

i }, are the dual codes
of the Vasil’ev codes V (C0, λ0) and V (Ci, λi) respectively. Hence

< V (C0, λ0) >⊥ ∩ < V (Ci, λi) >⊥= {0̄}.
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6 Lower and upper bounds for the packing numbers

Although the main focus of this thesis is on partial Hamming packings, some of the results
will also concern partial packings in general. The main results in this section are Corollary
4 and Corollary 6 that give a lower respectively an upper bound for the packing numbers
of maximal strictly partial Hamming packings. Further, in this section we also give a
trivial lower bound and a non trivial upper bound for the packing numbers of maximal
strictly partial packings.

6.1 Lower bounds

The lemma below will be used to get a lower bound for the packing numbers of maximal
strictly partial Hamming packings.

We remind the definition of Sij in equation (20) on page 22, where we defined Sij for
any PP (C0, C1, . . . , Ck; π; n) as

Sij = {x̄ ∈ C⊥
i ∩ C⊥

j | x∗π(i) 6= x∗π(j)}, i, j ∈ {0, 1, . . . , k} and i 6= j.

Lemma 4. Consider any PP (C0, C1, . . . , Ck; π; n), where n = 2m− 1. Assume that there
exists a simplex code D of length n and an element i of {0, 1, . . . , k}, such that

D ∩ Sij 6= ∅ for j = {0, 1, . . . , i− 1, i + 1, . . . , k}.
Let s = (n + 1)/ | D |. Then there exists a permutation π′ of {0, 1, . . . , n}, such that the
family of perfect codes

C0 + ēπ′(0), C1 + ēπ′(1), . . . , Ck + ēπ′(k), Ci + ēπ′(k+1), . . . , Ci + ēπ′(k+s−1),

constitutes a partial packing of Zn
2 , where π′(l) = π(l) if l ∈ {0, 1, . . . , k}.

Proof. Suppose D is a simplex code of length n and i is an element of the set {0, 1, . . . , k},
such that

D ∩ Sij 6= ∅ for j = 0, 1, . . . , i− 1, i + 1, . . . , k.

Then by Lemma 1 in Section 3, D has an associated extended fundamental partition
I∗0 , I

∗
1 , . . . , I

∗
t , where

| I∗0 | = | I∗1 | = . . . = | I∗t | = (n + 1)/ | D | .
Hence, for any j ∈ {0, 1, . . . , k}, there exists a unique set I∗r(i) in the extended fundamental
partition above, such that

π(j) ∈ I∗r(i) if and only if j = i.

We thus get, by Theorem 4 in Section 5, that for each µ ∈ I∗r(i) and each j ∈ {0, 1, . . . , k}\
{i}

(Ci + ēµ) ∩ (Cj + ēπ(j)) = ∅.
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Now, let π′ be a permutation of {0, 1, . . . , n} such that

π′(l) =

{
π(l) if l ∈ {0, 1, . . . , k},
∈ I∗r(i) \ {π(i)} if l ∈ {k + 1, k + 2, . . . , k + s− 1}.

Also, let
Ck+1 = Ck+2 = . . . = Ck+s−1 = Ci.

Then we have a partial packing, PP (C0, C1, . . . , Ck+s−1; π
′; n), (note that this partial

packing not necessarily is maximal). The lemma is proved.

Theorem 6. Consider any PHP (C0, C1, . . . , Ck; π; n), where n = 2m − 1 and 0 ≤ k ≤
m−1. Let t = 2m−k−1. Then for any i ∈ {0, 1, . . . , k} there exist elements q

(i)
1 , q

(i)
2 , . . . , q

(i)
t

of {0, 1, . . . , n}, such that the family of translates of Hamming codes

C0 + ēπ(0), C1 + ēπ(1), . . . , Ck + ēπ(k), Ci + ē
q
(i)
1

, . . . , Ci + ē
q
(i)
t

,

constitutes a partial Hamming packing of Zn
2 .

Proof. Since the family of all translates of a Hamming code constitutes a partial Ham-
ming packing of Zn

2 , the theorem is immediately true when k = 0.
Consider any PHP (C0, C1, . . . , Ck; π; n), where n = 2m − 1 and 1 ≤ k ≤ m − 1.

(We remind from equation (20) on page 22, that the set Sij is defined for each pair
i, j ∈ {0, 1, . . . , k}, i 6= j, as

Sij = {x̄ ∈ C⊥
i ∩ C⊥

j | x∗π(i) 6= x∗π(j)}.)

Then, by Corollary 3 in Section 5, each of the sets Sij, i, j ∈ {0, 1, . . . , k} and i 6= j, are
non empty. Now, for i = 0, 1, . . . , k, take any set

Di = < x̄0, x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄k >, x̄j ∈ Sij, j ∈ {0, 1, . . . , k} \ {i}.

The set Di is a subspace of C⊥
i and consequently a simplex code. Further, for i =

0, 1, . . . , k,
Di ∩ Sij 6= ∅, j = 0, 1, . . . , i− 1, i + 1, . . . , k.

Hence, the theorem now follows from Lemma 4.

The corollary below gives a lower bound for the packing numbers of maximal strictly
partial Hamming packings.

Corollary 4. The packing number p of any maximal strictly partial Hamming packing of
Zn

2 , n = 2m − 1, satisfies
p ≥ m + 1.
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Proof. For any PHP (C0, C1, . . . , Ck; π; n) with k < m, Theorem 6 implies that the par-
tial Hamming packing is not maximal, since 2m−k − 1 ≥ 1.

For the packing numbers of maximal strictly partial packings in general we have not
found any non trivial lower bound. Note that if C is any perfect code, then the sets of
words in two different translates of C are disjunct. Clearly, a trivial and immediate lower
bound for the packing numbers of maximal strictly partial packings of any Zn

2 , n = 2m−1,
is two.

6.2 Upper bounds

The following theorem is a consequence of the definition of perfect codes and we will use
this theorem to give an upper bound for the packing numbers of maximal strictly partial
Hamming packings and maximal strictly partial packings.

Theorem 7. For any partial packing, PP (C0, C1, . . . , Cn−1; π; n), the set

C = Zn
2 \

n−1⋃
i=0

(Ci + ēπ(i))

is a perfect code.

Proof. Take any word x̄ ∈ Zn
2 . By the definition of a perfect code, see page 5, there

exists for each i = 0, 1, . . . , n−1 a unique word x̄i ∈ Ci + ēπ(i) such that x̄i ∈ S1(x̄). Since
the sets C0 + ēπ(0), C1 + ēπ(1), . . . , Cn−1 + ēπ(n−1) are mutually disjoint, we get that the
words x̄0, x̄1, . . . , x̄n−1 are distinct. Hence

| C ∩ S1(x̄) | = | S1(x̄)− {x̄0, x̄1, . . . , x̄n−1} | = n + 1− n = 1.

This implies that there exists a unique word c̄ ∈ C such that c̄ ∈ S1(x̄). Consequently,
by the definition of a perfect code, the set C is a perfect code.

An immediate consequence of the theorem above is the following corollary that gives
a non trivial upper bound for the packing numbers of maximal strictly partial packings.

Corollary 5. The packing number p of any maximal strictly partial packing of Zn
2 , sat-

isfies
p ≤ n− 1.

Proof. We remind that the packing number for any maximal strictly partial packing of
length n is smaller than n + 1. By Theorem 7, any PHP (C0, C1, . . . , Ck; π; n) with the
packing number equal to n is not maximal.

However, we can prove that the same upper bound is true for the packing numbers
of maximal strictly partial Hamming packings. This is a consequence of the following
theorem.
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Theorem 8. For any partial Hamming packing, PHP (C0, C1, . . . , Cn−1; π; n), where n =
2m − 1, the set

C = Zn
2 \

n−1⋃
i=0

(Ci + ēπ(i))

is a translate of some Hamming code.

Proof. By Theorem 7, C is a perfect code. Now we will prove that C is a translate of
some Hamming code by using the technique with Fourier coefficients.

If A and B are two disjunct subsets of Zn
2 represented by the polynomials A(x̄) re-

spectively B(x̄) in the group algebra R[x1, x2, . . . , xn], see (11) on page 15, then the set
A∪̇B may be represented by

(A∪̇B)(x̄) = A(x̄) + B(x̄).

Hence from the fact that the perfect codes

C0 + ēπ(0), C1 + ēπ(1), . . . , Cn−1 + ēπ(n−1)

constitute a partial packing of Zn
2 , we may conclude that

Zn
2 (x̄) = C(x̄) + (C0 + ēπ(0))(x̄) + (C1 + ēπ(1))(x̄) + . . . + (Cn−1 + ēπ(n−1))(x̄). (22)

Further, from Proposition 12 in Section 4, for any t̄ ∈ Zn
2

At̄(Ci + ēπ(i)) =

{
2n−m · (−1)(t̄ · ēπ(i)) if t̄ ∈ C⊥,
0 if t̄ /∈ C⊥,

i = 0, 1, . . . , n− 1.

Hence for i = 0, 1, . . . , n− 1,

(Ci + ēπ(i))(x̄) = 2n−m
∑

t̄∈C⊥i

(−1)(t̄ · ēπ(i)) · yt̄(x̄). (23)

From equation (12) on page 16, we get that Zn
2 (x̄) = 2ny0̄(x̄). Further, by Proposition

7 and 9 in Section 4, | At̄(C) |≤ 2n−m.
Thus, by combining the results in the paragraph above, equation (22) and equation

(23), we may conclude that

At̄(C) 6= 0 ⇒ | At̄(C) |= 2n−m, t̄ ∈ Zn
2 .

The theorem now follows from Proposition 13 in Section 4.

The corollary below gives an upper bound for the packing numbers of maximal strictly
partial Hamming packings.

Corollary 6. The packing number p of any maximal strictly partial Hamming packing of
Zn

2 , satisfies
p ≤ n− 1.

Proof. We remind that the packing number for any maximal strictly partial Hamming
packing of length n is smaller than n + 1. By Theorem 8, any PHP (C0, C1, . . . , Ck; π; n)
with the packing number equal to n is not maximal.
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7 Maximal strictly partial Hamming packings

In this section we give some existence results for the packing numbers of maximal strictly
partial Hamming packings of Zn

2 . The section is divided into two subsections.
In the first subsection the results will consider maximal strictly partial Hamming

packings of Z7
2 and Z15

2 . For these cases, by use of a computer, we give a complete
solution for the spectrum of the packing numbers.

In the second subsection we give a more general result that consider maximal strictly
partial Hamming packings of Zn

2 , where n ≥ 15. However, our result does not give a
complete solution on the spectrum of the packing numbers.

Note that by Corollary 4 and Corollary 6 in Section 6, we get that the packing number
p for any maximal strictly partial Hamming packing of Zn

2 , n = 2m − 1, satisfies

m + 1 ≤ p ≤ n− 1. (24)

7.1 A computer search for maximal strictly partial Hamming
packings of Z7

2 and Z15
2

The maximal strictly partial Hamming packings we get by the computer search are given
in Appendix A. Further, we should remark that although the programming we use for
our computer search has been carefully tested it is still possible that errors may have
occurred. However, due to our tests, we are convinced that the results are true.

In the programming every Hamming code is represented by a parity-check matrix, see
construction (2) on page 6. One problem with the programming was how to enumerate
these matrices such that each Hamming code is represented just one time. (In fact,
every Hamming code of length 7 can be represented by 7 ·6 ·4 = 168 different parity-check
matrices and every Hamming code of length 15 can be represented by 15 ·14·12·8 = 20160
different parity-check matrices, see equation (9) on page 13.)

7.1.1 Maximal strictly partial Hamming packings of Z7
2

By Proposition 5 in Section 3, there are 30 Hamming codes of length 7. To enumerate
these Hamming codes we will divide the corresponding set of dual codes into two classes:
class A1 and class A2. Each dual code is represented by a parity-check matrix of the
corresponding Hamming code. This representation is described and discussed below.

Parity-check matrices. The matrices in the classes A1 and A2 are all parity-check
matrices of respective type which satisfy the construction (2) on page 6, i.e. the seven
columns of the matrix consist of all non zero words of Z3

2 . Below, − = 0 or 1.

Class A1 :




0 0 1 − − − −
0 1 0 − − − −
1 0 0 − − − −
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Class A2 :




0 0 0 1 − − −
0 1 1 0 − − −
1 0 1 0 − − −




We will now show that with the matrices above we may enumerate all Hamming codes
of length 7 in a unique way. Hence, we have to prove that the matrices in A1 and A2
generate different subspaces of Z7

2 and that the number of matrices in A1 and A2 is 30.
Since the words (0, 0, 1), (0, 1, 0) and (1, 0, 0) are independent, we get that there exists

only one word of each type (0, 0, 1,−,−,−,−), (0, 1, 0,−,−,−,−) and (1, 0, 0,−,−,−,−)
in any subspace generated by the rows of a matrix in the class A1. Consequently, if H
and H ′ are different matrices in A1, then at least one of the words (0, 0, 1,−,−,−,−),
(0, 1, 0,−,−,−,−) and (1, 0, 0,−,−,−,−) in the subspace generated by the rows of H
is not contained in the subspace that the rows of H ′ generates. We thus get that all the
subspaces generated by the matrices in A1 are different.

With the same arguments as in the paragraph above, we get that all the subspaces gen-
erated by the matrices in the class A2 are different, since the words (0, 0,−, 1), (0, 1,−, 0)
and (1, 0,−, 0) are independent.

There exists only one word of type (0, 0, 0,−,−,−,−) in the subspace generated by any
matrix in the class A1. As the words (0, 0, 1), (0, 1, 0) and (1, 0, 0) are independent, this
word must be the zero word, (0, 0, 0, 0, 0, 0, 0). Hence, the word of type (0, 0, 0, 1,−,−,−)
that exists in the subspace generated by any matrix in A2 is not a member of the subspace
generated by any matrix in A1. This implies that the generated subspaces of the matrix
in A1 and the generated subspaces of the matrix in A2 are different. Consequently, all
the generated subspaces of the matrices in A1 and A2 are different.

The number of matrices in A1 plus the number of matrices in A2 equals 4! + 3! = 30.

Algorithm. The algorithm computes, maximal strictly partial Hamming packings,
PHP (C0, C1, . . . , Ck; id; 7), with packing number 4, 5 or 6 if such exist. The permutation
id is the identity permutation, i.e. id(i) = i for i = 0, 1, . . . , 7.

If PHP (C0, C1, . . . , Ck; π; n) is maximal and strictly partial, then for any x̄ ∈ Zn
2 and

any permutation π′ of the coordinate set we get a new set of mutually disjoint Hamming
translates,

∪̇k
i=0π

′(Ci + x̄ + ēπ(i)).

This set of Hamming translates is also a maximal strictly partial Hamming packing. From
equation (24), we get that the only possible packing numbers for maximal strictly partial
Hamming packings of Z7

2 are 4, 5 and 6. Hence, by the computation of the algorithm we
get the set of possible packing numbers of maximal strictly partial Hamming packings of
Z7

2 .

H = family of all Hamming codes of Z7
2

A = family of maximal strictly partial Hamming packings of Z7
2
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id = identity permutation of {0, 1, . . . , 7}
W = set of words of length 7
disjunct = boolean

A = {}
for k = 3,4,5 do

for1 each (k + 1)-multiset {C0, C1, . . . , Ck} of H do
W = {}
disjunct = true
for2 i = 0, 1, . . . , k do

if W ∩ (Ci + ēi) = ∅ then
W = W ∪ (Ci + ēi)

else
disjunct = false
break for2

end
end
if disjunct = true then

for3 i = k + 1,k + 2, . . . ,7 do
for each C of H do

if W ∩ (C + ēi) 6= ∅ then
disjunct = false
break for3

end
end

end
if disjunct = true then

A = A ∪ PHP (C0, C1, . . . , Ck; id; 7)
break for1

end
end

end
end
output A

The results from the computation of the algorithm above are stated in the appendix.
By these results we get the following theorem.

Theorem 9. The only integer p for which there exists a maximal strictly partial Hamming
packing of Z7

2 with packing number p is the integer p = 5.
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7.1.2 Maximal strictly partial Hamming packings of Z15
2

By Proposition 5 in Section 3, there are 64864800 different Hamming codes of length
15. To enumerate these Hamming codes we will use, as in the case of length 7, a set of
parity-check matrices given by classes B1, B2, . . . , B9, discussed below.

Parity-check matrices. The matrices in the classes B1, B2, . . . , B9 are all parity-check
matrices of respective type which satisfy the construction (2) on page 6, i.e. the 15
columns of the matrix consist of all non zero words of Z4

2 . Below, − = 0 or 1.

Class B1 :




0 0 0 1 − − − − − − − − − − −
0 0 1 0 − − − − − − − − − − −
0 1 0 0 − − − − − − − − − − −
1 0 0 0 − − − − − − − − − − −




Class B2 :




0 0 0 0 1 − − − − − − − − − −
0 0 1 − 0 − − − − − − − − − −
0 1 0 − 0 − − − − − − − − − −
1 0 0 − 0 − − − − − − − − − −




Class B3 :




0 0 0 0 0 1 − − − − − − − − −
0 0 1 − − 0 − − − − − − − − −
0 1 0 − − 0 − − − − − − − − −
1 0 0 − − 0 − − − − − − − − −




Class B4 :




0 0 0 0 0 0 1 − − − − − − − −
0 0 1 − − − 0 − − − − − − − −
0 1 0 − − − 0 − − − − − − − −
1 0 0 − − − 0 − − − − − − − −




Class B5 :




0 0 0 0 0 0 0 1 − − − − − − −
0 0 1 − − − − 0 − − − − − − −
0 1 0 − − − − 0 − − − − − − −
1 0 0 − − − − 0 − − − − − − −




Class B6 :




0 0 0 0 1 − − − − − − − − − −
0 0 0 1 0 − − − − − − − − − −
0 1 1 0 0 − − − − − − − − − −
1 0 1 0 0 − − − − − − − − − −




Class B7 :




0 0 0 0 0 1 − − − − − − − − −
0 0 0 1 − 0 − − − − − − − − −
0 1 1 0 − 0 − − − − − − − − −
1 0 1 0 − 0 − − − − − − − − −




Class B8 :




0 0 0 0 0 0 1 − − − − − − − −
0 0 0 1 − − 0 − − − − − − − −
0 1 1 0 − − 0 − − − − − − − −
1 0 1 0 − − 0 − − − − − − − −
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Class B9 :




0 0 0 0 0 0 0 1 − − − − − − −
0 0 0 1 − − − 0 − − − − − − −
0 1 1 0 − − − 0 − − − − − − −
1 0 1 0 − − − 0 − − − − − − −




With similar methods as used for Hamming codes of length 7, we will show that
the parity-check matrices above enumerate all Hamming codes of length 15 in a unique
way. Therefore we have to prove that the matrices in B1, B2, . . . , B9 generate different
subspaces of Z15

2 and that the number of matrices in B1, B2, . . . , B9 is 64864800.
With the same arguments, as on page 30, where we proved that the subspaces gener-

ated by the matrices in A1 are different, we may prove that the subspaces generated by
the matrices in B1, B2, . . . , B9 respectively, are different.

On page 30, we proved that the subspaces generated by the matrices in A1 are different
from those subspaces generated by the matrices in A2. With the same arguments as in
that proof, we may prove that the subspaces generated of the matrices in B1, B2, . . . , B5
are different and that the subspaces generated by the matrices in B6, B7, . . . , B9 are
different.

Finally, we get that none of the words of type (0, 0, 1,−,−,−,−,−,−,−,−,−,−,−,−)
are members of any of the subspaces generated by the matrices of B6, B7, . . . , B9. This
implies that the subspaces generated by the matrices in B1, B2, . . . , B5 are different to
those subspaces generated by the matrices in B6, B7, . . . , B9. Consequently, all of the
subspaces generated by the matrices in B1, B2, . . . , B9 are different.

Further, the total number of matrices in B1, B2, . . . , B9 equals

11! + 4 · 10! + 4 · 3 · 9! + 4 · 3 · 2 · 8! + 4! · 7! + 10! + 3 · 9! + 3 · 2 · 8! + 3! · 7! = 64864800.

Algorithm. The algorithm computes a maximal partial Hamming packing of Z15
2 . Note

that from equation (24) on page 29, we get that the only possible packing numbers for
maximal strictly partial Hamming packings of Z15

2 are 5, 6, 7, . . . , 14.

H = family of all Hamming codes of Z15
2

B = family of Hamming codes
W = set of words
π = permutation of {0, 1, . . . , 15}
p = packing number

B = {}
W = {}
p = 0
for i = 0,1,. . . ,15 do

for1 each C of H enumerated in random order do
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if W ∩ (C + ēi) = ∅ then
W = W ∪ (C + ēi)
Cp = C
B = B ∪ Cp

π(p) = i
p = p + 1
break for1

end
end

end
output B and π

Some results from the computations of the algorithm above are given in the appendix.
By these results and equation (24), we get the following theorem.

Theorem 10. The only integers p for which there exist a maximal strictly partial Ham-
ming packing of Z15

2 with packing number p are p = 5, 6, 7, . . . , 14.

7.2 A general construction of some maximal strictly partial Ham-
ming packings

Theorem 11. If there exists a maximal partial Hamming packing of Zn′
2 , n′ = 2m − 1,

with packing number n′ + 1− r, then there exists a maximal partial Hamming packing of
Zn

2 , n = 2m+1 − 1, with packing number n + 1− r.

Proof. Assume that we have a maximal PHP (C ′
0, C

′
1, . . . , C

′
k; π

′; n′), n′ = 2m − 1, with
packing number n′ + 1− r, i.e. k = n′− r. Also, let H ′

0, H
′
1, . . . , H

′
k denote corresponding

parity-check matrices of the Hamming codes C ′
0, C

′
1, . . . , C

′
k.

Now, by using the maximal partial Hamming packing above, we construct a maximal
partial Hamming packing of Zn

2 , n = 2m+1 − 1, with packing number n + 1− r.
Take any Hamming code C ′ of length n′ and denote a corresponding parity-check ma-

trix by H ′. Denote by C, C0, C1, . . . , Ck the Hamming codes of length n which corresponds
to the following parity-check matrices,

H =

[
0 . . . 0 1 1 . . . 1

H ′ 0 H ′

]

and

Hi =

[
0 . . . 0 1 1 . . . 1

H ′
i 0 H ′

i

]
, i = 0, 1, . . . , k.

Note that n′ + 1 = (n + 1)/2. Clearly, the (n + 1)/2 translates of the Hamming code
C,

(C + ēn′+1), (C + ēn′+2), . . . , (C + ēn),
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are mutually disjoint.
We remind that π′ is the permutation given by the maximal PHP (C ′

0, C
′
1 . . . , C ′

k; π
′, n′).

By Corollary 3 in Section 5, for each pair i, j ∈ {0, 1, . . . , k}, i 6= j, there exists a

word ȳ(ij) ∈ C ′⊥
i ∩ C ′⊥

j , such that y
(ij)∗
π′(i) 6= y

(ij)∗
π′(j). This implies that for each pair i, j ∈

{0, 1, . . . , k}, i 6= j, there exists a word x̄(ij) = ȳ(ij)0ȳ(ij) ∈ C⊥
i ∩C⊥

j such that x
(ij)∗
π′(i) 6= x

(ij)∗
π′(j).

Hence, by using Corollary 3 again, we get that the translates of Hamming codes,

(C0 + ēπ′(0)), (C1 + ēπ′(1)), . . . , (Ck + ēπ′(k)),

are mutually disjoint.
Further, for each pair i, j, where i ∈ {0, 1, . . . , k} and j ∈ {n′ + 1, n′ + 2, . . . , n}, we

get the following facts:

(i) x̄ = (0 . . . 01 . . . 1) ∈ C⊥
i ∩ C⊥,

(ii) x∗π(i) = 0 and x∗j = 1.

This implies, by Theorem 2 in Section 5, that (Ci + ēπ(i)) ∩ (C + ēj) = ∅ .
Let S denote the family of the following translates of Hamming codes:

C0 + ēπ′(0), C1 + ēπ′(1), . . . , Ck + ēπ′(k), C + ēn′+1, C + ēn′+2, . . . , C + ēn.

The codes in this family are mutually disjoint. Consequently, the family S constitutes a
partial Hamming packing with packing number n + 1− r.

Now, assume there exists a translate D + ēj of some Hamming code D of length n,
such that D + ēj and the codes in the family S are disjunct. Then,

j ∈ {0, 1, . . . , n′} \ {π′(0), π′(1), . . . , π′(k)}.
By Lemma 2 in Section 3, we get that the word 0̄1̄ ∈ D⊥. Also, by Corollary 3 in

Section 5, we get that there exist some words d̄(0), d̄(1), . . . , d̄(k) ∈ D⊥, such that

d̄(i) ∈ C⊥
i and d

(i)∗
π′(i) 6= d

(i)∗
j , i = 0, 1, . . . , k. (25)

Let A be the set of words of length n′, that we get by removing the last n′ + 1
coordinates in each word of D⊥, i.e.

A = {x̄ = (x1, x2, . . . , xn′) ∈ Zn′
2 | (x1, x2, . . . , xn′ , xn′+1, . . . , xn) ∈ D⊥}.

Since 0̄1̄ ∈ D⊥, we may conclude from Proposition 4 in Section 3, that A is a simplex
code of dimension m. Consequently A is the dual code of a Hamming code of length n′.
Let us denote this Hamming code by D′. From (25), we get that there are some words
ȳ(0), ȳ(1), . . . , ȳ(k) ∈ D′⊥ = A, such that for i = 0, 1, . . . , k,

ȳ(i) ∈ C ′⊥
i and y

(i)∗
π′(i) 6= y

(i)∗
j .

Hence, by Theorem 2 in Section 5,

(C ′
i + ēπ′(i)) ∩ (D′ + ēj) = ∅, i = 1, 2, . . . , k.

This is a contradiction, since PP (C ′
0, C

′
1, . . . , C

′
k; π

′; n′) is maximal. The theorem is now
proved.
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Corollary 7. For any n = 2m − 1, m ≥ 4, there exist maximal strictly partial Hamming
packings of Zn

2 with a packing number p equal to n− 10, n− 9,. . . , n− 1.

Proof. By Theorem 10, the corollary is true for m = 4. Thus from Theorem 11, by
induction the theorem is true.

Note that the corollary above and Corollary 6 in Section 6, gives that the upper bound,
p ≤ n − 1, for the packing numbers p of maximal strictly partial Hamming packings of
Zn

2 , n ≥ 15, is tight.

8 Conclusions

In this section the results are summarized and problems for further study are suggested.

8.1 Results

The main results of this thesis are the following:

• We have given a condition when translates of Hamming codes are mutually disjoint
or not mutually disjoint, which are related to the corresponding dual codes.

• Non trivial lower and upper bounds for the packing numbers of maximal strictly
partial Hamming packings have been given.

• A non trivial upper bound for the packing numbers of maximal strictly partial
packings with perfect codes has been given.

• By a computer search we have found all possible packing numbers for maximal
strictly partial Hamming packings of Z7

2 and Z15
2 .

• Finally we have proved a general result for the existence of some packing numbers
of maximal strictly partial Hamming packings of Zn

2 , n ≥ 15. We have thereby
verified that the upper bound is tight for Zn

2 , n ≥ 15.

8.2 Further study

In this subsection we list some open problems which have connections with the investiga-
tions of this thesis:

• Which are the packing numbers for maximal strictly partial Hamming packings of
Zn

2 , n ≥ 15? From the results in this paper we know that the packing numbers for
maximal strictly partial Hamming packings of Z15

2 , are the integers from the lower
bound to the upper bound that we have proved. Is this result also true when n is
greater than 15?
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• Is it possible to find a general construction for some maximal strictly partial Ham-
ming packings, without using the computer? The general result of this study is
proved by using the result of the computer search on maximal strictly partial Ham-
ming packings of Z15

2 .

• In this thesis we give a trivial lower bound and a non trivial upper bound for the
packing numbers of maximal strictly partial packings with perfect codes in general.
One problem to consider for further investigation, would be to see if these bounds
could be improved, especially the lower bound.

• It would also be interesting to know which packing numbers exist for maximal
strictly partial packings with perfect codes in general and for different classes of
perfect codes, e.g. for Vasil’ev codes constructed from Hamming codes.

• Finally, we believe that some of the results in this study may be used in the inves-
tigation of other areas concerning perfect codes. We especially believe that Lemma
3 and Theorem 2 in section 5 may be used in studies of similar areas such as inter-
section numbers of perfect codes or partitions of Zn

2 into perfect codes.
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A Appendix

This appendix contains two tables with maximal strictly partial Hamming packings of
Z7

2 with packing number 5 and of Z15
2 with packing numbers 5, 6, 7, . . . , 14. These maxi-

mal strictly partial Hamming packings were given by the computer searches described in
Section 7.

In the tables below, a maximal strictly PHP (C0, C1, . . . , Ck; π; n) is represented by its
packing number, Hamming codes C0, C1, . . . , Ck and corresponding words ēπ(0), ēπ(1), . . . ,
ēπ(k) that describe the translations. A Hamming code is represented by a corresponding
parity-check matrix. A parity-check matrix will here be denoted by the integers that
correspond to the binary numbers that each columns in the matrix represent. For example
the matrix 


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




will be denoted as
(1 2 3 4 5 6 7) .

Table 1. Maximal strictly partial Hamming packings of Z7
2 .

Packing number Hamming codes Translate words

(1 2 4 7 3 5 6) ē0

(1 2 4 3 5 7 6) ē1

5 (1 2 4 6 7 5 3) ē2

(1 2 4 5 3 6 7) ē3

(1 2 4 7 5 6 3) ē4

Table 2. Maximal strictly partial Hamming packings of Z15
2 .

Packing
number

Hamming codes
Translate

words

5

(1 2 4 8 15 7 9 14 10 13 6 12 5 11 3)
(1 2 4 7 8 3 13 14 9 5 6 11 10 12 15)
(1 2 4 8 10 13 5 7 15 11 3 6 9 14 12)
(1 2 4 8 7 10 11 9 15 5 14 12 13 3 6)
(1 2 4 5 8 13 10 7 14 9 15 11 6 12 3)

ē0

ē1

ē2

ē3

ē4
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6

(1 2 4 8 3 14 15 10 13 11 12 5 7 9 6)
(1 2 4 8 13 12 7 14 3 5 6 9 11 15 10)
(1 2 4 8 5 3 9 6 10 11 7 14 12 15 13)
(1 2 4 8 9 3 5 7 10 14 6 15 13 11 12)
(1 2 4 8 3 14 10 13 15 11 9 5 7 12 6)
(1 2 4 7 8 3 5 9 11 10 6 14 12 15 13)

ē0

ē1

ē2

ē3

ē4

ē5

7

(1 2 4 8 3 15 9 7 13 6 12 11 10 5 14)
(1 2 4 8 3 15 5 13 14 9 12 7 6 10 11)
(1 2 4 8 5 14 9 6 3 15 10 11 12 13 7)
(1 2 4 8 11 5 12 13 15 3 6 14 7 10 9)
(1 2 4 6 3 8 9 14 13 15 7 11 10 5 12)
(1 2 4 8 15 5 9 13 3 14 10 11 6 7 12)
(1 2 4 8 3 15 5 13 14 9 12 7 6 10 11)

ē0

ē1

ē2

ē3

ē4

ē5

ē15

8

(1 2 4 8 14 6 10 13 15 11 5 7 12 3 9)
(1 2 3 4 6 8 15 5 7 9 11 10 13 14 12)
(1 2 4 7 8 3 15 14 6 13 5 11 10 9 12)
(1 2 4 8 11 3 15 5 10 9 13 7 6 14 12)
(1 2 4 3 8 11 12 6 9 10 5 7 13 14 15)
(1 2 3 4 8 5 12 11 7 10 6 9 14 13 15)
(1 2 4 8 13 12 9 7 5 15 6 14 11 3 10)
(1 2 3 4 6 8 15 5 7 9 11 10 13 14 12)

ē0

ē1

ē2

ē3

ē4

ē5

ē6

ē15

9

(1 2 4 8 9 5 14 11 13 3 10 12 6 7 15)
(1 2 4 6 8 12 13 10 3 5 9 11 15 7 14)
(1 2 4 8 7 10 5 11 3 12 14 13 6 9 15)
(1 2 4 7 8 14 13 3 11 15 9 10 6 5 12)
(1 2 4 7 8 5 12 9 10 14 3 11 6 15 13)
(1 2 3 4 8 13 10 7 11 12 9 14 5 6 15)
(1 2 4 7 8 5 12 9 10 14 3 11 6 15 13)
(1 2 4 8 9 5 14 11 13 3 10 12 6 7 15)
(1 2 4 8 7 10 5 11 3 12 14 13 6 9 15)

ē0

ē1

ē2

ē3

ē4

ē5

ē7

ē11

ē12

10

(1 2 4 8 11 6 13 10 12 9 7 5 14 3 15)
(1 2 4 8 9 15 13 12 10 11 5 7 3 14 6)
(1 2 4 8 6 15 5 3 12 13 10 9 11 7 14)
(1 2 4 7 8 3 5 14 15 13 11 9 10 6 12)
(1 2 4 8 9 3 10 15 14 12 5 7 11 6 13)
(1 2 4 7 8 5 14 6 12 13 11 9 10 3 15)
(1 2 4 7 8 5 14 6 12 13 11 9 10 3 15)
(1 2 4 8 6 15 5 3 12 13 10 9 11 7 14)
(1 2 4 8 3 14 7 6 10 11 15 13 12 5 9)
(1 2 4 8 9 15 13 12 10 11 5 7 3 14 6)

ē0

ē1

ē2

ē3

ē4

ē6

ē7

ē8

ē12

ē14

40



11

(1 2 4 8 11 3 10 9 15 6 13 14 5 7 12)
(1 2 4 6 8 12 9 3 5 11 7 13 10 14 15)
(1 2 4 8 3 15 10 13 7 6 5 14 9 11 12)
(1 2 4 5 8 13 9 10 7 3 14 6 11 12 15)
(1 2 4 8 11 3 10 9 15 6 13 14 5 7 12)
(1 2 4 5 8 12 7 14 9 6 11 3 10 13 15)
(1 2 4 8 6 10 15 13 7 3 5 11 12 14 9)
(1 2 4 6 8 12 9 3 5 11 7 13 10 14 15)
(1 2 4 5 8 12 7 14 9 6 11 3 10 13 15)
(1 2 4 8 11 15 10 6 7 13 14 5 9 3 12)
(1 2 4 8 11 3 10 9 7 14 13 6 5 15 12)

ē0

ē1

ē2

ē3

ē4

ē5

ē6

ē8

ē10

ē11

ē15

12

(1 2 4 8 14 15 10 9 3 7 5 12 6 11 13)
(1 2 4 3 5 7 8 15 13 9 6 10 11 14 12)
(1 2 4 6 8 5 3 11 12 7 9 14 10 13 15)
(1 2 4 8 15 7 13 9 11 14 5 12 6 3 10)
(1 2 4 8 11 9 3 10 12 7 6 15 5 14 13)
(1 2 4 5 3 8 10 14 9 7 15 11 12 6 13)
(1 2 4 8 14 15 13 9 10 7 5 12 6 11 3)
(1 2 4 8 15 7 13 9 11 14 5 12 6 3 10)
(1 2 4 3 5 7 8 15 13 9 6 10 11 14 12)
(1 2 4 8 9 11 13 10 14 7 6 15 5 12 3)
(1 2 4 5 8 3 6 14 10 7 15 11 12 13 9)
(1 2 4 8 12 14 13 10 3 7 6 15 5 9 11)

ē0

ē1

ē2

ē3

ē4

ē5

ē6

ē7

ē8

ē13

ē14

ē15

13

(1 2 4 8 3 15 7 14 6 10 9 12 11 13 5)
(1 2 4 8 14 15 10 7 12 9 3 5 6 13 11)
(1 2 4 8 15 14 6 7 10 3 5 9 11 12 13)
(1 2 4 8 12 15 5 6 3 10 14 9 11 13 7)
(1 2 4 5 8 9 7 15 12 10 14 6 13 11 3)
(1 2 4 8 3 14 10 7 6 15 5 9 11 12 13)
(1 2 4 8 14 15 7 10 9 12 6 5 11 13 3)
(1 2 4 8 14 15 10 7 12 9 3 5 6 13 11)
(1 2 4 5 8 9 7 15 12 10 14 6 13 11 3)
(1 2 4 8 14 15 7 5 6 12 9 10 11 13 3)
(1 2 4 8 14 15 7 12 10 9 5 3 11 13 6)
(1 2 4 8 3 15 7 14 6 10 9 12 11 13 5)
(1 2 4 8 14 15 7 3 10 6 5 12 11 13 9)

ē0

ē1

ē2

ē3

ē4

ē5

ē7

ē9

ē11

ē12

ē13

ē14

ē15
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14

(1 2 4 3 7 8 11 14 6 5 12 15 13 9 10)
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