GENERAL INCLUSION RELATIONS FOR ABSOLUTE SUMMABILITY

EKREM SAVAŞ

In a recent paper the author [?] obtained necessary conditions for a series summable $|A_k|$, $1 < k \leq s < \infty$, to imply that the series is summable $|B_s|$ where A and B are lower triangular matrices. In this paper we obtain sufficient conditions for a series summable $|A_k|$, $1 < k \leq s < \infty$, to imply that the series is summable $|B_s|$. Using these results we obtain a number of corollaries.

Let T be a lower triangular matrix, $\{s_n\}$ a sequence. Then

$$T_n := \sum_{\nu=0}^n t_{n\nu} s_{\nu}$$

A series $\sum a_n$ is said to be summable $|T|_k, k \ge 1$ if

(1)
$$\sum_{n=1}^{\infty} n^{k-1} |T_n - T_{n-1}|^k < \infty.$$

We may associate with T two lower triangular matrices \overline{T} and \hat{T} as follows:

$$\bar{t}_{n\nu} = \sum_{r=\nu}^{n} t_{nr}, \qquad n, \nu = 0, 1, 2, \dots,$$

and

$$\hat{t}_{n\nu} = \bar{t}_{n\nu} - \bar{t}_{n-1,\nu}, \qquad n = 1, 2, 3, \dots$$

With $s_n := \sum_{i=0}^n a_i$.

1991 Mathematics Subject Classification. Primary:40G99; Secondary: 40G05, 40D15.

This researach was completed while the second author was a Fulbright scholar at Indiana University, Bloomington, IN, U.S.A., during the Spring semester of 2004.

Key words and phrases. absolute summability, weighted mean matrix, Cesáro matrix.

$$y_n := \sum_{i=0}^n t_{ni} s_i = \sum_{i=0}^n t_{ni} \sum_{\nu=0}^i a_\nu$$
$$= \sum_{\nu=0}^n a_\nu \sum_{i=\nu}^n t_{ni} = \sum_{\nu=0}^n \bar{t}_{n\nu} a_\nu$$

and

(2)
$$Y_n := y_n - y_{n-1} = \sum_{\nu=0}^n (\bar{t}_{n\nu} - \bar{t}_{n-1,\nu} a_\nu) = \sum_{\nu=0}^n \hat{t}_{n\nu} a_\nu.$$

We shall call T a triangle if T is lower triangular and $t_{nn} \neq 0$ for each n. The notation $\Delta_{\nu} \hat{a}_{n\nu}$ means $\hat{a}_{n\nu} - \hat{a}_{n,\nu+1}$.

Theorem 1. Let
$$1 < k \leq s < \infty$$
. Let A and B be triangles satisfying

- (i) $\frac{|b_{nn}|}{|a_{nn}|} = O\left(\nu^{1/s-1/k}\right),$
- (ii) $(n|X_n|)^{s-k} = O(1),$
- (iii) $|a_{nn} a_{n+1,n}| = O(|a_{nn}a_{n+1,n+1}|),$
- (iv) $\sum_{\nu=0}^{n-1} |\Delta_{\nu}(\hat{b}_{n\nu})| = O(|b_{nn}|),$ (v) $\sum_{n=\nu+1}^{\infty} (n|b_{nn}|)^{s-1} |\Delta_{\nu}(\hat{b}_{n\nu})| = O(\nu^{s-1}|b_{\nu\nu}|^{s}),$
- (vi) $\sum_{\nu=0}^{n=\nu+1} |b_{\nu\nu}| |\hat{b}_{n,\nu+1}| = O(|b_{nn}|),$
- (vii) $\sum_{n=\nu+1}^{\infty} (n|b_{nn}|)^{s-1} |\hat{b}_{n,\nu+1}| = O((\nu|b_{\nu\nu}|)^{s-1}),$

ana
(viii)
$$\sum_{n=1}^{\infty} n^{s-1} \Big| \sum_{\nu=2}^{n} \hat{b}_{n\nu} \sum_{i=0}^{\nu-2} \hat{a}'_{\nu i} X_i \Big|^s = O(1).$$

Then if $\sum a_n$ is summable $|A|_k$, it is summable $|B|_s$.

References

[1] Ekrem Savaş, Necessary conditions for inclusion relations for absolute summability, to appear in Appl. Math. Comp.

- [2] B. E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl. 238(1999), 82-90.
- [3] B. E. Rhoades and Ekrem Savaş, On inclusion relations for absolute summability, *IJMMS*, 32(3)(2002), 129-138.

DEPARTMENT OF MATHEMATICS, YÜZÜNCÜ YIL UNIVERSITY, VAN, TURKEY

E-mail address: ekremsavas@yahoo.com