GENERAL INCLUSION RELATIONS FOR ABSOLUTE SUMMABILITY

EKREM SAVAS

In a recent paper the author [?] obtained necessary conditions for a series summable $\left|A_{k}\right|, 1<k \leq s<\infty$, to imply that the series is summable $\left|B_{s}\right|$ where A and B are lower triangular matrices. In this paper we obtain sufficient conditions for a series summable $\left|A_{k}\right|$, $1<k \leq s<\infty$, to imply that the series is summable $\left|B_{s}\right|$. Using these results we obtain a number of corollaries.

Let T be a lower triangular matrix, $\left\{s_{n}\right\}$ a sequence. Then

$$
T_{n}:=\sum_{\nu=0}^{n} t_{n \nu} s_{\nu} .
$$

A series $\sum a_{n}$ is said to be summable $|T|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

We may associate with T two lower triangular matrices \bar{T} and \hat{T} as follows:

$$
\bar{t}_{n \nu}=\sum_{r=\nu}^{n} t_{n r}, \quad n, \nu=0,1,2, \ldots,
$$

and

$$
\hat{t}_{n \nu}=\bar{t}_{n \nu}-\bar{t}_{n-1, \nu}, \quad n=1,2,3, \ldots
$$

With $s_{n}:=\sum_{i=0}^{n} a_{i}$.

[^0]\[

$$
\begin{aligned}
y_{n} & :=\sum_{i=0}^{n} t_{n i} s_{i}=\sum_{i=0}^{n} t_{n i} \sum_{\nu=0}^{i} a_{\nu} \\
& =\sum_{\nu=0}^{n} a_{\nu} \sum_{i=\nu}^{n} t_{n i}=\sum_{\nu=0}^{n} \bar{t}_{n \nu} a_{\nu}
\end{aligned}
$$
\]

and

$$
\begin{equation*}
Y_{n}:=y_{n}-y_{n-1}=\sum_{\nu=0}^{n}\left(\bar{t}_{n \nu}-\bar{t}_{n-1, \nu} a_{\nu}\right)=\sum_{\nu=0}^{n} \hat{t}_{n \nu} a_{\nu} \tag{2}
\end{equation*}
$$

We shall call T a triangle if T is lower triangular and $t_{n n} \neq 0$ for each n. The notation $\Delta_{\nu} \hat{a}_{n \nu}$ means $\hat{a}_{n \nu}-\hat{a}_{n, \nu+1}$.
Theorem 1. Let $1<k \leq s<\infty$. Let A and B be triangles satisfying
(i) $\frac{\left|b_{n n}\right|}{\left|a_{n n}\right|}=O\left(\nu^{1 / s-1 / k}\right)$,
(ii) $\left(n\left|X_{n}\right|\right)^{s-k}=O(1)$,
(iii) $\left|a_{n n}-a_{n+1, n}\right|=O\left(\left|a_{n n} a_{n+1, n+1}\right|\right)$,
(iv) $\sum_{\nu=0}^{n-1}\left|\Delta_{\nu}\left(\hat{b}_{n \nu}\right)\right|=O\left(\left|b_{n n}\right|\right)$,
(v) $\sum_{n=\nu+1}^{\infty}\left(n\left|b_{n n}\right|\right)^{s-1}\left|\Delta_{\nu}\left(\hat{b}_{n \nu}\right)\right|=O\left(\nu^{s-1}\left|b_{\nu \nu}\right|^{s}\right)$,
(vi) $\sum_{\nu=0}^{n-1}\left|b_{\nu \nu}\right|\left|\hat{b}_{n, \nu+1}\right|=O\left(\left|b_{n n}\right|\right)$,
(vii) $\sum_{n=\nu+1}^{\infty}\left(n\left|b_{n n}\right|\right)^{s-1}\left|\hat{b}_{n, \nu+1}\right|=O\left(\left(\nu\left|b_{\nu \nu}\right|\right)^{s-1}\right)$,
and
(viii) $\sum_{n=1}^{\infty} n^{s-1}\left|\sum_{\nu=2}^{n} \hat{b}_{n \nu} \sum_{i=0}^{\nu-2} \hat{a}_{\nu i}^{\prime} X_{i}\right|^{s}=O(1)$.

Then if $\sum a_{n}$ is summable $|A|_{k}$, it is summable $|B|_{s}$.

References

[1] Ekrem Savaş, Necessary conditions for inclusion relations for absolute summability, to appear in Appl. Math. Comp.
[2] B. E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl.238(1999), 82-90.
[3] B. E. Rhoades and Ekrem Savaş, On inclusion relations for absolute summability,IJMMS, 32(3)(2002), 129-138.

DEPARTMENT OF MATHEMATICS, YÜZÜNCÜ YIL UNIVERSITY, VAN, TURKEY

E-mail address: ekremsavas@yahoo.com

[^0]: 1991 Mathematics Subject Classification. Primary:40G99; Secondary: 40G05, 40D15.

 Key words and phrases. absolute summability, weighted mean matrix, Cesáro matrix.

 This researach was completed while the second author was a Fulbright scholar at Indiana University, Bloomington, IN, U.S.A., during the Spring semester of 2004.

