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ABSTRACT. In the classical summability setting rates of summation have
been introduced in several ways (see, e.g., [10], [21], [22]). The concept of statis-
tical rates of convergence, for nonvanishing two null sequences, is studied in [13].
Unfortunately no single de..nition seems to have become the “standard” for the
comparison of rates of summability transforms. The situation becomes even more
uncharted when one considers rates of A jstatistical convergence. For this reason
various ways of de..ning rates of convergence in the A jstatistical sense are intro-
duced in [6].

In the present paper, using the concepts of [6], we study rates of A jstatistical
convergence of sequences of positive linear operators mapping the weighted space
Cy, into the weighted space By, where %, and %, are weight functions satisfying
the condition

ixi ¥ 1 Yy (X)
and
By, =ff : T :R I R, jF(X)] - Mg ¥%,(x) for all x 2 Rg
and

Cy, = ff 2 By, : T is continuous on Rg

(here Mg is a constant depending on T).

Note that the classical Korovkin type approximation theory may be found in [1],
[4], [20] while its further extensions studied via A j statistical convergence may be
viewed in [6], [7], [15].

Recall that the sequence (x,) is said to be A j statistically convergent to L if, for
every " > 0;

njxnilj. "

where A = (ajn) is a non-negative regular matrix (see, e.g., [2], [3], [9], [23]. The
case in which A = C;; the Cesdro matrix, Aj statistical convergence reduces to
statistical convergence [8], [11], [12].
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