We consider the Fourier multipliers acting from H^p to H^q , 0 in most general case of tube domains over open cones:

$$T_{\Gamma} = \{ z \in \mathbb{C}^n, z = x + iy : x \in \mathbb{R}^n, y \in \Gamma \}.$$

Here Γ is an open cone in \mathbb{R}^n .

If the set $\Gamma^* = \{x \in \mathbb{R}^n : (x,t) \ge 0 \forall t \in \Gamma\}$ has nonempty interior then it is a closed cone that is called a *conjugate cone* to Γ . In this case the cone Γ is said to be an *acute open cone*.

The Fourier transform of a function $f \in H^p(T_{\Gamma}), p \in (0, 1]$, is defined by

$$\widehat{f}\left(\xi\right) = e^{2\pi\left(\xi,\delta\right)} \widehat{f\left(\cdot+i\delta\right)}\left(\xi\right), \quad \xi \in \mathbb{R}^{n},$$

where $\delta \in \Gamma$ is chosen arbitrarily (see [2]).

The following inversion formula holds true

$$f(z) = \int_{\Gamma^*} \widehat{f}(t) e^{2\pi i (z,t)} dt, \quad z \in T_{\Gamma}.$$
(1)

Let Γ be an acute open cone in \mathbb{R}^n , $n \in \mathbb{N}$. A measurable function $\varphi : \Gamma^* \to \mathbb{C}$ is called a *multiplier* from $H^p(T_{\Gamma})$ to $H^q(T_{\Gamma})$, $0 (designation: <math>\varphi \in M_{p,q}(T_{\Gamma})$) if for any function $f \in H^p(T_{\Gamma})$ the function $\varphi \cdot \hat{f}$ coincides almost everywhere on Γ^* with Fourier transform of some function $F_{\varphi}[f] \in H^q(T_{\Gamma})$ and

$$\|\varphi\|_{M_{p,q}(T_{\Gamma})} := \sup_{\|f\|_{H^p} \neq 0} \frac{\|F_{\varphi}[f]\|_{H^q}}{\|f\|_{H^p}} < \infty.$$

Let us note that, according to (1), the function $F_{\varphi}[f]$ in this definition is defined uniquely:

$$F_{\varphi}\left[f\right]\left(z\right) = \int_{\Gamma^*} \varphi\left(t\right) \widehat{f}\left(t\right) e^{2\pi i (z,t)} dt, \quad z \in T_{\Gamma}.$$

Some properties of multipliers are established. Several useful conditions for multipliers are obtained. Let us cite the following theorem.

Theorem 1 Let Γ be an acute open cone in \mathbb{R}^n ; $\varphi \in C(\mathbb{R}^n)$ and there exists $\sigma > 0$ such that $\operatorname{supp} \varphi \subset [-\sigma, \sigma]^n$. If furthermore $\widehat{\varphi} \in L^q(\mathbb{R}^n)$ for some $q \in (0, 1]$, then $\varphi \in M_{p,q}(T_{\Gamma})$ for every $p \in (0, q]$ and

$$\left\|\varphi\right\|_{M_{p,q}(T_{\Gamma})} \leq \frac{\gamma\left(n, p, q\right)}{\left(V_{n}\left(\Gamma\right)\right)^{1/p-1}} \sigma^{n\left(1/p-1\right)} \left\|\widehat{\varphi}\right\|_{q}$$

Here γ denotes some positive constant depending only on parameters in parentheses, and $V_n(\Gamma)$ is the maximal volume of a simplex that can be constructed on n unit vectors, contained in $\overline{\Gamma}$.

In particular, any compactly supported function of the class $C^{\infty}(\mathbb{R}^n)$ belongs to $M_{p,q}(T_{\Gamma})$ for any p and q such that 0 .

It is established that the operator of Bochner-Riesz type means

$$R_{h}^{r,\alpha}(f;z) = \int_{|x| \le 1/h} \widehat{f}(x) \left(1 - h^{2r} |x|^{2r}\right)^{\alpha} e^{2\pi i(z,x)} dx, \quad z \in T_{\Gamma}, \, h > 0,$$

is bounded linear operator acting from $H^p(T_{\Gamma})$ to $H^q(T_{\Gamma})$, $0 , if and only if <math>\alpha > \frac{n}{q} - \frac{n+1}{2}$.

Let K be a symmetric body in \mathbb{R}^n , K^* denotes its polar, and $\mathcal{E}(K)$ denotes the class of all entire functions of exponential type K (see [1, Ch. III, § 4]).

An analog of the classical Bernstein inequality for the class $\mathcal{E}(K^*) \cap H^p(T_{\Gamma}), p \in (0, 1]$, is obtained.

It is easily to see that Hardy spaces $H^p(T_{\Gamma})$ and $H^q(T_{\Gamma})$ are not enclosed one into another for different p and q. However, if additionally we require the functions belong to $\mathcal{E}(K^*)$, then we have the following different metrics inequality.

Theorem 2 Let Γ be an acute open cone in \mathbb{R}^n , $n \in \mathbb{N}$ and K be a symmetric body in \mathbb{R}^n . If a function f belongs to the class $\mathcal{E}(K^*) \cap H^p(T_{\Gamma})$ for some $p \in (0, \infty)$ then

$$\|f\|_{H^q} \le \left(\frac{p}{2} + 1\right)^{n(1/p - 1/q)} \cdot \left(\max (K \cap \Gamma^*)\right)^{1/p - 1/q} \cdot \|f\|_{H^p} \quad \forall q \in (p, \infty)$$

(here mes A is the Lebesgue measure of a set A). In particular, the class $\mathcal{E}(K^*) \cap H^p(T_{\Gamma})$, $p \in (0, \infty)$, contains nonzero functions if and only if mes $(K \cap \Gamma^*) > 0$.

References

- [1] Stein, E. M., Weiss, G. Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1971.
- [2] Tovstolis, A. V. Fourier multipliers in Hardy spaces in tube domains over open cones and their applications, Methods Funct. Anal. Topology, 4, No. 1 (1998), 68–89.