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Abstract

We show that the following limit limε↓0
1

2 ε

∫

t

0

{

F (s, Bs − ε) − F (s, Bs + ε)
}

ds is
well defined for a large class of functions F (t, x) and moreover we connect it with the
integration with respect to local time Lx

t
.

We give an illustrative example of the no continuity of the integration with respect
to local time in the random case.
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1 Introduction

1.1. The local time of the Brownian motion B at the point a is defined as follows:

La
t = IP−lim

ε↓0

1

2 ε

∫ t

0
1(|Bs−a|≤ε) ds

which equivalently could be written as follows:

La
t = IP−lim

ε↓0

1

2 ε

∫ t

0

(

1(Bs−ε≤a) − 1(Bs+ε≤a)

)

ds .

Here we are, more generally, interested in the limit in L1

lim
ε↓0

1

2 ε

∫ t

0

{

F (s,Bs − ε) − F (s,Bs + ε)
}

ds

for some function F .
Our motivation come from the desire to connect Chitashvili and Mania results ([3]) with
those of Eisenbaum ([5]).

1.2. We give an example which illustrates that the integration with respect to (Lx
t ; 0 ≤ t ≤

1, x ∈ IR) does not admit a linear extension in the random case (see section 3.2 for details)
and in particular local time is not a 1-integrator which is also proved by Eisenbaum ([5]).

1.3. The power of the local time-space calculus is illustrated by results concerning exten-
sions of the Itô-Tanaka formula and a change-of-variable formula with local time on curves.
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2 Notation and preliminaries

Let B = (Bt)t≥0 be a standard Brownian motion and (Lx
t ; t ≥ 0, x ∈ IR) be a continu-

ous version of its local time process. Let (Ft)t≥0 denote the natural filtration generated
by B. Without loss of generality, we restrict our attention to functions defined on [0, 1]×IR.

For a measurable function f from [0, 1] × IR into IR define the norm ‖ . ‖ by

‖ f ‖= 2
(

∫ 1

0

∫

IR
f2(s, x) e−x2/2s ds dx√

2πs

)1/2
+

∫ 1

0

∫

IR
|xf(s, x)|e−x2/2s ds dx

s
√

2πs
.

Let H be the set of functions f such that ‖ f ‖< ∞.
In Eisenbaum [5], it is shown that the integration with respect to L is possible in the

following sense. Let f∆ be an elementary function on [0, 1] × IR, meaning that

f∆(t, x) =
∑

(si,xj)∈∆

fi,j1(si,si+1](t) 1(xj ,xj+1](x),

where ∆ = {(si, xj), 1 ≤ i ≤ n, 1 ≤ j ≤ m} is an [0, 1] × IR grid, and, for every (i, j), fij

is in IR. For such a function, integration with respect to L is defined by

∫ 1

0

∫

IR
f∆(s, x) dLx

s =
∑

(si,xj)∈∆

fi,j(L
xj+1

si+1
− L

xj+1

si − L
xj
si+1

+ L
xj
si ) .

Let f be an element of H. For any sequence of elementary functions (f∆k
)k∈IN converging

to f in H, the sequence (
∫ 1
0

∫

IR f∆k
(s, x) dLx

s )k∈IN converges in L1. The limit obtained does

not depend of the choice of the sequence (f∆k
) and represents the integral

∫ 1
0

∫

IR f(s, x) dLx
s .

Theorem 2.1 ([5]) Let A be a random process such that for each x, A(·, x) is adapted to
(Ft)t≥0 and a.s. ∂ A/∂ t and ∂ A/∂ x exist and are continuous. Moreover a.s. ∂ A/∂ x is
an element of H, with bounded variations on compacts.

Then for t ≥ 0 we have

A(t, Bt) = A(0, B0) +

∫ t

0

∂ A

∂ t
(s,Bs) ds +

∫ t

0

∂ A

∂ x
(s,Bs) dBs −

1

2

∫ t

0

∫

IR

∂ A

∂ x
(s, x) dLx

s .

3 Main results

3.1 Deterministic case

Theorem 3.1 Let F be a bounded element of H. The following equalities hold in L1:

lim
ε↓0

1

ε

∫ t

0

{

F (s,Bs) − F (s,Bs − ε)
}

ds = −
∫ t

0

∫

IR
F (s, x) dLx

s (3.1)

lim
ε↓0

1

ε

∫ t

0

{

F (s,Bs + ε) − F (s,Bs)
}

ds = −
∫ t

0

∫

IR
F (s, x) dLx

s (3.2)

lim
ε↓0

1

2 ε

∫ t

0

{

F (s,Bs − ε) − F (s,Bs + ε)
}

ds =

∫ t

0

∫

IR
F (s, x) dLx

s . (3.3)
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Remark 3.1 1. If we take F (t, x) = 1(x≤a) in (6.3.1) we have the very definition of La
t

2. Eisenbaum [5] has shown that, for any borelian function b(t):

lim
ε↓0

1

2 ε

∫ t

0
1(|Bs − b(s)|< ε) ds =

∫ t

0

∫

IR
1(−∞, b(s))(x) dLx

s in L1

which corresponds to (6.3.3) with F (t, x) = 1(x≤b(t)) .

Proof: Define Hε(t, x) = 1
ε

∫ x
x−ε F (t, y) d y. Then Hε → F in H as ε ↓ 0. On the one

hand ∂
∂ xHε(t, x) = 1

ε

{

F (t, x) − F (t, x − ε)
}

. It follows that (see Eisenbaum [5] Theorem

5.1 (ii))
∫ t
0

∫

IR Hε(s, x) dLx
s = −1

ε

∫ t
0

{

F (s, Bs) − F (s, Bs − ε)
}

ds. On the other hand
∫ t
0

∫

IR Hε(s, x) dLx
s −→

∫ t
0

∫

IR F (s, x) dLx
s in L1.

�

Corollary 3.1 ([12]) The following relation holds in L1:

lim
ε↓0

1

2 ε

∫ t

0
g(s) I(b(s) − ε < Bs < b(s) + ε) ds =

∫ t

0
g(s)dLb

s

for a continuous function g : [0, t] → IR and a continuous curve b(·) with bounded variation
on [0, t].

Proof: We apply Theorem 6.3.1 to the function F (t, x) = g(t) I(x < b(t)). It follows:
1
2 ε

∫ t
0 g(s) I(b(s) − ε < Bs < b(s) + ε) ds →

∫ t
0

∫

IR g(s) I(x < b(s)) dLx
s in L1 as ε ↓ 0. We

conclude using Corollary 2.9 ([13]) that for the continuous function g we have
∫ t
0 g(s) dL

b(s)
s =

∫ t
0 g(s) dLb

s. �

3.2 Random function case

Let a, b in IR with a < b. Let M be the set of elementary processes A such that

A(s, x) =
∑

(si,xj)∈∆

Aij 1(si,si+1](s) 1(xj ,xj+1](x) ,

where (si)1≤i≤n is a subdivision of (0, 1], (xj)1≤j≤m is a finite sequence of real numbers in
(a, b], ∆ = {(si, xj), 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and Aij an Fsj

-measurable random variable
such that |Aij | ≤ 1 for every (i, j).
Eisenbaum [5] asked the following question: Does integration with respect to (Lx

t ; 0 ≤ t ≤
1, x ∈ IR) admit a linear extension to P the field generated by M, verifying the following
property:

If (An)n≥0 converges a.e. to A(t, x), then (
∫ 1
0

∫ b
a An(s, x) dLx

s )n≥0 converges in L1 to
∫ 1
0

∫ b
a A(s, x)dLx

s .
She only obtained a negative answer to the following weaker question:

Is the set
{

∫ 1

0

∫ b

a
A(s, x) dLx

s , A ∈ M
}

bounded in L1 ?
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Consequently integration with respect to (Lx
t ; 0 ≤ t ≤ 1, x ∈ IR) does not admit a contin-

uous extension in L1.
Here we give an illustrative example, thanks to a result obtained by Walsh, which shows
the lack of a linear extension.

Let us define Aε(t, x) = 1
ε

∫ x
x−ε Ly

t dy and Ãε(t, x) = 1
ε

∫ x+ε
x Ly

t dy. We see easily that

Aε(t, x) (resp. Ãε(t, x)) converges a.e. to Lx
t , nevertheless we have:

lim
ε↓0

∫ t

0

∫

IR
Aε(s, x) dLx

s 6= lim
ε↓0

∫ t

0

∫

IR
Ãε(s, x) dLx

s .

Let us recall, for the convenience of the reader, Walsh’s theorem about the decomposi-
tion of A(t, Bt) :=

∫ t
0 1{Bs≤Bt} ds .

Theorem 3.2 ([14]) A(t, Bt) has the decomposition

A(t, Bt) =

∫ t

0
LBs

s dBs + Xt

where

Xt = lim
ε↓0

1

2 ε

∫ t

0

{

LBs
s − LBs−ε

s

}

ds

= t + lim
ε↓0

1

2 ε

∫ t

0

{

LBs+ε
s − LBs

s

}

ds

The limits exist in probability, uniformly for t in compact sets.

Our example follows by recalling the following property:

∫ t

0

∫

IR
Aε(s, x) dLx

s = −1

ε

∫ t

0

{

LBs
s − LBs−ε

s

}

ds .

Proposition 3.1 (A more explicit decomposition of A(t, Bt)) Let B = (Bt)t≥0 be a
standard Brownian motion and (Lx

t ;x ∈ IR, t ≥ 0) a continuous version of its local time
process. Let A(t, x) =

∫ x
−∞ Ly

t dy.
Then A(t, Bt) is a Dirichlet process and has the following decomposition:

A(t, Bt) = t +

∫ t

0
LBs

s dBs −
1

2

∫ t

0

∫

IR
Lx

s dLx
s .

Moreover we have:

−1

2

∫ t

0

∫

IR
Lx

s dLx
s = IP−lim

ε↓0

1

2 ε

∫ t

0
{LBs+ ε

s − LBs
s } ds .

Proof: As noted by J. Walsh [14] A(t, x) is continuously differentiable in t as long as
Bt 6= x. Indeed, we have A(t, x) =

∫ t
0 1{Bt≤x} ds so At(t, x) = 1(Bt≤x). Moreover, A(t, x) is

continuously differentiable in x and Ax(t, x) = Lx
t , but the second derivative fails to exist

and this thanks to Eisenbaum’s theorem (theorem 5.3 in [5]) doesn’t matter.
�
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3.3 Link with principal value

Theorem 3.3 Let F be an absolutely continuous function on IR such that Fx is absolutely
continuous on IR \ {0}. Suppose that

(i) there exists a limit α = limε↓0

(

Fx(ε) − Fx(−ε)
)

;

(ii) Fx ∈ L2
loc(IR)

(iii) x(Fx(x))2 −→ 0 as x → 0.

Then a.s.

lim
ε↓0

1

2 ε

∫ t

0

{

Fx(Bs + ε) − Fx(Bs − ε)
}

ds = αL0
t + v.p.

∫ t

0
Fxx(Bs) ds .

Proof: We set

1

2 ε

∫ t

0

{

Fx(Bs + ε) − Fx(Bs − ε)
}

ds = Iε + Jε

where

Iε :=
1

2 ε

∫ t

0
1(|Bs|>ε)

{

Fx(Bs + ε) − Fx(Bs − ε)
}

ds

Jε :=
1

2 ε

∫ t

0
1(|Bs|≤ε)

{

Fx(Bs + ε) − Fx(Bs − ε)
}

ds .

Using (ii), (iii) and the fact that Fx is absolutely continuous in IR \ {0}, it follows:

lim
ε↓0

Iε = v.p.

∫ t

0
Fxx(Bs) ds .

On the other hand:
lim
ε↓0

Jε =
{

lim
ε↓0

(

Fx(ε) − Fx(−ε)
)}

L0
t .

�

4 Applications

In the following two theorems we use Eisenbaum’s formula to give a clean proof of two
theorems originated from Nasyrov ([10]; theorem 9) and ([10]; theorem 10).

Theorem 4.1 (the generalized Tanaka formula)
For t ≥ 0, z > 0, y ∈ IR, we have:

1

2
(z ∧ Ly

t ) = 1( Ly
t ≤z) (Bt − y)+ − (B0 − y)+ −

∫ t

0
1(Bs≥y, Ly

s≤z) dBs .
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Proof: We take the following function F (x, t) = 1[0, z](t) (x−y)+. It follows that Fx(x, t) =
1(t≤z) 1(x≥y). Hence

∫ t

0

∫

IR
Fx (x,Ly

s) dLx
s =

∫ t

0

∫

IR
1(x≥y) 1Ly

s≤z dLx
s = −

∫ t

0
1(Ly

s≤z) ds Ly
s = − (z ∧ Ly

t ) .

�

Theorem 4.2 (the generalized Skorokhod equation) Let Φ a C 1 function. For t ≥ 0,
we have:

Φ(L0
t ) |Bt| = Φ(0) |B0| +

∫ t

0
sign(Bs)Φ(L0

s) dBs +

∫ L0
t

0
Φ(z) dz .

In this case,

∫ L0
t

0
Φ(z) dz = − min

0≤s≤t
min

(

∫ s

0
sign(Bu)Φ(L0

u) dBu, 0
)

.

Proof: We have

−1

2

∫ t

0

∫

IR
Φ(L0

s) sign(x) dLx
s = −1

2

∫ t

0

∫ ∞

0
Φ(L0

s) dLx
s +

1

2

∫ t

0

∫ 0

−∞
Φ(L0

s) dLx
s

hence we obtain − 1
2

∫ t
0 Φ(L0

s) sign(x) dLx
s =

∫ t
0 Φ(Lo

s) ds L0
s .

�

Theorem 4.3 ([11])
Let B = (Bt)t≥0 be a standard Brownian motion and let b : IR+ → IR be a continuous

function of bounded variation. Setting C = { (s, x) ∈ IR+×IR |x < b(s) } and D = { (s, x) ∈
IR+×IR |x > b(s) } suppose that a continuous function F : IR+×IR → IR is given such that
F is C1,2 on C and F is C1,2 on D . Then we have:

F (t, Bt) =F (0, B0) +

∫ t

0
Ft(s,Bs) ds +

∫ t

0
Fx(s,Bs) dBs

+
1

2

∫ t

0
Fxx(s,Bs) I(Bs 6= b(s)) ds

+
1

2

∫ t

0

(

Fx(s, bs+) − Fx(s, bs−)
)

I(Bs = b(s)) dLb
s .

Proof: We focus on the last term:

∫ t

0

∫

IR
Fx(s, x) dLx

s =

∫ t

0

∫

IR
Fx(s, x) 1{x6=b(s)} dLx

s +

∫ t

0

∫

IR
Fx(s, x) 1{x=b(s)} dLx

s

6



It follows,

∫ t

0

∫

IR
Fx(s, x) dLx

s = −
∫ t

0
Fxx(s,Bs) I(Bs 6= b(s)) ds−

∫ t

0

(

Fx(s, bs+)−Fx(s, bs−)
)

dsL
b(s)
s

To conclude we need to recall the extended definition of the local time to the borelian
curves due to Eisenbaum [5]:

L
b(·)
t =

∫ t

0

∫

IR
1(−∞, b(s))(x) dLx

s

It follows that dt L
b(·)
t = dt L

b(t)
t .

We suggest another method based on Theorem 6.3.1:

1

4 ε

∫ t

0

{

Fx(s,Bs + ε) − Fx(s,Bs − ε)
}

d s = Iε + Jε

Iε :=
1

4 ε

∫ t

0
1(−ε<Bs−bs<+ε)c

{

Fx(s,Bs + ε) − Fx(s,Bs − ε)
}

ds

Jε :=
1

4 ε

∫ t

0
1(−ε<Bs−bs<+ε)

{

Fx(s,Bs + ε) − Fx(s,Bs − ε)
}

ds .

We have the following (see ([11]) for details):

lim
ε↓0

Iε =
1

2

∫ t

0
1(Bs 6= bs) Fxx(s,Bs) ds

and

lim
ε↓0

Jε =
1

2

∫ t

0
1(Bs = bs)

{

Fx(s,Bs+) − Fx(s,Bs−)
}

dLb
s .

�

Remark 4.1 1. For an extension of Theorem 6.4.3 to continuous semimartingales see the
paper by Peskir [12]. Independantly, see also Elworthy et al [4].

2. A particular case have been obtained by Jacka (see Section 5.2 in [8]).

Corollary 4.1 (the discrete case of b(·) reduced to {a1, · · · , an}) Let B = (Bt)t≥0 be
a standard Brownian motion and let a1 < a2 < · · · < an be real numbers, and denote
D = {a1, · · · , an}. Suppose that a function F : IR → IR is continuous and Fx and Fxx exist
and are continuous on IR \ D, and the limits

Fx(ak±) := lim
x→ak±

Fx(x) Fxx(ak±) := lim
x→ak±

Fxx(x)

exist and are finite.
Then we have:

F (Bt) = F (B0) +

∫ t

0
Fx(Bs) dBs +

1

2

∫ t

0
Fxx(Bs) ds +

1

2

n
∑

i=1

{

Fx(ai+) − Fx(ai−)
}

Lai
t

Remark 4.2 Corollary 6.4.1 is actually Problem 6.24 given in Karatzas and Shreve [9].
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