Let T be a Hausdorff space with the families \mathcal{G} , \mathcal{F} , \mathcal{C} and \mathcal{B} of open, closed, compact, and Borel sets. Let RM be the set of all Radon measures $\mu: \mathcal{B} \to] - \infty, \infty]$ and $\mu: \mathcal{B} \to [-\infty, \infty[$. Consider the set $\mathcal{K} \equiv \{G \cap F \mid G \in \mathcal{G} \land F \in \mathcal{F}\}$ and the lattice linear space S of all functions $f: T \to \mathbb{R}$ such that for any $\varepsilon > 0$ there is a finite cover $(K_i \in \mathcal{K} \mid i \in I)$ of T with $\omega(f, K_i) < \varepsilon$. Let A be a lattice linear subspace in S with the property $f \in A \Rightarrow f \land \mathbf{1} \in A$. Consider the set RM(A) of all $\mu \in RM$ such that all functions $f \in A$ are μ -integrable. For $\mu \in RM(A)$ consider the functional $i_{\mu}: A \to \mathbb{R}$ such that $i_{\mu} \equiv \int f d\mu$. Let $I(A, RM(A)) \equiv \{i_{\mu} \mid \mu \in RM(A)\}$ be the set of all such functionals on A.

Consider the lattice linear space A^{\sim} of all linear functionals $\varphi : A \to \mathbb{R}$ such that $\forall g \in A^+(\sup\{|\varphi f| \mid f \in A \land |f| \leq g\} < \infty)$ and its subspace $A^{\pi} \equiv \{\varphi \in A^{\sim} \mid \forall \varepsilon > 0 \; \exists C \in \mathcal{C} \; \forall f \in A(|f| \leq \chi(T \setminus C) \Rightarrow |\varphi f| < \varepsilon)\}$ of tight functionals. A functional $\varphi : A \to \mathbb{R}$ is called *locally tight* if $\forall G \in \mathcal{G} \; \forall u \in A_+ \; \forall \varepsilon > 0 \; \exists C \in \mathcal{C}(C \subset G \land \forall f \in A(|f| \leq \chi(G \setminus C) \land u \Rightarrow |\varphi f| < \varepsilon))$. The lattice linear subspace of A^{\sim} consisting of all linear pointwise σ -continuous locally tight functionals is denoted by A^{\triangle} . Consider its subspace $A^{\overline{\Delta}} \equiv \{\varphi \in A^{\widehat{\Delta}} \mid \sup\{|\varphi f| \mid f \in A \land |f| \leq 1\} < \infty\}$.

The space A has the property $E_{\tau} [E_{\sigma}]$ if for any $G \in \mathcal{G}, F \in \mathcal{F}, C \in \mathcal{C}, u \in A_+$ the function $\chi(G) \wedge u$ is a pointwise supremum and the functions $\chi(F) \wedge u$ and $\chi(C)$ are pointwise infimums of some nets [sequences] of A. The space A has the Dini property D if for any net $(f_m \in A \mid m \in M)$ and any $f \in A$ the condition $(f_m \mid m \in A) \xrightarrow{p} f$ implies $(f_m \mid C \mid m \in A) \Rightarrow f \mid C$ for any $C \in \mathcal{G}$.

Theorem. If A has either $E_{\tau} + D$ or E_{σ} , then $I(A, RM(A)) \subset A^{\Delta}$, $I(A, RM(A)_{+}) = (A^{\Delta})_{+}$, and $I(A, RM_{b}) = A^{\overline{\Delta}}$.

Corollary 1. Let T be a Hausdorff space. Then $I(S_c, RM_+) = (S_c^{\triangle})_+$.

Corollary 2 (Riesz-Radon). Let T be a locally compact space. Then $I(C_c, RM_+) = (C_c^{\sim})_+$.

Corollary 3 (Prokhorov). Let T be a Tykhonoff space. Then $I(C_b, RM_b) = C_b^{\pi} = C_b^{\overline{\pi}}$.