ON **3-COVERING SUBGROUPS IN FINITE GROUPS**

Kh.A.Al-Sharo (Mafraq, Jordan)

Let π be a set of primes. By S.A.Chunikhin [1], a finite group G is called π -selected if the order of its every chief factor is divided by not more than one number from π . We extend this definition in the following way. We say that a finite group G is E_{π}^{n} -selected if every subgroup of any chief factor of G has a nilpotent Hall π -subgroup. Clearly, every E_{π}^{n} -selected finite group is π -selected. S.A.Chunikhin proved that every finite π -selected group has exactly one conjugacy class of Hall π -subgroups. We generalize this result in terms of the formation theory.

Let \mathfrak{F} denotes a class of finite groups. According to Gaschütz's definition, an \mathfrak{F} -covering subgroup H of a finite group G is defined by the properties:

(i) $H \in \mathfrak{F}$, and

(ii) whenever $H \subseteq U \subseteq G$ and $K \trianglelefteq U$ such that $U/K \in \mathfrak{F}$, then U = HK.

Theorem. Let \mathfrak{F} be a non-empty saturated formation of finite groups. Then each finite E_{π}^{n} -selected group possesses exactly one conjugacy class of \mathfrak{F} -covering subgroups.

Corollary 1. Let \mathfrak{F} be a non-empty saturated formation of finite groups. Then each π -selected finite group possesses exactly one conjugacy class of \mathfrak{F} -covering subgroups.

Corollary 2(W. Gaschütz [2]). Let \mathfrak{F} be a non-empty saturated formation of finite groups. Then each soluble finite group possesses exactly one conjugacy class of \mathfrak{F} -covering subgroups.

References

1. S.A.Chunikhin, Subgroups of finite groups, Minsk: Nauka i tekhnika, 1964.

2. W.Gaschütz, Zur Theorie der endlichen auflösbaren Gruppen, *Math. Z.*, **80**, N 4, 300–305 (1963).