On a recursive formula for the sequence of primes and applications to the twin prime problem

Giovanni Fiorito

15th April 2004

1 Abstract

In this paper we give a recursive formula for the sequence of primes $\left\{p_{n}\right\}$ and apply it to find a necessary and sufficient condition in order that a prime number p_{n+1} is equal to $p_{n}+2$. Applications of previous results are given to evaluate the probability that p_{n+1} is of the form $p_{n}+2$; moreover we prove that the limit of this probability is equal to zero as n goes to ∞. Finally, for every prime p_{n} we construct a sequence whose terms that are in the interval $\left[p_{n}^{2}-2, p_{n+1}^{2}-2[\right.$ are the first terms of two twin primes. This result and some of its implications make furthermore plausible that the set of twin primes is infinite.

References

[1] Crandall R. - Pomerance., Prime Numbers A Computational Perspective, Springer-Verlag New York, 2001
[2] Fiorito G., On Properties of Periodically Monotone Sequences, Applied Mathematics and Computation vol. 72, 1995.
[3] Guy R. K., Unsolved problems in Number Theory, Springer-Verlag New York, 1994.
[4] Hardy G. - Wright E., An Introduction to the Theory of Numbers, Clarendon Press Oxford, 1954.
[5] Ireland K. - Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag New York, 1981.
[6] Murty M. R., Problems in Analytic Number Theory, Springer-Verlag, 1999.
[7] Nathanson M. B., Elementary Methods in Number Theory, SpringerVerlag, 1999.

