ACTION OF $G = \langle u, v : u^3 = v^3 = 1 \rangle$ on imaginary QUADRATIC FIELDS

quadratic The imaginary fields are defined by the set $\{a+b\sqrt{-n}: a, b \in Q\}$ and denoted by $Q(\sqrt{-n})$, where *n* is a square-free positive integer. In this we have that if chapter proved $\alpha = \frac{a + \sqrt{-n}}{c} \in Q^*(\sqrt{-n}) = \{\frac{a + \sqrt{-n}}{c}: a, \frac{a^2 + n}{c}, c \in Z, c \neq 0\} \text{ then } n \text{ does not}$ change its value in the orbit αG , where $G = \langle u, v : u^3 = v^3 = 1 \rangle$. Also we show that the number of orbits of $Q^*(\sqrt{-n})$ under the action of G are 2[d(n)+2d(n+1)-4] and 2[d(n)+2d(n+1)-6] according to n is even or odd, except for n = 3 for which there are exactly eight orbits. Also, the action of G on $Q^*(\sqrt{-n})$ is always intransitive.