## ACTION OF $G=<u, v: u^{3}=v^{3}=1>$ ON IMAGINARY QUADRATIC FIELDS

The imaginary quadratic fields are defined by the set $\{a+b \sqrt{-n}: a, b \in Q\}$ and denoted by $Q(\sqrt{-n})$, where $n$ is a square-free positive integer. In this chapter we have proved that if $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})=\left\{\frac{a+\sqrt{-n}}{c}: a, \frac{a^{2}+n}{c}, c \in Z, c \neq 0\right\}$ then $n$ does not change its value in the orbit $\alpha G$, where $G=<u, v: u^{3}=v^{3}=1>$. Also we show that the number of orbits of $Q^{*}(\sqrt{-n})$ under the action of $G$ are $2[d(n)+2 d(n+1)-4]$ and $2[d(n)+2 d(n+1)-6]$ according to $n$ is even or odd, except for $n=3$ for which there are exactly eight orbits. Also, the action of $G$ on $Q^{*}(\sqrt{-n})$ is always intransitive.

