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Abstract.In this paper we study the properties of the finite topology on the dual of a module over

arbitrary rings. We aim to give conditions when certain properties of the field case are can be still

found here.

1 Introduction and preliminaries

Let R be an arbitrary (noncommutative) ring. We will use the notations HomR(M,N) for the set
of R module morphisms from M to N for right modules M,N and RHom(M,N) respectively for left
modules M,N . Also we use M∗ = HomR(M,R) for any right module M and ∗M = RHom(M,R) for
a left module M .
Given two right R modules M and N , recall that the finite topology on HomR(M,N) is the linear
topology for which a basis of open neighbourhoods for 0 is given by the sets {f ∈ HomR(M,N) |
f(xi) = 0, ∀ i ∈ {1, . . . , n}}, for all finite sets {x1, . . . , xn} ⊆ M . This is actually the topology induced
on HomR(M,N) from HomSet(M,N) = NM which is a product of topological spaces, where N is
the topological discrete space on the set N . For an arbitrary set X ⊆ M we denote by X⊥ = {f ∈
HomR(M,N) | f |X = 0}. Denoting by < X >R the R submodule generated by X, we obviously have
(< X >R)⊥ = X⊥, so we will work with finitely generated submodules F ≤ M and the basis of open
neighbourhoods {F⊥ | F ≤ M finitely generated}. Also for left R modules X and Y and U ≤ X a
submodule of X we will denote U⊥

RHom(M,N) or simply U⊥ = {g ∈ RHom(X, Y ) | g|X = 0} when there
is no danger of confusion. If W ≤ HomR(M,N) is a subgroup with M and N left R modules we denote
W⊥ = {x ∈ N | f(x) = 0, ∀ f ∈ W}. If N is an R bimodule then we consider the left R module
structure on HomR(M,N) given by (r · f)(x) = rf(x), for all x ∈ M, f ∈ HomR(M,N), r ∈ R. If W

is a (left) submodule in HomR(M,N), then W⊥ is a (right) submodule of M.
For any right module M we denote by ΦM the right R modules morphism

M
ΦM−→ ∗(M∗)

defined by ΦM (m)(f) = f(m), for all f ∈ M∗ and all m ∈ M . Then Φ is a functorial morphism from
idMR

to the functor ∗((−)∗).
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Over a field, there is a series of properties involving the orthogonal F⊥ for a vector space V and its
dual V ∗ which we will state in a more general setting.

Proposition 1.1 Let M,N be R modules.
(i) If X ⊆ Y are submodules of M then Y ⊥ ≤ X⊥.
(ii) If U ⊆ V are subgroups of HomR(M,N) then V ⊥ ≤ U⊥.

Lemma 1.2 For M,N right R modules we have:
(i) If X ≤ M is a submodule of M then (X⊥)⊥ ⊇ X. If N is an injective cogenerator of MR then the
equality (X⊥)⊥ = X holds.
(ii) If Y ≤ HomR(M,N) is a (left) submodule of HomR(M,N) then (Y ⊥)⊥ ⊇ Y (Y is the closure of Y

in HomR(M,N)). If N = R and R is a left PF ring (RR is injective and a cogenerator of RM) then
the equality (Y ⊥)⊥ = Y holds for all modules M and (left) submodules Y ≤ M∗.

Proof. (i) If x ∈ X then take f ∈ X⊥; then f(x) = 0 as f |X = 0. We get that f(x) = 0, ∀f ∈ X⊥ so
x ∈ (X⊥)⊥.
Suppose now N is an injective cogenerator of MR and take x ∈ (X⊥)⊥. If x /∈ X then there is
f : M/X −→ N such that f(x̂) 6= 0 (x̂ is the immage of x in M/X via the canonic morphism
π : M −→ M/X). Then there is g = f ◦π, g ∈ HomR(M,N) such that g|X = 0 (g ∈ X⊥) and g(x) 6= 0,
showing that x /∈ (X⊥)⊥, a contradiction.
(ii) Let f ∈ Y and take x ∈ Y ⊥. Then there is g ∈ Y such that f(x) = g(x). But g(x) = 0 because
x ∈ Y ⊥ so f(x) = 0. Thus f |Y ⊥ = 0 and f ∈ (Y ⊥)⊥.
For the converse, first we see that RR implies that for all finitely generated right R modules F we have
that F

ΦF−→ ∗(F ∗) is an epimorphism. Take π : P = Rn −→ F an epimorphism in MR. Then we have
a monomorphism 0 −→ P ∗ −→ F ∗ in RM, and as RR is injective we obtain an epimorphism of right

modules ∗(P ∗)
∗(p∗)−→ ∗(F ∗) −→ 0. Because Φ is a functorial morphism then we have the commutative

diagram

P
π //

ΦP

��

F //

ΦF

��

0

∗(P ∗) ∗(π∗)
// ∗(F ∗) // 0

and diagram

P
π - F - 0

∗(P ∗)

ΦP

?

∗(π∗)
- ∗(F ∗)

ΦF

?
- 0

showing that ΦF is surjective, as ΦP = ΦRn is an isomorphism. Now to prove the desired equality,
take f ∈ (Y ⊥)⊥, (fi)i∈I a family of generators of the left R module Y , and F < M a finitely generated
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submodule of M . Then fi|M ∈ F ∗ and if f |F /∈ R < fi|F | i ∈ I > then as RR is an injective
cogenerator of RM we can find a morphism of left R modules φ : F ∗ −→ R such that φ(fi) = 0, ∀i ∈ I

and φ(f) 6= 0. But as ΦF is surjective, we can then find x ∈ F such that φ = Φ(x) and then
fi(x)Φ(x)(fi) = φ(fi) = 0, ∀i ∈ I, showing that x ∈ Y ⊥ and f(x) = Φ(x)(f) = φ(f) 6= 0 which
contradicts the fact that f belongs to (Y ⊥)⊥. Thus we must have f |F ∈ R < fi|F | i ∈ I > so there
is (ri)i∈I a family of finite support such that f |F =

∑
i∈I

ri(fi|F ) = (
∑
i∈I

rifi)|F . This last relation shows

that f ∈ Y . 2

Proposition 1.3 Let M be a right R module.
(i) If X ≤ M then we have ((X⊥)⊥)⊥ = X⊥ and X⊥ is closed.
(ii) If Y ≤ HomR(M,N) then ((Y ⊥)⊥)⊥ = Y ⊥.

Proof. ”⊆” from (i) and (ii) follow from Proposition 1.1 and Lemma 1.2.
(i) ”⊇” Let f ∈ X⊥. Take x ∈ (X⊥)⊥; then f(x) = 0 so f ∈ ((X⊥)⊥)⊥. To show that X⊥ is closed
take f ∈ X⊥ and x ∈ X. Then there is g ∈ X⊥ such that g(x) = f(x) so f(x) = 0 (x ∈ X). We obtain
that f |X = 0 so f ∈ X⊥.
(ii) ”⊇” Let x ∈ Y ⊥. If f ∈ (Y ⊥)⊥ then f |Y ⊥ = 0 so f(x) = 0 showing that x ∈ ((Y ⊥)⊥)⊥. 2

Proposition 1.4 Let M,N be right R modules and (Xi)i∈I a family of submodules of M . Then
(i) (

∑
i∈I

Xi)⊥ =
⋂
i∈I

X⊥
i .

(ii) (
⋂
i∈I

Xi)⊥ ⊇
∑
i∈I

X⊥
i . If I is finite and N is injective then equality holds.

Proof. (i) f ∈ (
∑
i∈I

Xi)⊥ ⇔ f |∑
i∈I

Xi
= 0 ⇔ f |Xi = 0, ∀i ∈ I ⇔ f ∈ X⊥

i , ∀i ∈ I ⇔ f ∈
⋂
i∈I

X⊥
i .

(ii) ”⊇” is obvious, for Proposition 1.1 shows that X⊥
i ⊆

⋂
j∈I

Xj
⊥, ∀i ∈ I. For the converse it is enough

to prove the equality for two submodules X, Y of M . Denote π : M −→ M/X ∩ Y , p : M −→ M/X,
q : M −→ M/Y the canonical morphisms. If f ∈ HomR(M,N) such that f |X∩Y = 0 then denote
f : M/X ∩Y −→ N the factorisation of f (f = f ◦π) and i : M/X ∩Y −→ M/X ⊕M/Y the injection
i(π(x)) = (p(x), q(x)), ∀x ∈ M . Then the diagram

0 - M

X ∩ Y

i- M

X
⊕ M

Y

	�
�

�
�

�

h = u⊕ v

N

f

?

is completed commutatively by h. Then h = u ⊕ v, with u ∈ HomR(M/X,N) and HomR(M/Y, N),
such that h(p(x), q(x)) = u(p(x)) + v(q(x)). Taking u = u ◦ p and v = v ◦ q we have u ∈ X⊥, v ∈ Y ⊥

and f(x) = f(π(x)) = h(i(π(x))) = h(p(x), q(x)) = u(p(x)) + v(q(x)) = u(x) + v(x), ∀x ∈ M , so
f ∈ X⊥ + Y ⊥. 2
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Proposition 1.5 Let M,N be right R modules and (Yi)i∈I a family of submodules of HomR(M,N).
Then:
(i) (

∑
i∈I

Yi)⊥ =
⋂
i∈I

Y ⊥i .

(ii) (
⋂
i∈I

Yi)⊥ ⊇
∑
i∈I

Y ⊥i . If N = R and R is a PF ring (both left and right PF), I is a finite set and Yi

are closed subsets of M∗ = HomR(M,R) then the equality holds: (
⋂
i∈I

Yi)⊥ =
∑
i∈I

Y ⊥i .

Proof. (i) Obvious.
(ii) ”⊇” similar to (ii)”⊇” of the previous proposition. For the converse inclusion, take X, Y submodules
of M∗. Then

X⊥ + Y ⊥ = ((X⊥ + Y ⊥)⊥)⊥ (from Lemma 1.2 : R is right PF)

= ((X⊥)⊥ ∩ (Y ⊥)⊥)⊥ (from Proposition 1.4)

= (X ∩ Y )⊥ (Lemma 1.2 : X, Y are closed andR is left PF)

so the conclusion follows for finitely many submodules of M∗. 2

Example 1.6 (i) We show that the equality in Proposition 1.4 does not hold for infinite sets. Let V

be a infinite dimensional space with a countable basis indexed by the set of natural numbers: (en)n∈N.
Put Vn =< ek | k ≥ n >. Then we can easily see that

⋂
n∈N

Vn = 0 so (
⋂

n∈N
Vn = 0)⊥ = V ∗. Let f ∈ V ∗

be the function equal to 1 on all the en-s. Then as V ⊥n < V ⊥m , ∀n < m, we have that f ∈
∑

n∈N
V ⊥n ⇔

∃n ∈ N such that f ∈ V ⊥n which is imposible as f(en) = 0, ∀n. We obtain
⋂

n∈N
Vn ⊃

∑
n∈N

V ⊥n a strict

inclusion.
(ii)

2 The Finite Topology vs PF Rings

If R is a ring then we have R∗ = HomR(R,R) ' RR. So we can identify R submodules of the right
dual of R with left ideals of R
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