The Mahler measure of an algebraic number α is defined by the formula $M(\alpha) = a \prod_{j=1}^{d} \max\{1, |\alpha_j|\}$, where $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d$ are the conjugates of α over \mathbf{Q} and a is the leading coefficient of its minimal polynomial in $\mathbf{Z}[x]$. There are many open questions concerning the set of all Mahler measures \mathcal{M} of algebraic numbers. For instance, D.H. Lehmer asked in 1933 whether there are elements of the set \mathcal{M} greater than 1 and smaller than 1.17.

In our recent paper "The values of Mahler measures" (with J.D. Dixon, to appear in "Mathematika") we show that if β is a unit then one can determine whether β belongs to \mathcal{M} or not by a finite computation. Namely, if $\beta \in \mathcal{M}$ then $\beta = \mathcal{M}(\alpha)$ with some α of degree at most $\binom{n}{\lfloor n/2 \rfloor}$, $n = \deg \beta$, lying in the normal closure of $\mathbf{Q}(\beta)$ over \mathbf{Q} . We also show that the set \mathcal{M} is not a multiplicative semigroup. In the paper "Mahler measures generate the largest possible groups" (to appear in "Math. Res. Lett.") we show that \mathcal{M} is not an additive semigroup. It is also shown that the set \mathcal{M} is very rich in the following sense. Firstly, every real positive algebraic number can be written as a quotient of two elements of \mathcal{M} . Secondly, every real algebraic integer γ can be written as $\gamma = \sum_{i=1}^{4} k_i m_i$, where $m_1, m_2, m_3, m_4 \in \mathcal{M}$ and $k_1, k_2, k_3, k_4 \in \mathbf{Z}$.