Section number: 04

Name and Address: Ivko Dimitric, Mathematics Dept., Penn State University, Uniontown, PA 15401-0519, USA

1991 Mathematics Subject Classification: 53C42

Key Words: complex space form, real hypersurface, finite-type submanifold, 2-type

Title: Real hypersurfaces of low Chen-type in non-flat complex space forms.

Abstract: In the theory of submanifolds of finite type one calls an isometric immersion $x: M \to E^N$ of a Riemannian manifold into Euclidean space an immersion of k-type if the position vector allows the decomposition into k eigenvectors of the Laplacian. A complex projective or hyperbolic space $\mathbb{C}Q^m$ can be isometrically embedded into the Euclidean space of Hermitian matrices $H^{(1)}(m+1)$ by the first standard embedding ϕ . Thus for any submanifold $x: M \to \mathbb{C}Q^m$ we have an associated immersion $\tilde{x} = \phi \circ x$. We study the Hopf hypersurfaces of $\mathbb{C}Q^m$ whose associated immersion \tilde{x} is of low type. We prove the following result:

Let M^n be a Hopf hypersurface of $\mathbb{C}Q^m(4)$ (n = 2m - 1). Then M^n is of 2-type via \tilde{x} if and only if it is an open portion of one of the following: (i) A geodesic hypersphere of any radius $r \in (0, \pi/2]$ except $r = \arctan \sqrt{n+2}$. (ii) A tube of certain radius over canonically embedded $\mathbb{C}P^k$, k = 1, ..., n - 2. (iii) A tube of certain radius over a complex quadric \mathbb{Q}^{m-1} .

We also characterize minimal Hopf hypersurfaces of these spaces which are masssymmetric and of 3-type in $H^{(1)}(m+1)$.