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Abstract

Recently fuzzy initial value problems or fuzzy differential equations has

received considerable amount of attentions ([3], [4], [7] and [8]). In the first

three sections we present the necessary and introductory materials to deal

with the fuzzy initial value differential equations. In section four a modified

two-step Simpson method and the corresponding convergence theorem of our

method is presented. In the last section we will present two examples of fuzzy

differential equations and compare our numerical results with the results of

the existing methods.

Keywords: Fuzzy differential equations, two-step methods, ordinary differential

equations.

1 Preliminaries

A general definition of fuzzy numbers may be found in [1], [5]. However our fuzzy

numbers will be almost always triangular or triangular shaped fuzzy numbers. A
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triangular fuzzy number N is defined by three real numbers a < b < c where the

base of the triangle is the interval [a, c] and its vertex is at x = b. Triangular

fuzzy numbers will be written as N = (a/b/c). The membership function for the

triangular fuzzy number N = (a/b/c) is defined as the following:

N(x) =















x − a

b − a
, a ≤ x ≤ b

x − c

b − c
, b ≤ x ≤ c

(1)

For triangular shaped fuzzy number P we write P ≈ (a/b/c) which is only

partially specified by the three numbers a, b, c since the graph on [a, b] and [b, c] is

not a straight line segment.

To be a triangular shaped fuzzy number, we require the graph of the correspond-

ing membership function to be continuous and

(1) monotonically increasing on [a, b]

(2) monotonically decreasing on [b, c].

The core of a fuzzy number is the set of values where the membership value equals

one.

If N = (a/b/c) or N ≈ (a/b/c) then the core of N is the single point b. Let T be

the set of all triangular or triangular shaped fuzzy numbers and u ∈ T . We define

the r-level set

[u]r = {x|u(x) ≥ r} , 0 ≤ r ≤ 1 (2)

which is a closed bounded interval and we denote by [u]r = [u(r), u(r)]. It is clear

that the following statements are true.

1. u(r) is a bounded left continuous non decreasing function over [0, 1],

2. u(r) is a bounded right continuous non increasing function over [0, 1],

3. u(r) ≤ u(r) for all r ∈ [0, 1].

For more details see [1], [2].

Let S be the set of all closed bounded intervals in R and I1 = [a1, b1], I2 = [a2, b2]

be two members of S. The interval metric d1 on S is defined as:

dI(I1, I2) = |a1 − a2| + |b1 − b2|.
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2 Fuzzy Initial Value Problem

Consider a first-order fuzzy initial value differential equation given by










y′(t) = f(t, y(t)) , t ∈ [t0, T ]

y(t0) = y0

(3)

where y is a fuzzy function of t, f(t, y) is a fuzzy function of the crisp variable t and

the fuzzy variable y, y′ is the fuzzy derivative of y and y(t0) = y0 is a triangular or

a triangular shaped fuzzy number. Therefore we have a fuzzy Cauchy problem [6].

We denote the fuzzy function y by y = [y, y]. It means that the r-level set of

y(t) for t ∈ [t0, T ] is [y(t)]r = [y(t; r), y(t; r)]. Also

[y′(t)]r = [y′(t; r), y′(t; r)], [f(t, y(t))]r = [f(t, y(t); r), f(t, y(t); r)].

we write f(t, y) = [f(t, y), f(t, y)] and f(t, y) = F [t, y, y], f(t, y) = G[t, y, y]. Be-

cause of y′ = f(t, y) we have

y′(t; r) = f(t, y(t); r) = F [t, y(t; r), y(t; r)] (4)

y′(t; r) = f(t, y(t); r) = G[t, y(t; r), y(t; r)]. (5)

Also we write

[y(t0)]r = [y(t0; r), y(t0; r)] , [y0]r = [y
0
(r), y0(r)]

y(t0; r) = y
0
(r) , y(t0; r) = y0(r)

By using the extension principle we have the membership function

f(t, y(t))(s) = sup{y(t)(τ)|s = f(t, τ)}, s ∈ R (6)

so fuzzy number f(t, y(t)). From this is follows that

[f(t, y(t))]r = [f(t, y(t); r), f(t, y(t); r)], r ∈ [0, 1] (7)

where

f(t, y(t); r) = min{f(t, u)|u ∈ [y(t)]r} (8)

f(t, y(t); r) = max{f(t, u)|u ∈ [y(t)]r} (9)
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3 A Modified Simpson Method

Consider the initial value problem











y′(t) = f(t, y(t)) , t ∈ I = [t0, T ]

y(t0) = y0

(10)

It is known that, the sufficient conditions for the existence of a unique solution to

Eq(10) are that f to be continuous function satisfying the Lipschitz condition of the

following form:

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, L > 0.

We replace the interval [t0, T ] by a set of discrete equally spaced grid points

t0 < t1 < t2 < . . . < tN = T, h =
T − t0

N
, ti = t0 + ih i = 0, 1, . . . , N.

To obtain the Simpson method for numerical solution of system (10), we integrate

the system from ti−1 to ti+1 and use the Simpson method for right hand side of

∫ ti+1

ti−1

y′(s)ds =
∫ ti+1

ti−1

f(s, y(s))ds.

Therefore

y(ti+1) − y(ti−1) =
h

3
[f(ti−1, y(ti−1)) + 4f(ti, y(ti)) + f(ti+1, y(ti+1))]

−h5

90
f (4)(ξ1, y(ξ1)) ti−1 ≤ ξ1 ≤ ti+1. (11)

Equation (11) is an implicit equation in term of y(ti+1). To avoid of solving such

implicit equation we will substitute y(ti+1) by y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ξ2, y(ξ2))

in right hand side of (11) where ξ2 ∈ [ti, ti+1]. Therefore,

y(ti+1) = y(ti−1) +
h

3
f(ti−1, y(ti−1)) +

4h

3
f(ti, y(ti))

+
h

3
f

(

ti+1, y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ξ2, y(ξ2))

)

(12)

−h5

90
f (4)(ξ1, y(ξ1)), ti−1 ≤ ξ1 ≤ ti+1, ti ≤ ξ2 ≤ ti+1.
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But we have

f

(

ti+1, y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ξ2, y(ξ2))

)

= f(ti+1, y(ti) + hf(ti, y(ti))) +
h2

2
f ′(ξ2, y(ξ2))fy(ti+1, ξ3) (13)

where ξ3 is in between y(ti) + hf(ti, y(ti)) and y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ξ2, y(ξ2)).

As the result of above we will have

y(ti+1) = y(ti−1) +
h

3
f(ti−1, y(ti−1)) +

4h

3
f(ti, y(ti))

+
h

3
f (ti+1, y(ti) + hf(ti, y(ti))) (14)

+
h3

6
f ′(ξ2, y(ξ2))fy(ti+1, ξ3) −

h5

90
f (4)(ξ1, y(ξ1)).

where ti−1 ≤ ξ ≤ ti+1, ti ≤ ξ2 ≤ ti+1 and ξ3 is in between y(ti) + hf(ti, y(ti)) and

y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ξ2, y(ξ2)).

Thus we have the following two-step explicit equation for calculation yi+1 using

yi−1 and yi:

yi+1 = yi−1 +
h

3
f(ti−1, yi−1) +

4h

3
f(ti, yi) +

h

3
f(ti+1, yi + hf(ti, yi)) (15)

with initial value y0 = y(t0) and y1 = y0 + hf(t0, y0) +
h2

2
f ′(t0, y0).

4 A Modified two-step Simpson Method for Nu-

merical Solution of Fuzzy Differential Equations

Let Y = [Y , Y ] be the exact solution and y = [y, y] be the approximation solution of

the initial value equation (3) by using the two-step modified Simpson method. Let,

[Y (t)]r = [Y (t; r), Y (t; r)] , [y(t)]r = [y(t; r), y(t; r)].

Also we note that throughout each integration step, the value of r is unchanged.

The exact and approximation solution at tn are denoted by

[Yn]r = [Y n(r), Y n(r)] , [yn]r = [y
n
(r), yn(r)] (0 ≤ n ≤ N),
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respectively. The grid points at which the solution is calculated are

h =
T − t0

N
, ti = t0 + ih 0 ≤ i ≤ N.

By using the modified Simpson method we obtain:

Y n+1(r) = Y n−1(r) +
h

3
F [tn−1, Y n−1(r), Y n−1(r)] +

4h

3
F [tn, Y n(r), Y n(r)]

+
h

3
F [tn+1, Y n(r) + hF [tn, Y n(r), Y n(r)], Y n(r) + hG[tn, Y n(r), Y n(r)]] (16)

+h3A(r)

and

Y n+1(r) = Y n−1(r) +
h

3
G[tn−1, Y n−1(r), Y n−1(r)] +

4h

3
G[tn, Y n(r), Y n(r)]

+
h

3
G[tn+1, Y n(r) + hF [tn, Y n(r), Y n(r)], Y n(r) + hG[tn, Y n(r), Y n(r)]] (17)

+h3A(r)

where A = [A, A], [A]r = [A(r), A(r)] and

[A]r =

[

1

6
f ′(ξ2, Y (ξ2)) · fy(ti+1, ξ3) −

h2

90
f (4)(ξ1, Y (ξ1))

]

r

. (18)

Also we have

y
n+1

(r) = y
n−1

(r) +
h

3
F [tn−1, yn−1

(r), yn−1(r)] +
4h

3
F [tn, y

n
(r), yn(r)]

+
h

3
F [tn+1, yn

(r) + hF [tn, y
n
(r), yn(r)], yn(r) + hG[tn, y

n
(r), yn(r)]] (19)

and

yn+1(r) = yn−1(r) +
h

3
G[tn−1, yn−1

(r), yn−1(r)] +
4h

3
G[tn, y

n
(r), yn(r)]

+
h

3
G[tn+1, yn

(r) + hF [tn, y
n
(r), yn(r)], yn(r) + hG[tn, y

n
(r), yn(r)]] (20)

The following lemma will be applied to show the convergence of our method. For

more details see [3], [6].

Lemma 1: Let a sequence of non negative numbers {Wn}N
n=0 satisfy

Wn+1 ≤ AWn + B, 0 ≤ n ≤ N − 1,
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for some given positive constants A and B. Then

Wn+1 ≤ AnW1 + B
An − 1

A − 1
, 0 ≤ n ≤ N − 1.

Now, we prove the following lemma which will be used to prove the convergence of

our method.

Lemma 2: Suppose that a sequence of non negative {Pn}N
n=0 satisfy

{Pn+1 ≤ APn + BPn−1 + C, 1 ≤ n ≤ N − 1,

for some given positive constants A, B and C. Then

Pn+1 + (α − A)Pn ≤ αn[P1 + (α − A)P0] + C
αn − 1

α − 1
,

where α =

√
A2 + 4B + A

2
.

Proof. It is obvious that A =

√
A2 + 4B + A

2
−

√
A2 + 4B − A

2
. Therefore we

have:

Pn+1 +

√
A2 + 4B − A

2
Pn ≤

√
A2 + 4B + A

2
Pn + BPn−1 + C,

and consequently,

Pn+1 +

√
A2 + 4B − A

2
Pn ≤

√
A2 + 4B + A

2

(

Pn +

√
A2 + 4B − A

2
Pn−1

)

+ C.

If we set Tn+1 = Pn+1 +

√
A2 + 4B − A

2
Pn, then Tn+1 ≤ αTn + C, 1 ≤ n ≤ N − 1,

where α =

√
A2 + 4B + A

2
. By using lemma 1 we have Tn+1 ≤ αnT1 +C

αn − 1

α − 1
and

consequently,

Pn+1 + (α − A)Pn ≤ αn[P1 + (α − A)P0] + C
αn − 1

α − 1

where α =

√
A2 + 4B + A

2
.

Our next result determines the point wise convergence of the modified Simpson

approximations to the exact solution. Let F [t, u, v] and G[t, u, v] be the functions

which are given by the equations (4), (5) where u and v are constants and u ≤ v.

Thus the domain of F and G are defined as the following:

K = {(t, u, v)|t0 ≤ t ≤ T,−∞ < u ≤ v,−∞ < v < ∞}.
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With the above notations in the following we will present the convergence theorem.

Theorem 1: Let F [t, u, v] and G[t, u, v] belong to C1(K) and suppose that the

partial derivatives of F , G are bounded on K. Then for arbitrary fixed r, 0 ≤ r ≤ 1,

the two-step modified Simpson approximations yN converge to the exact solution

Y (T ) uniformly in t. In other word,

lim
h→0

dI

([

y
N

(r), yN

]

,
[

Y N (r), Y N(r)
])

= 0.

Proof: Let Wn = Y n(r)− y
n
(r), Vn = Y n(r) − yn(r). By using the equations (16),

(17), (19) and (20), we conclude that:

|Wn+1| ≤ |Wn−1| +
2Lh

3
max{|Wn−1|, |Vn−1|} +

8Lh

3
max{|Wn|, |Vn|}

+
2Lh

3
[2Lh max{|Wn|, |Vn|} + max{|Wn|, |Vn|}] + h3M, (21)

and

|Vn+1| ≤ |Vn−1| +
2Lh

3
max{|Wn−1|, |Vn−1|} +

8Lh

3
max{|Wn|, |Vn|}

+
2Lh

3
[2Lh max{|Wn|, |Vn|} + max{|Wn|, |Vn|}] + h3M, (22)

where M , M are upper bound for A(r), A(r) respectively which

[A]r = [A(r), A(r)] =

[

1

6
f(ξ2, y(ξ2)) · fy(ti+1, ξ3) −

h2

90
f (4)(ξ1, Y (ξ1))

]

r

.

Consequently

|Wn+1| ≤ |Wn−1| +
2Lh

3
(|Wn−1| + |Vn−1|) +

8Lh

3
(|Wn| + |Vn|)

+
2Lh

3
(1 + 2Lh)(|Wn| + |Vn|) + h3M, (23)

and

|Vn+1| ≤ |Vn−1| +
2Lh

3
(|Wn−1| + |Vn−1|) +

8Lh

3
(|Wn| + |Vn|)

+
2Lh

3
(1 + 2Lh)(|Wn| + |Vn|) + h3M. (24)

By adding above two equations and setting Un = |Wn| + |Vn| we obtain,

Un+1 ≤
4Lh

3
(5 + 2Lh)Un +

(

1 +
4Lh

3

)

Un−1 + 2h3M,
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where M = max{M, M}. By using lemma 2 we have:

Un+1 + (α − A)Un ≤ αn[U1 + (α − A)U0] + C
αn − 1

α − 1

where α =

√
A2 + 4B + A

2
, A =

4Lh

3
(5 + 2Lh), B = 1 +

4Lh

3
and C = 2h3M .

Because of U0 = 0, for n = N − 1 we have

lim
h→0

[

αN−1[U1 + (α − A)U0] + C
αN−1 − 1

α − 1

]

= 0.

Therefore we have lim
h→0

[UN + (α − A)UN−1] = 0 and consequently, lim
h→0

UN = 0 or

lim
h→0

(|WN | + |VN |) = 0. In other word,

lim
h→0

dI

([

y
N

(r), yN(r)
]

,
[

Y N(r), Y N(r)
])

= 0.

5 Numerical Results

In this section we will present two numerical examples. For each of them the theo-

retical exact solution and the numerical solution via our method are shown in the

tables at the end of this section. In order to compare the accuracy we devoted ta-

bles (3) and (6) for the corresponding errors of examples one and two respectively.

It should be mentioned that the difference of two r-level sets [a1, b1] and [a2, b2] is

denoted by E = |a1 − a2| + |b1 − b2|.
As well as the convergence theorem shows, the numerical results also show that

for smaller stepsize h we get smaller errors and hence better results.

Example 1: consider the initial value problem










y′(t) = y(t) t ∈ [0, 1]

y(0) = (0.75 + 0.25r, 1.125 − 0.125r).

The exact solution at t = 1 is given by

Y (1; r) = [(0.75 + 0.25r)e, (1.125 − 0.125r)e], 0 ≤ r ≤ 1.

Using the two-step modified Simpson method approximation and denote:

y
0

= 0.75 + 0.25r, y0 = 1.125 − 0.125r, y
1

= y
0
+ hy

0
+

h2

2
y

0
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and y1 = y0 + hy0 +
h2

2
y0 as initial values, we have:

y
i+1

= y
i−1

+
h

3
y

i−1
+

4h

3
y

i
+

h

3
(y

i
+ hy

i
)

yi+1 = yi−1 +
h

3
yi−1 +

4h

3
yi +

h

3
(yi + hyi).

Example 2: The solution of











y′(t) = ty(t) t ∈ [−1, 1]

y(−1) = [
√

e − 0.5(1 − r),
√

e + 0.5(1 − r)]

is separated between two steps −1 ≤ t ≤ 0 and 0 ≤ t ≤ 1. The exact solution at

t = 1 is given in [6]. To get the Simpson approximation we divide [−1, 1] into even

number N equally spaced subintervals, define y
0

= x0, y0 = x0 and calculate

y
1

= y
0
+ ht0y0 +

h2

2
(1 + t20)y0

y1 = y0 + ht0y0
+

h2

2
(1 + t20)y0

as initial value of two step method. While ti < 0 we have

y
i+1

= y
i−1

+
h

3
ti−1yi−1 +

4h

3
tiyi +

h

3
ti+1(yi + htiyi

)

yi+1 = yi−1 +
h

3
ti−1yi−1

+
4h

3
tiyi

+
h

3
ti+1(yi

+ htiyi)

if ti = 0 then

y
i+1

= y
i−1

+
h

3
ti−1yi−1 +

h

3
ti+1yi

yi+1 = yi−1 +
h

3
ti−1yi−1

+
h

3
ti+1yi

and for ti > 0 we have

y
i+1

= y
i−1

+
h

3
ti−1yi−1

+
4h

3
tiyi

+
h

3
ti+1(yi

+ htiyi
)

yi+1 = yi−1 +
h

3
ti−1yi−1 +

4h

3
tiyi +

h

3
ti+1(yi + htiyi).
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h 0.1 0.01 0.001 0.0001

r

0 2.0369278, 3.0553918 2.0386942, 3.0580414 2.0387111, 3.0580668 2.0387113, 3.0580670

0.2 2.1727230, 2.9874942 2.1746072, 2.9900849 2.1746252, 2.9901097 2.1746254, 2.9901099

0.4 2.3085182, 2.9195966 2.3105201, 2.9221284 2.3105393, 2.9221527 2.3105395, 2.9221529

0.6 2.4443134, 2.8516990 2.4464331, 2.8541720 2.4464534, 2.8541956 2.4464536, 2.8541958

0.8 2.5801086, 2.7838014 2.5823460, 2.7862155 2.5823675, 2.7862386 2.5823676, 2.7862388

1 2.7159038, 2.7159038 2.7182590, 2.7182590 2.7182815, 2.7182815 2.7182817, 2.7182817

Table (1)

r Exact solution

0 2.0387113, 3.0580670

0.2 2.1746254, 2.9901100

0.4 2.3105395, 2.9221529

0.6 2.4464536, 2.8541959

0.8 2.5823677, 2.7862388

1 2.7182818, 2.7182818

h 0.1 0.01 0.001 0.0001

r

0 0.0044587 0.0000427 0.0000004 0.0000000

0.2 0.0045181 0.0000432 0.0000004 0.0000001

0.4 0.0045776 0.0000438 0.0000004 0.0000001

0.6 0.0046370 0.0000444 0.0000004 0.0000000

0.8 0.0046965 0.0000450 0.0000004 0.0000001

1 0.0047559 0.0000455 0.0000004 0.0000001

Table (2) Table (3)

h 0.2 0.02 0.01 0.004

r

0 0.2812197, 3.0102137 0.2894315, 0.0080038 0.2895434, 3.0078982 0.2895744, 3.0078680

0.2 0.5541191, 2.7373143 0.5612888, 2.7361465 0.5613789, 2.7360627 0.5614038, 2.7360386

0.4 0.8270185, 2.4644149 0.8331460, 2.4642893 0.8332143, 2.4642272 0.8332331, 2.4642093

0.6 1.0999179, 2.1915155 1.1050032, 2.1924321 1.1050498, 2.1923917 1.1050625, 2.1923799

0.8 2.5801086, 2.7838014 2.5823460, 2.7862155 2.5823675, 2.7862386 1.3768918, 1.9205505

1 1.6457167, 1.6457167 1.6487177, 1.6487177 1.6487208, 1.6487208 1.6487212, 1.6487212

Table (4)
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r Exact solution

0 0.2895803, 3.0078621

0.2 0.5614085, 2.7360340

0.4 0.8332367, 2.4642058

0.6 1.1050649, 2.1923776

0.8 1.3768930, 1.9205494

1 1.6487212, 1.6487212

h 0.2 0.02 0.01 0.004

r

0 0.0107121 0.0002904 0.0000729 0.0000116

0.2 0.0085697 0.0002323 0.0000583 0.0000093

0.4 0.0064272 0.0001742 0.0000437 0.0000070

0.6 0.0060090 0.0001161 0.0000291 0.0000046

0.8 0.0060090 0.0000580 0.0000145 0.0000023

1 0.0060090 0.0000071 0.0000009 0.0000000

Table (5) Table (6)
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