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Identifiability of shaping filters from covariance lags, 
cepstral windows and Markov parameters' 

Christopher I. Bymes' Per Enqvist3 Anders Lindquist4 

Abs t r ac t  

In this paper; which is an abbreviated version of [8],  we 
study the well-posedness of the problems of determin- 
ing shaping filters from combinations of finite windows 
of cepstral coefficients, covariance lags, or hlarkov pa- 
rameters. For example, we determine whether there ex- 
ists a shaping filter with prescribed window of Markov 
parameters and a prescribed window of covariance lags. 
We show that several such problems are well-posed in 
the sense of Hadamard; that is, one can prove existence, 
uniqueness (identifiability) and continuous dependence 
of the model on the measurements. Our starting point 
is the global analysis of linear systems, where one stud- 
ies an entire class of systems or models as a whole, and 
where one views measurements, such as covariance lags 
and cepstral coefficients or Markov parameters, from 
data as functions on t,he ent.ire class. This enables one 
to pose such problems in a way that tools from calculus, 
optimization, geometry and modern nonlinear analysis 
can be used to give a rigorous answer to  such problems 
in an algorithm-independent fashion. 

1 Introduction 

In this paper we review some basic results in [S] while 
omitting most proofs. We refer the reader to [8] for 
these as well as to additional references. 

It is common to model a (real, zerwmean) stationary 
process { y ( t )  1 t E Z} as a convolution 

of an excitation signal { ~ ( t )  I t E Z} which is a white 
noise, i.e., E{u(t)u(s)} = a,,, where 6,, is one if t = s 
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and zero otherwise. In the language ofsystems and con- 
trol, under suitable finiteness conditions this amounts 
to passing the white noise U through, a linear filter with 
the transfer function w(z) having the Laurent expan- 
sion 

m 

W ( Z )  = x W k Z - k  (1) 
k=O 

for all z >_ 1, thus obtaining the process y as the out- 
put. In addition, we assume that WO # 0 and that 
w(z )  is a rational function, the latter assumption being 
the finiteness condition required in systems and control 
theory. Such a filter will be called a shaping filter and 
the coefficients W O , W I , W ~ , ' .  . the Markov parameters. 
Clearly, any shaping filter must he stable in the sense 
that w(z) has all its poles in the open unit disc. To 
begin, we also assume that all zeros are located in the 
open unit disc. Such a shaping filter will be called a 
minimum-phase shaping filter. 

Then the stationary stochastic process y has a rational 
spectral density 

@(e") = Iw(eis)12, (2) 
which i s  positive for all 6.  It is well-known that the 
spectral density has a Fourier expansion 

m 

* (e")  = rg + 2 r k  cos kb', 
k=l  

where the Fourier coefficients 

r k  = - /" eike@(eis)d6 
2T -1/ 

(3) 

are the covariance lags rk  = E { y ( t  + k ) y ( t ) } .  

The spectral density @(z)  is analytic in an annulus con- 
taining the unit circle and has there the representat.ion 

*(z) = f(.) + f(z-'), 

where f is a 'rational function with all its poles and 
zeros in the open unit disc. Moreover, *(e") = 
2Re{f(e")} > 0 for all 6 ,  and therefore f is a real 
function which maps {lzl 2 0) into the right half-plane 
{Rez > 0); such a function is called positive real. For 
this to hold, the Toeplitz matrices 



must be positive definite for n = 0 , 1 , 2 , .  . . . 

Another way of representing the distribution of the sta- 
tionary process is via the so-called cepstmm 

an entire class of systems or models as a whole, and 
where one views measurements from data or model pa- 
rameters = functions on the entire T~ this end, 
we shall need some basic spaces of systems. Suppose 
the transfer function w is given by m .. 

(11) 
.(Z) k=1 w ( z )  = -, 
4 2 )  

log @(e") = co + 2 cy cos h-8. ( 5 )  

The Fourier coefficients 
where 

a(.) = z" + a1zn-' + ...+ an (12) (6) 

U ( Z )  = Z ' + U I ~ " - ' + . . . + U ~  (13) 
are known a s  the cepstml weficaents. 

are (real) polynomials of degree n with all roots in the 
open unit disc. We shall denote the class of such mooic 
(Schur) polynomials by 8,. 

Finite windows of covariance lags and cepstral coeffi- 
cient can be estimated from an observed data record 

The set Yn of all (a,.) E S, x S, is a smooth, con- 
nected, real manifold of dimension 2n that is diffeomor- 
phic to IRzn. hroreover, we denote by Y: the (dense) 
open subspace of Yn consisting of those pairs (a,.) of 
polynomials which are coprime. It  can be seen that 

Tk = ' ~ Y t + l . Y k ~  (7) Y,, is diffeomorphic to the space Rat(n), first stud- 
ied in [Z], which is a 2n-dimensional manifold with 
n + 1 path-connected components, some of which have 
a rather complicated topology. For nonminirnum-phase 
systems, we need to allow (a,.) to vary over the larger 
space 

n, := S" x n,, 
where II, is the space of real, monic, degree n- 
polynomials. We shall also need to consider the space 
Q;, the (dense) open subspace of Q, consisting of those 

YO, VI ,  Y2, .  . ., YN 

,,f the process { Y ( t )  1 E ~ 1 ,  ln fact, a limited number 
of covariance lags can be estimated via some ergodic 
estimate 

N + l - n  t=Q 

However, we can only estimate 

TQi'l,. . . ,T" ,  (8) 

where n << N ,  with some precision. A complementary 
set of observables are given by the window 

C O ,  Cl,. . . , C n  (9) 

of cepstral coefficients. One topic considered in this 
paper is to investigate the conditions under which 
these estimated coefficients can be used to determine 

(a, .) of polynomials which are coprime. 

minimum-phase shaping filters, i.e., to determine the 
identifiability of such shaping filters from covariance 2 Main Results 

and cepstral windows. 
Our first results show that it is possible to parameterize 

For minimum-phase shaping filters, the cepstral coef- 
ficients used in signal processing are closely related to 
the Markov parameters wo,w1,w2,. . .  defined by (1). 
In more general systems problems, the minimum phase 
requirement is relaxed to allow the numerator polynw 
mial of w to he an arbitrary (monic) polynomial. In 
this case, a record 

ul, w1,. . . ,wn 

of hhrkov parameters are typically determined from 
the impulse response of an underlying system. 

In this paper we are interested in the mathematical 
nature of the transformation of measurements, such 
as covariance lags and cepstral coefficients or hIarkov 
parameters, from data into the parameters of systems 
which produce such data. Our starting point will be 
the global analysis of linear systems, where one studies 

(10) 

minimum-phase shaping filters in terms of a window of 
cepstral coefficients and a window of covariance lags, 
both of which can be estimated from data. It is tempt- 
ing, of course, to argue the plausibility of this result 
by counting parameters. This method typically works 
only when there is a rigorous way to compute the di- 
mension of some geometric object - in this case the 
smooth 2n-dimensional manifold Yn. In this setting, 
the implicit function theorem enables one to compute 
dimensions by computing the rank of certain Jacobian 
matrices. The following theorem is proved in Section 3. 

Theorem 2.1 The normalized covariance lags 
T I ,  '2,. . . ,rn and the cepstml coeficients c1, ~ 2 , .  . . ,cn 
form a bona fide smooth coordinate system on the 
open subset 5'; of Yn, i.e., the map from P; to  W2" 
with wmpon.ents ( T ~ , T Z , .  . . ,T,,,cI, c2, . . . , c,) has an 
everywhere invertible Jacobian matrix. 
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Accordingly, when viewed as functions on P,!,, 
( T I ,  1 '2 , .  . . , r,, c1: c 2 , .  . . ,en) form local coordinates for 
the space ?: of pnlezero filters of degree n. At this 
point, one might hope to he able to use a global in- 
verse function theorem, such a5 Hadamard's Theo- 
rem, to show that these data define a global coor- 
dinate system. In part because of the complicated 
topology of ?:, this is not possible, and instead we 
use a convex optimization scheme to conclude one 
of the important features of a global inverse func- 
tion theorem. Indeed, the very nontrivial consequence 
of our next observation, to be proved in Section 4, 
is that there is a one-to-one correspondence between 
the 2n coefficients r1,r2 , . . . ,  rn,c1,c2 ,..., cn of the 
minimum-phase shaping filter (11) and the 2n coeffi- 
cients al ,azr .  . . , a,:ul, u2, .  . .,an of t,he denominator 
and numerator polynomials of ( l l ) ,  provided the de- 
gree of w is ezactly n. 

T h e o r e m  2.2 Each shaping filter in !J'k deter- 
mines and is uniquely determined by its window 
r l ,  7 3 ,  . . . , T" of normalized covariance lags and its win- 
dow CI,  CZ,. . . , cn of cepstml coeficients. 

As we have indicated, uniqueness follows from the r e  
markable fact that such a modeling filter arises as the 
minimum of a (strictly) convex optimization problem 
(see Section 4). This optimization problem has, of 
course, antecedents in the literature, beginning with 
maximum entropy methods. Recall that linear pre- 
dictive coding (LPC) is the most common method for 
det,ermining shaping filters in signal processing. Given 
the window of (unnormalized) covariance data (8) with 
a positive definite Toeplitz matrix T,, find the (un- 
normalized) shaping filter tu(.), and the corresponding 
spectral density (Z), which maximizes the entropy gain 

subject to the covariance-matching condition 

1 /" e'"@(e")d@ = ~ k ,  k = 0,1, ,  . . , n. ( E )  
2n -n 

For this reason, t.he LPC filter is often called the 
maaimurn-entropy filter. 

Now, observe that the entropy gain (14) is precisely 
the zeroth cepstral coefficient CO. However, in cepstral 
analysis, one is interested not only in CO hut in a finite 
window (9) of cepshral coefficients. It is therefore nat- 
ural to maximize instead some (positive) linear combi- 
nation 

of the cepstral coefficients in the window (9). In view of 
(6), this may be written as a generalized entropy gain 

Poco + P l C l +  ... +P"C, (16) 

. ^* 

where P is the symmetric pseudopolynomial 

P ( z )  = po + i p l ( z +  z- ' )  f . .  .+  f p , ( ~ "  + 2-"), (18) 

We shall say that P E 'D if P is nonnegative on the 
unit circle and P E 'D+ if i t  is positive there. 

Now, it can be shown that the problem of maximizing 
(16) subject to (15) has a finite solution only if the 
pseudo-polynomial (18) belongs to 'D. Moreover, if P E 
'D+, there is a unique solution @, and this solution has 
the form 

where Q E 'D+. To determine Q we need to solve the 
dual problem 

where J p  is the strictly convex functional 
m 

1 
.Jp(q) = To40 + ... + Tnqn - - Plog  QdO. (21) 

This is precisely the optimization problem considered 
in [6], where it was shown that the dual problem has 
a unique solution that belongs to 'D+. In view of (2), 
we have therefore determined the unique shaping filter 
(11) that  matches the covariance data (8). Hence, we 
have the following result that  first appeared in [5] .  

2x L 

Theorem 2.3 Let T O ,  rlr . . . , T, be a partial covanance 
sequence. Then, to any stable polynomial (13) of degree 
n, there corresponds a unique real stable polynomial 

a(z)  = aozn +alz"-' +. , . + a,-1z + a, 

of degree n such that @(e'#) := lqlz .(e' ) satisfies (1.5). 

Theorem 2.3 was conjectured by Georgiou [12] as a 
solution to the partial covariance extension problem 
posed by Kalman [13]. Georgiou had already estab- 
lished the existence part, but a complete proof of the 
conjecture was given much later in [SI. Similarly, in [SI 
we also showed 

Theorem 2.4 The normalized covariance lags 
l ' l , r t , .  . . , r, and the zem coeficients ~I,UZ,. . .,a, 
form a b0n.a fide smooth coordinate system on the 
open manzfold ?,, i.e., the map from P, to W2" 
with components ( T I ,  rz, . . . ,r,, ai, az, . . . ,a,) has an 
everywhere invertible Jacobian mat%. 

While the stochastic realization problem amounts to d e  
termining shaping filters w having a fixed window of 
covariance lags TO:  T I , .  . . , r,, t.he object of the deter- 
ministic realization problem is to find shaping filters w 
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with a fixed window W O ,  W L , .  . . , wn of Markov param- 
eters (IO). An important question is whether the two 
problems can he solved simultaneously so that both in- 
terpolation conditions are satisfied at  the same time. 
This problem has been studied in the literature as the 
9-Markov Cover problem (see [15, 14, I], where it has 
been used as a tool for performing model reduction). 
In  Section 3, we derive the following results for coordi- 
nization by covariance data and Markov parameters. 

T h e o r e m  2.5 The normalized covariance lags 
r1, r2,. . . , rn and the normalized Markov parameters 
w ~ , w ? , . . .  :wn form a bona fide smooth coordinate 
system on Q,, i.e., the map f m m  Q:, to Rz" with 
components (r l ,  r2,. . . .rn, wl, w?, . . . , w,) has an 
everywhere invertible Jacobian matrix. For each 
choice of a covariance window and a Markov window, 
there exists exactly one shaping filter matching these 
windows. 

3 Global analysis on P, and Qn 

For each a E S,, define ?"(a) to be the space of 
all points in 9, with the polynomial a fmed. If we 
define ?"(U) analogously, then ?"(a) and ?,(U) are 
real, smooth, connected n-manifolds. In fact, both are 
clearly diffeomorphic to S,, and hence to W". Now, the 
n-manifolds {Pn(a)  I a E S,} form the leaves of a fu 
liation of Pn, as do the n-manifolds {?,,(U) 1 U E S,,}. 
hloreover, these two foliations are complementary, in 
the sense that if a leaf of one intersects a leaf of the 
other, the tangent spaces intersect in just (0,O). This 
transversality property is equivalent to the fact that 
the functions (a,.) form a local system of coordinates. 

We now turn to the cepstral functions and the covari- 
ance functions. Let g : 3'" + Wn be the map which 
sends (a,.) to the vector c E W" with components 

(22) 
and let e, := g(Pn). Then, for each c E e,, the subset 

can be seen shown 181 to he a smooth, connected man- 
ifold of dimension n. 

Next, let h : 9, - R" he tpe map which sends (a,.) 
to the vector r E R" of normalized covariance lags with 
components 

and let 31, := h(9") .  Of course, any r E 2, satisfies 
the positivity condition (4) with rg = 1. In [SI we prove 

that 
Tn(r) = hK1(r)  

is a smooth, connected manifold of dimension n for each 
r E a,. Let T(n,m)Pn(r)  and qn,c)9n(c)  he the tangent 
spaces at (a,.) of Pn(r) and Pn(c), respectively. 

T h e o r e m  3.1 The two families of n-manifolds: 
{?"(e) 1 c E e,} and {Pn(r) 1 T E 31*}, eachform 
the leaves of a foliation of Pn. For each (a,.) E 
Pn(r) nP,(c), the dimension of 

0 := T(o,o)9n(r) nq,,,$dc) 

equals the degree of the greatest common divisor of the 
polynomials a(.) and u ( z ) .  

Consequently, the foliations {PPn(r) I r E an} and 
{Pn(c) I c E e,} are complementary at a,ny point 
(a ,  U )  E P,, where a and U are coprime. From this it 
follows that the kernels of Jac(g)l(,,,) and Jac(f)Ic.,.) 
are complementary at any point (a,.) in P:. In 
particular, the Jacobian of the joint map (a>.) - 
(TI, rz.. . . ,r,,,cl.c~, . . . ,cn) has full rank, and, by the 
Inverse Function Theorem, the joint map forms a 
smooth local coordinate system on 3';. This proves 
Theorem 2.1. 

As an illustration of this result, the shaded region of 
Figure 1 depicts the cepstral (dotted line) and the c,o- 
variance (solid line) matching foliations of PI. The rest 
of Figure 1 will he explained next. 

Next, we determine whether the windows To, 1'1,. . . , r, 
Z L ' O , ~ ~ . ' . .  ,wn of covariance lags and and hlarkov 
parameters, respectively, provide a bona fide set of 
smoot,h coordinates of Q,. Thus let $ : Q, + R" 
be the map which sends (a,.) to w = ( w l ,  w z , .  . .,U"), 
and let W, := 7L(Qn).  Given any w E Wn, it is not 
hard to see that 

Q,(w) := $-'(w) 

is a smooth, connected n-manifold. Moreover, the n- 
manifolds {?,,(to) I w E $(9,)}, where 

T,,(w) := Q , ( ~ ) ~ P , ,  

form the leaves of a foliation of P,,, which is identi- 
cal to {Pn(c) 1 c E c"}; see 181. The dotted lines in 
Figure 1 also represent { P 1 ( w ) } ,  which hence coincides 
with {Pl(c)} in the shaded region. 

The covariance matching foliation can also he extended 
to non-minimum phase shaping filters, as illustrated in 
Figure 1 (solid lines) for the case n = 1. In fact, let 
4 : Q, - R" he the map that sends (a,.) to thevector 
r E R" of normalized covariance lags (23). Clearly, 
$(Q,) = a, := h(Pn).  Given any r E a,, define 

Q,(T) := $-'(r). 
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Figure 1 

Theorem 3.1 The two famzlzes of n-manzfolds, 
{Q,(w) I m E W,} and {Q,,(r) I r E %}, each form 
the leaves of a folzataon of Q,. Moreover, 

T(..&(d nT(*,&(r) = 0 (24) 

for  any copnme (a,.) E Q,(w) n Q,(r) 

This establishes that the Jacobian of the joint map 
(a,.) - (TI,  rp,. . . , r , ,w1,wz , .  ..,U,) has full rank, 
and, hy the Inverse Function Theorem, the joint map 
forms a smooth local coordinate system on Q;. This 
proves the first statement of Theorem 2.5. 

Figure 1 illustrates the fact that  the coxariance folia- 
tion (solid line) and the Markov foliation (dotted h e )  
are everywhere transverse. This figure also suggests 
that each leaf of the Markov foliation meets each leaf 
of the covariance matching foliation, a fact we shall 
~ now e s t a h l i e a  slightly generalized form. As above, 
Q,(r) and Q,(w) denote the closures of the suhmani- 
folds a,(?-) and Q,(w), respectively. 

T h e o r e m  3.2 The closure of every leaf of the Markov 
foliation intersects the closure of any leaf of the covari- 
ance matching foliation. Moreover, either the leaves 
themselves intersect, or every point of intersection is 
of the form (a, U )  where a has some mots on the unit 
circle and U vanishes a t  each of these mots whale the m- 
tio has the prescribed covariance and Markov windows. 

Since, according to - Theorem 3.2, any intersection b e  
tween Q,(r) and Q,(w) on the boundary of Q, defines 
a pair (a,.) of polynomials whose roots on the unit cir- 
cle are common, after cancellation, w(z) = u(z)/a(z) 
has all its poles in open unit disc and is thus a bona fide 
shaping filter. Consequently, Theorem 3.2 establishes 
the existence part of the last statement of Theorem 2.5. 
The uniqueness part needs a separate proof that can he 
found in 181. 

4 Identifiability of shap ing  fi l ters f r o m  cepstral 
and covariance windows 

The analysis preceding Theorem 2.3 motivates the 
construction of a functional that will he the key 
in establishing uniqueness of minimum-phase shap- 
ing filters having prescribed windows To, T I , .  . . , rn and 
c1, cp, . . . , c, of covariance lags and cepstral coefficients, 
respectively. hlore precisely, following Enqvist [ll], 
consider the (primal) problem of finding a spectral den- 
sity 

m 

*(e'*) = f0+2C fkCOSk8 (25) 
k=l 

which maximizes the entropy gain 

over the class 3+ o f f  such that (25) is positive for 
all 8, subject t o  the covariancelag matching condition 
(15) and t.he cepstral matching condition 

This is a simpler primal optimization problem than 
that considered in [SI, but it has the same dual. 

Taking q o , q I , .  . . , qn and p 1 , p 2 , .  . . , p ,  to he the La- 
grange multipliers for the constraints (15) and (27), 
respectively, we obtain the Lagrangian 

which, setting po = 1, can he written in the more com- 
pact form 

L(f I P ,  4)  = r a m  + . . . + rnqn - c m  - . . . - c,p, 

+ L / n [ P l o g * - Q @ ] d 8 ,  2n _* 

which clearly can have a finite minimum only for those 
values of the Lagrange multipliers for which both P 
and Q belong to D. For such Lagrange multipliers, if 
the function f c L(f,p,q) has a minimum, then 

or, equivalently, (19) in the minimizing point, which 
inserted into the Lagrangian yields the dual functional 
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where the functional 

J ( P , Q )  = roqo + .. .  + r,q, - clpl - . . . - c,p, 

is convex, but not necessarily strictly convex. 

Now, a straightforward calculation shows that 

I; = 0,1,. . . ,n, (29) aa - rk - S_: eakO-- P d0 
a P k  Q 271' 
- -  

P d 8  
e*" log -- - ck, k = 1,. . . , n. (30) aa 

Q 271 

Consequently, if J has a stationary point at (P.4). 
then this point will define a Q that  satisfies both the 
covariance matching and cepstral matching conditions. 
Unfortunat,ely, while there is always apoint ( P ,  Q )  such 
that  (29) is zero, it may happen that  (30) is never zero. 

Theorem 4.1 The dual problem to minimize J (P ,Q)  
over-all (P, Q )  E 'D x 'D such that pa 1 has a solution 
( P , Q ) ,  and, for any such solution, Q E 'D+, and 

satisfies the covariance matching condition (15). If, 
in addition, a E 'D+, then (31) is a solution of the 
primal problem, i.e., there is both covariance matching 
and cepstral matching. A minimjzing ppint ( P ,  Q )  E 
'D+ x'D+ is unique if and only if P and Q are coprime. 

Therefore, in particular, we have proved Thec- 
rem 2.2. In fact, given any (a,.) t T';, 
a window (r1;" , T , , C I ; . .  ,en) is uniquely deter- 
mined from (23) and (22). Conversely, given 
( T I ; . .  , r , ,c~," '  ,cn) ,  the optimization problem of 
Theorem 4.1 yields a (a,.) E T',, which matches this 
window and is unique if and only if (a,.) E T';. 

/ " " " " I  

Figure 2 shows the periodogram of a frame of speech 
for the phoneme [SI together with a 10th order spectral 
envelope produced by this method. In this case, P E 
D+, so there is both covariance and cepstral matching. 
In general, however, this is not the case, but then good 
approximate results can still be achieved by stopping 
the iterations before P reaches the boundary of 'D [lo]. 
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