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A New Approach to Spectral Estimation: A Tunable
High-Resolution Spectral Estimator

Christopher I. Byrnedrellow, IEEE Tryphon T. GeorgiouFellow, IEEE and Anders Lindquistellow, IEEE

Abstract—Traditional maximum entropy spectral estimation The computational procedures in iii) come in two forms: For
determines a power spectrum from covariance estimates. Here, the default setting when the spectral zeros are chosen equal
we present a new approach to spectral estimation, which is based ;5 the filterbank poles, a particularly simple algorithm, based

on the use of filter banks as a means of obtaining spectral inter- th led tral soluti f the classical int lati
polation data. Such data replaces standard covariance estimates, O the So-called central solution ot the classical interpoiation

A computational procedure for obtaining suitable pole-zero theory, is available. For any other setting, a convex optimiza-
(ARMA) models from such data is presented. The choice of the tion problem needs to be solved. The theory for this was intro-

zeros (MA-part) of the model is completely arbitrary. By suitably  duced in our companion paper [10] and for a similar problem in

choices of filterbank poles and spectral zeros, the estimator can 1g) | this paper, we consider only real processes. However, the

be tuned to exhibit high resolution in targeted regions of the . . .

spectrum. framewo_rk is quite general and applies also to complex-valued
stochastic processes [11].

Typically, the resulting spectra show significantly higher res-
olution as compared with traditional linear predictive filtering.
Moreover, they appear to be more robust than linear predictive
|. INTRODUCTION filtering due to the fact that we use statistical estimates of only

N THIS PAPER, we present a novel approach to Spectr{,ﬁroth—order, or first-order, covariance lags, as opposed to high
estimation, WhiCi] relies on new results in analytic interpolf—rder lags. Therefore, THREE appears to be especially suitable

tion theory developed in [10] and based on efforts by the auth pév\tl)eigg applied to shhort o?;ert)yzla_tionfreﬁords. h in ident
over a number of years [2]-[10], [16]-[18]. e demonstrate the applicability of the approach in identi-

The approach leads to a tunable high resolution estimaf}ﬂn_g _spectral lines and in estlmat!ng power spectra V.V'th steep
(THREE) that is based on three elements, namely variations. Such problems occur in many areas of signal pro-
Y a bank of filters: ’ cessing and statistical prediction. In particular, in communica-

..') a bank of hiters, . tions, radar, sonar, and geophysical seismology, spectral anal-
ii) a theory for pgramete.rlzmg thg complete set of spec:%is methods that estimate or describe the signal as a sum of
;hat al;e c%nsc;stent vlwthtthe filter measurements” a armonics in additive noise [29, p. 139] are needed. The case

- nhave tOltJ.n el compdeX| y,f ructi ra f when the noise is colored is considered especially challenging.

i) (;ltq)mput?ona_bprg(_:e”ures or constructing spectra rO'1qherefore, we illustrate the effectiveness of THREE filters for

e set described in ii). ) . . the problem of line-spectra estimation in colored noise and com-

The purpose of the t_Jank of filters IS to process, in parall are with periodogram and AR-based methods. We also demon-
the observation _record n order to Obt‘."“n estimates of the POYEate the effectiveness of THREE filters in estimating spectra
spectrum at desired points. These points are related to the fl|%|'

S . th zeros and poles close to each other.
bank poles and can be selected to give increased resolution OV&he structure of the paper is as follows. In Section Il, we intro-

de;sw;a(tj freg:Jency ban;js. The th_eoryk;n ) |mpllllez that i STCOHGCe the bank of filters and discuss how the covariances of their
SE€t of lunable parameters are given by so-called spectra Ze&ﬁf‘puts provide estimates of the power spectrum at the reflected

that determine the moving-average (MA) part of solutions. T%\Elble positions. The variability of such statistical estimates and
0

solutions turn out to be spectra (.)f auto-regressive/moving-gys, they are affected by the position of the poles is briefly con-
erage (ARMA, filters of complexity that are at most equal t idered. Section Ill presents the basic elements of analytic inter-

the dimension of the filter bank, and hence, the method providgs;iion that are relevant to the current problem. The classical

parametric spectral models. results are reviewed first, and then, our recent theory of analytic
interpolation with degree constraint is explained in the context

. . . _of spectral estimation. In Section |V, the computational proce-
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presented. This is based on a generalized concept of entropy and/e first describe how to estimate the value fgt) at any
leads to state-space formulae for the bounded-complexity intdesired point inz| > 1 from the data (2.1).

polants. The section is concluded by simulations illustrating the

improved resolution of the THREE method in comparison with- Evaluation off at a Point

other _methods. B _ Consider a first-order stable linear filter with transfer function
To_|mpr0v§ readab_lllty, we defer mgthematlcal proofs and(z) = z/(» — p), where|p| < 1, and letu be the stationary
certain technical details to the Appendixes. process obtained as the output of the filter when drivery by
Then

Il. FRAMEWORK FORSPECTRAL ESTIMATION

Let {y(t);t = ---,—2,-1,0,1,2,---} be a scalar, u(t) = pult = 1) +u(*) (2.6)
real-valued, zero-mean, stationary (Gaussian) stochasiitd, hence, we have
process, and consider the basic problem of estimating its power
spectral densityb(ci?), § € [—n, ] from a finite observation  E{u(t)*} = E{(y(t) + py(t — 1) + p*y(t — 2) +---)*}

record =co(l+p2+p*+-)
2 1 2 LI
{210721172127"'7211\’}- (21) + 61p§ +p 2+p 4+ )
+ 2cp* (1 +p* +p* 4+ )+
Modern spectral estimation techniques typically rely on esti- 2 .
mates of covariance lags 1o fr) (2.7)

C0,C1,C2, " Cny, Where ¢ :=E{y(t)y(t+k)}. (2.2) and consequently

Heren < N,and H-} denotes mathematical expectation. Typ- fr) = 51— p?) E{u(t)?}. (2.8)

ically, these estimates are obtained either by suitable avera irhq . . lati dition foft. It should b dthat if
of productsy; ;4 Or by estimating the partial autocorrelation’ " S Is an interpolation con .|t|on of. It shou epote thati
a complex number, thenis a complex stochastic process. In

coefficients first by using averaging schemes such as Bur hés 2 t the traditional . Th wal
algorithm. In either case, the statistical reliability of such e his caseE{u(t)"} is not the traditional covariance. The actua

timates decreases with the ordeof the lag due to the fact that covariance IS
averaging takes place over a shorter list of such cross products.

_fleH+ Y

In this paper, the function Efu(tyu(t)} = 1—p]?
1 = o) 2 + e " 23 where bar denotes complex conjugation, but since we want to
flz) = 4r . (™) z— ¢ (2.3) preserve “phase information,” we prefer to use (2.8). We should

also mention that in the complex case, the system with transfer

will play a key role. Itis analytic iz| > 1and has a positive functionc¥() is equivalent to a second-order real system, which
real part there—such functions are calfgmsitive real In fact, s easy to derive.

the spectral density can be written as
B. Bank of Filters

(") =2 Re{f(c" 2.4
(") D) (2:4) Next, given any choice of distinct real or complex numbers
and f admits a series representation Po,P1,°*,Pn N the open unit disc and the corresponding
transfer functions
f(z) = %Co-i-clz_l O e T R .
for 2| > 1. (2.5) Grl(z) = —~ k=0,1,---,n (2.9)

Equation (2.3) provides a bijective correspondence betweeensider the bank of filters depicted in Fig. 1. In this parallel
positive-real functionsf and functions®, which are positive connection, each filter is first order if complex arithmetic is
on the unit circle. We should note that in generalhas to be used and always first-order whetis real. Otherwise, each com-
interpreted as a distribution, and in such a case, (2.4) has toix pair(p, p) corresponds to a second-order filter, as explained
understood a®(c?) = 2lim,~; Re{f(re"?)} a.e., whereas above. Then, the values of the positive real functfdn) at the

“spectral lines” correspond to poles ¢fz) on the boundary points{pg*,p;*, -+, p; '} can be expressed in terms of the co-
|z| = 1. variances of the outputgy, uq, - - -, u,, Of the filter bank as in

In this context, traditional spectral estimation techniqudg-8). The idea is now to estimate these covariances from finite
amount to estimating the real part ¢f~) from estimates output data generated by the filter bank, thereby obtainirg
of its value atoo and on the values of finitely many of itsinterpolation conditions.
derivatives abo. By way of contrast, our approach is based on | _
the observation that the values pfz) at points other thanc ~ C- Pick Matrix
can be estimated directly from the data (2.1). The computationA central object in analytic interpolation theory is the
of such a positive reaf(») and, hence, an estimate fd(c*®), so-called Pick matrix This matrix arises naturally in the
is the subject of the theory discussed in Section lll. context of our filter bank as the covariance of the vector
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> Go(2) Yo Moreover/}, is not, in general, a Toeplitz matrix. If, instead, we
use the covariance estimate
U
Y 4 Gl(z) —li- 1 N
: “ &y = N_rk Z YtYt—k
Gn(2) = t=k

the corresponding Toeplitz matrix may not be positive definite,
which is something that may be rectified by dividing By+ 1
rather thanV — %, by windowing, or by using Burg’s algorithm.

Fig. 1. Bank of filters.

processu defined with the output processes, u1,---,u, as Inany case, any of these methods suffers from the drawback that
components. In fact reliability of the estimate;. of the covariance lag;. decreases
considerably ag grows, especially for relatively short time se-
_ E{u( O ries [24].
_ _ By way of contrast, our method requires only estimating the
[ wo +wo wo+ Wy wo + Wy . . . . h
1 1 R zeroth covariance lag or possibly the first covariance lag in the
— PoDo — Poby ~ Pobp complex case. It is known that the sample variance of the co-
w1 +wWy Wy + Wi Wo + W, . .
— e — variance estimate
= |1=-ppy 1-—mp 1-pibp, (2.10)
: : . : 1 N
. . . . N 2
Wy, + Wo Wy, + W1 Wy, + W, CO'_N+1 Zyt
L 1- pnﬁo 1- pnﬁl 1- pnﬁn a =0
where is given by
Wi :f(pljl) kIO,l,TL Var(Co) 2 i Cz.
N+1 .
o

Thus, an alternative way to estimgﬁ@a;l) is through estimates .

of the Pick matrixp as a Sample covariance ﬂ(t) (See [24, Sec. 481, Eq (486)]) HOWeVer, using Parseval’s the-
In this paper, we only consider distinct poipis p1, - - -, p. Orem, this can be expressed in terms of the spectral density

The general case will be presented elsewhere [11]. For examﬁ?éC ) as follows:

the usual Toeplitz matrix

var(ég) = ——— /w 1D (ci) 2d6.

A(N+D) ),
Co C1 Cp,
T o= A 2.11) Therefore, ignoring any transient effects and assuming that
" : : - : ' the output process of a filter G(») driven byy is stationary,

Cn Cn1i '+ Co the sample variance of the estimate
formed from the partial covariance sequence (2.2) is the Pick . 1 N )
matrix for the case in whichy = p; = --- = p, = 0, in co(u) == N+1 Z Uy (2.12)
which case, the filters in the bank are choseitzaéz) = »—* t=0

for k = 0,1,---,n. This is the case considered in usual AR ecomes
modeling from covariance data.

var(éo(w) = ———— /W G [ 0()? db.  (2.13)

D. Statistical Considerations (N+1) J_.

This brings us to the statistical reasons for our new approa
In fact, for AR modeling from covariance estimates, we need to
estimate the Toeplitz matrix (2.11) from the data record (2.1). 1]
this is done via

Cﬂﬂs quantlfles the effect of the frequency responsé&/of) =

) for real p on the variance of statistical estimators
rf( *1 when estimated by (2.12). In the simple case where
6

Yt 9 1 +p2
al var(éo(u)) = —— — P
~ 1 Ye—1 0 Nr1 (1 — 2)3
1, = B n P
N —n ?:n: : [ye 1 Yt—n)
Ly In general, the shape ¢f(¢*)| and its relation td®(e**)| has

a direct effect on vd£y(w)). The analysis for complexis sim-
wheré€ denotes “the sample estimate of,” then a significant paitar. The general observation is that choosing the filter poles too
tion of the data has not been fully utilized in estimating loweslose to the unit circle may produce larger errors. Such a strategy
order covariances due to the large time-lag of some of the filtevgll also produce more accentuated transients and is therefore
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not without cost. We expect that detailed statistical analysis wilrms of a suitable (generalized) Pick matrix, and all solutions
point to suitable rules for dealing with the relevant tradeoffs. are parameterized by a linear fractional transformation. See the
standard mathematics literature [20], [28], [30], and [31] for
IIl. | NTERPOLATION THEORY FORSPECTRAL ESTIMATION details.

In the following, we assume that the filterbank poleg Interpolation with a Degree Constraint

Ppo,P1, -, Pn are distinct withpy, = 0 and complex poles . ) . .
occurring in complex pairs. The conditigy = 0 implies that This classical theory is very elegant, but the parameteriza-

Go = 1 so that the process is itself one of the filterbank tion of all solutions to the interpolation problem includes func-
outputs. Now, estimating the spectral densityfrom finite 1ONS that may have very high degree, or even be nonrational,
observation records of the outputs of the filterbank amountsﬁ‘&d provides no means of characterizing those solutions that sat-

determining a positive real functiofsuch that isfy the degree constraint (3.3). One particular such solution (the
so-calleccentral solutionto be described below) is obtained by

f(PZI) = wy, k=0,1,---,n (3.1) atrivial choice of the free parameter, but a complete parame-
terization of all solutions satisfying (3.3) requires a new para-
where digm. In fact, the requirement that the degree of the interpglant
. . be at most: imposes a (highly nontrivial) nonlinear constraint
wy := 5(1 = pi)éo(ur), k=0,1,---,n (3-2)  on the class of solutions. The study of this constraint solution
o . . . . set has led to a rich theory, [2]-[10] and [16]-[19], which has
with éo(uo). éo(u). - -+ éo(uy) estimated as in (2.12). (Alter- 1o, 14 the following complete parameterization of all such so-

natively, if real arithmetic is required, statistical estimates COQitions in terms of spectral zeros. We recall that a polynomial
sistent with the analysis in Section II-C could be used.) The@, calledstableif all its root are located in the open unit disc

(2.4) provides us with an estimate of the spectral density ; < 1}
yl S!?ce we IWant th|§ efrt]m;ate to be rational of minimal com- 1 oo 3 1:Let Po.p1.- - pw be a self-conjugate set of
piexity, we aiso require tha distinct points inside the unit circle andy, w1, - - -, w,, a cor-
degf < n (3.3) responding self-conjugate set of values in the right half plane,
- with the property that the Pick matrix (3.4) is positive definite.
i.e., thatf is a rational function of degree at most Then, to any real stable polynomial

) .oon—1 . . .
A. Classical Interpolation Theory plz) = 2" 42"t oz

For the moment, let us ignore the degree constraint (3.#)ere corresponds a unique pair of real stable polynomials

Then, given interpolation pointg, p1, - - -, p» inside the unit N -
circle and valueswg, w, - - -, w, in the right half plane, the a(z) = apz" +a12""" +---+an and
problem to determine all positive real functiorissatisfying B(z) = boz" +bi2z" " 4 4 by

(3.1) is a classical analytic interpolation problemNegan-

linna—Pick interpolatio, which has its roots in classical©f degreen such that

mather.nat|cs'gomg pack to the end of the 19th century, on a(2)B(z1) + Bl2)alz~L)

approximate integration, quadrature formulae, and the moment

problem. The foundations of Nevanlinna-Pick interpolatiognd the rational function

were laid out by Carathéodomst al. in the beginning of the

20th century; see, e.g., [15], [20], and [31]. The subject evolved f(z) =

into a rich topic in operator theory [28], [30]. p2)
The Nevanlinna-Pick theory states that a solution exists if apfipositive real and satisfies the interpolation condition

only if the so-calledPick matrix

=p(2)p(z"")  (35)

a(z)

(3.6)

(3.4) This theorem, here presented in a special form adapted to

self-conjugate interpolation data, also holds in the more general
is non-negative definite. In the case thaf is positive semi- case where the interpolation data are of the Carathéodory-Féjer
definite but singular, the solution is unique. In the c&%e > type, i.e., includes constraints on the derivativef¢t), and
0, the complete set of solutions is given by a linear fractionalas first formulated in the special (Carathéodory) case with
transformation, which is constructed from the interpolation datasingle multiple interpolation point at = oo, which is the
acting on a “free” parameter, which is only required to haveo-called rational covariance extension problem. Existence was
certain analytic properties, e.g., to be a positive-real functidiirst proven in this context in [16] and [18] and uniqueness,
A detailed exposition can be found in [31]. as well as well-posedness, in [5]; see [7] and [8] for alterna-
A generalization of the problem known as the Carathéodonjve proofs. Existence for the distinct point Nevanlinna—Pick
Fejér problem allows for the possibility th#tz) is specified problem was proven in [17] and uniqueness in [19]. Theorem
both in terms of values and derivatives up to some order at poifitd is available in a somewhat more general form, allowinhg
outside the disc. Again, the solvability condition is expressed Irave roots on the circle [19].

P, = [L}k +wé}"

1= prPel s o
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However, all these proofs are nonconstructive, and thusquired, e.g., in Theorem 3.1. The THREE method relies
they do not provide a method of solution. A constructiven the preceding interpolation theory and identifies transfer
proof based on convex optimization was presented in [9] féunctionsg, as in (3.9), such thdy(c*?)|? are approximations
the Carathéodory case and in [10] for the Nevanlinna—Pick the power spectrun®(c*®) of y. Thus, a proces§j(t)}icz
problem. This result, as well as an algorithm based on it, wilat is obtained by passing (hormalized) white ndig€&)}:cz

be presented in Section V. through the modeling filter

The theorem extends to interpolation of matrix-valued func- 5
. - . . . - v Y
tions (see [16], where existence of solutions were shown in the white noise — | g(z) | —

context of Carathéodory interpolation). An approach general- o o _
izing this result to the context of the commutant-lifting theornd letting it come to a statistical steady state will generate a

is the subject of [11]. statistical approximant af. The relevant ARMA model is given
Dividing (3.5) by cv(z)a(z 1) yields by the difference equation
F(2)+ Fz Y = g(2)g(zY) (3.8) aof(t) + arf(t — 1) + -+ and(t — n)
where =vt)+rivt—1)+---+rp(t—n). (3.13)
p(2) Consequently, we will refer te,, 72, - - -, 7, as theMA param-
g(z) = a(z) (3.9) etersand toag, ay, - - -, a, as theAR parametersf the THREE

filter (3.13). The complete set of MA and AR parameters will
i.e, (3.9) is the minimum-phase spectral factor of the spectigé called tha HREE filter parameterdn this context, Theorem
density (3.8). For this reason, we will refer to the rootpafs 3.1 states that to any choice of MA parameters [suchyhatis
thespectral zeroof f-In this notation, Theorem 3.1 states thaé stable po|ynomia|], there Corresponds a unique choice of AR
to each self-conjugate setofpointsoy, o3, - - -, o inside the  parameters [withy(z) likewise stable] so that the positive-real
unit circle, there is a unique stable polynomial part of the spectral density satisfies the interpolation conditions
(8.1). Hence, the MA parameters can be chosen arbitrarily. It

_ n n—1 .
o(z) = aoz" + 02" 4t a1z + 0 (3.10) g interesting to note that the analogous statement for the AR

so that the positive-real paftof parameters is false. In other words, an arbitrary choice of AR
. parameters may not have a matching selection of MA parame-

p(z)p(z™1) with p(z) = H ( — o) ters so that together they meet the required constraints.
a(z)a(z"1) i s i Theorem 3.1 is an existence result. The computational

o _ . N problem at hand amounts to the following: Given a choice
satisfies the interpolation conditions (3.1). Moreovegf MA parameters [withp(z) stable as usual], find the cor-
01,02, --,0, are the spectral zeros of the interpolafit responding set of AR parameters and, hence, the unique
Once bothy and« are known, the stable polynomial pair («,3) of stable polynomials satisfying (3.5)—(3.7). In

B(z) = bo" + b1 2"+ 4 b1z + by (3.11) conclusion, there are two sets of design parameters:

i) the filterbank parameterg;,ps,---,pn, po = 0 being
is uniquely determined by (3.5). In fact, identifying coefficients fixed, which we represent as the roots of a polynomial
of like powers inz, the coefficients of? are seen to satisfy the

system of linear equations in (3.12), shown at the bottom of the(,y ._ (= pe) = 2" 472" b b a1z T

—=

page, which has a unique solution for any stable polynomial Pt
a(z). (3.14)
C. Application to the Problem of Spectral Estimation and
As suggested earlier, passing data (2.1) through a bank ofi) the MA parameters-,ry,---,r,, or, alternatively, the
filters with a pole settingpg, p1,---,p, and estimating the spectral zeros, oy, - - -, o, Which are the roots of
covariance of the output variables gives a set of parameters n
wi, w2, -+, wy Via (3.2). In the ergodic limit, the corre- p(z) := H (z—op)=2"4r2" 14+ 12+
sponding Pick matrixP,, which is defined by (3.4), will k=1
be given by (2.10) and, hence, must be positive definite as (3.15)
ago e U2 Ap1 Up ag al as e (o799 bo 1 + 7’% + 7’% + e + 7’%
a1 ap ar - Ap_t b1 1+ 7172+ Th—1Tn
as - a, + ag - Gp_2 bo | = | rot7TiTs+TR_omy (3.12)

[¢7% [270) bn Tn
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The power of THREE filtering stems from the flexibility in satisfying these. conditions is given by a linear fraction trans-
the above choices. In particular, if reliable approximation dérmation

0y i ifi
o (e*) is required over some specified part of the spectfum Mi(2)e(2) + Ma(2)

S C [, 7], this can be accomplished by placing the filterbank f(z)= (4.2)
polespo, p1,- - -, p,, Near the corresponding afe’|d € S}. M3(2)(7) + Ma(2)

However, it should be noted that the filterbank poles must n\‘%erew is a positive real function, and

be selected too close to the circle because then, statistical es-

timates of the output covariances become less reliable, as ex- M) — Mi(z) My(z) 43
plained in Section Il. We should also mention another related () = M3(z) My(2) (4.3)

caveat. If the observation record is too short, the Pick matrix

may fail to be positive. In this case, we must either collect mot@ the (/-unitary) rational matrix function (4.13) that depends
data, select a different set of filterbank poles (e.g., select a nethe interpolation data. The proof is deferred to Appendix A,
set closer to the origin or simply a subset of the existing one), Whereas the construction of tié(z) is described in this sec-

add a small positive bias to the estimated valugsw:, - - -,w, tion. The particular choice
(e.g., add to each a constantarger than the absolute value M M
of the minimal negative eigenvalue &f, £, whereE,, = f(z) = M (4.4)
[2/(1 = 2B} o) _ Ms(z)p+ Ma(2)
There is a special default ;ettmg o_f the spectral zeros, nam%\lfyth o(2) constant and equal to
ox =ppfork =1,2,---,n,ie., setting
M. — M.
_ woMy(00) — My(o0) (4.5)

I’L =
p(z) = 7(2) (3.16) M, (00) = wolMs(o0)

. . ) . turns out to satisfy the omitted interpolation conditﬁ@:gl) =
for which the problem of computing(z) requires solving only . i fact, this choice turns out to be the solution to our original
linear equations. This relates to the so-calkbestral solution 5.5pjem, i.e.f(z) has the required degree and the default values
in classical interpolation theory and is discussed in Section I ihe MA parameters. Moreover, this is the unique solution that

The general case, which is capable of higher resolution, requifgSximizes the entropy gain (4.1). The proof of this last fact is
a proper choice of spectral zeros and the solution of a convg¥en in Appendix A.

optimization problem. This will be discussed in Section V. It |t j well known that solutions to interpolation problems can
is interesting to remark that even if AR-modeling is requireghe represented by linear fractional transformations. Hence, one
which fixes p(z) = 2", the solution claimed by Theorem 3.15y wonder why we decompose our problem into two steps:
and the THREE method cannot be obtained with the Levins@p omitting one condition and then trying to satisfy it by a suit-
algorithm—the Levinson algorithm is only applicable when thgy e choice of the free parameterThe reason is that a formula
covariance lagso, ¢y, -+ -, cn Of y are available. (4.2) for the complete set of interpolation conditions (including
the condition ak = 0) requires finding an appropriate free pa-
IV. CENTRAL SOLVER FOR THEDEFAULT FILTER rametenp. of Qegrge onén order to sgtisfy the degree constraint
(3.3), which is slightly more complicated.
In this section, we consider the special case that thewe now explain how to construct the matrix functidf(»)
MA parameters are set to the default valugs = 7, for in (4.3). Consider the set of analytic functioR’s mapping the
k=1,2,--- ,n,ie.,p= 7. Determining the AR parameters isright half-plane into the unit disc, which satisfy the interpolation
then considerably simplified since this choice corresponds ¢enditions
the central solution mentioned above. As it turns out, the central
solution is precisely the positive real function maximizing the F(s) = w k=1,2,---,n (4.6)
entropy gain
where

1 ‘ _ _1-m _ 1w —
o log(f(e") + f(e™*)) db @1  sk=1p, A w=g ol E=12n

- 4.7

subject to the constraints (3.1). In Section V, we will see that this . ]
optimization problem can be generalized to yield interpolantsis Well known and easy to prove that the allpass filter (i.e.,
for any other choice of MA parameters. Blaschke product)

A. Algorithm B(s) = H S

Next, we explain the steps of the algorithm for the central
solution, deferring technical details to Appendix A. has a state-space representation

Consider the subset of interpolation conditions (3.1)kfet
1,2,---,n, excludingf(py ) = wo. Any positive-real function B(s) =c(sI — A)7'P7d +1
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where the symmetric positive definite matdXis the solution The matrix/ — P is invertible precisely when solutions do
of the Lyapunov equation exist.
, , Returning to our original interpolation problem, the matrix
AP+PA=ce (4.8)  function (4.3) needed in the representation (4.4) is given by

values in the right half-plane. In fact, its characteristic polyno- M(z)=— 11 (4.13)

Here, the matrix A is unstable in the sense that it has all its eigen- 1 {_1 1} <7 _ 1)
mial is

z+1

. il g . . Since7 corresponds ta under the transformation = (z —
Hs)i=[(s—s)=s"+As" T+ P15+ 1)/(z+1),7(2)M(z) is amatrix polynomial, and consequently,

k=1 the central interpolant (4.4) is given by
and hence, we may choosgkandc in the observer canonical }( )
form J51¢:
Z) =
—F =7 s fe) a(2)
1 0 0 0 . N .
A— | 0 1 0 0 whereda(z) and3(z) are the polynomials

CA)é(Z) = CA)é()Zn —+ &lzn—l + o+ &n

c=[0 0 - 0 1] (4.9) @M@ My
B(z) = Poz" + 12"+ 4 B
Note that’(s) is the polynomial obtained fromy( ») and defined = 7(2)[My(2)p + My (2)).
by (3.14) under the linear fractional transformatior= (» —
D/(z+1). _ N However, to obtain the.(z) that matches the MA parameters
Next, we determine the coefficients, 2, - - -, 7, S0 thatthe . — 7 and, hence, the THREE-filter parametet$z) needs to
rational function be normalized by setting
n—1 n—2
R e e )
Vis) = - 2, .. 2
() 7(s) alz) = LI W a(z).

2éofo + da P + @nfn
satisfies the interpolation (4.6). This is done by solving the Van- (dofo 11 fn)

dermonde system
B. Simulation Studies

s s 1 Ty 7(s1)v1 ' .
n—1 1] |7 #(s2)v2 In this section, we demonstrate the performance of THREE

= ) . filters in the default setting of the central solution and compare
: it with traditional spectral estimation techniques.

5y ceosn 1 n 7(sn)Un Example 1: We begin by estimating spectral lines in colored

noise, which is a problem that is regarded as challenging [27,

pp. 285-286]. Consider the following signatomprised of two

V(s)=c(sl — A" superimposed sinusoids in colored noise:

Clearly,V(s) has a realization

whereA andc are given by (4.9), antican be determined from (1) — 0.5sin(w,t + ¢1) + 0.5 sin(wat + ) + 2(2)

D
w1, e, - - -, 7, Dy standard methods. _ _ . .
It turns out that all interpolants’ satisfying (4.6) are given #(1) = 082(8 = 1) +050(t) + 0250 — 1)
by with ¢4, ¢2, andi(¢) independent normal random variables with
Li(8)Y (s) + La(s) zero mean and unit variance. The objective is to estimate the
Fs) = (4.10) . . . -
Ls(s)Y (s) + Ly(s) power spectrum in the vicinity of the spectral lines. In partic

) o ) _ular, it is desirable to be able to resolve the two distinct spectral
for some functiort’, which is analytic and bounded by one ifeaks. Two cases are investigated, which differ in the separa-

the right half-plane, where tion of the spectral lines. In Case A, we take the spectral lines
L(s) = Li(s) La(s) at freq_uenmezs;]L :r 0.42 andw, = 0.53 and, in Case B, at fre-
: La(s) La(s) quenciesv; = 0.45 andw, = 0.47.

The model is used to generate five sets of 300 data points in
= { bC’P} (sI — A)7T'[PT'Nd —N'B+1. (4.11) separate runs. This is done in order to investigate the statistical

variability of the estimates and the robustness of the estimation
Here,N = (I — PQ)~!, whereQ is the symmetric positive Methods. Three different spectral estimation methods are com-

definite solution of the Lyapunov equation pared:
i) periodograms, computed with state-of-the-art win-
(A—P 1) Q+QA— P tc) =, (4.12) dowing technology, as implemented in the Identification
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Fig. 2. Spectral estimates of two sinusoids in colored noise.

Matlab Toolbox commanattfe, with smoothing pa-  The results are depicted in Fig. 2. The subplots in the first

rameterMset to60; column correspond to Case A, and those in the second column
i) Levinson/AR filtering of order 12, based on covarianceefer to Case B. From top to bottom, we display the results using
lags; methods i)—iii). In Case A, the estimated spectra from five sep-
iii) THREE filter design of order 12 with the filterbank polesarate data sets are superimposed, shown together with a smooth
chosen at curve representing the true power spectrum of the colored noise
and two vertical lines at the position of the spectral lines. For
(0,0.85, —0.85, pe 42 pel44i 046 o481 00.500) clarity, in Case B, we only show the outcome of one run.

The periodogram does reasonably well in Case A but fails in

wherep = 0.9in Case Aang = 0.93 in Case B and the Case B. In both cases, the Levinson/AR method fails to identify

MA parameters set at the default setting correspondingtife peaks. It is apparent that only the THREE filter is capable

the central solution in both cases. of resolving the two sinusoids in both cases, clearly delineating
The choice of was dictated by aad hocrule of thumb that the their position by the presence of two peaks. In comparing i) and
time constant of the system is of the order one tenth of the lengjil it should be further noted that i) is nonparametric, and hence,
of the data record, whereas the phases of some of the poles whkesestimates are not as easily coded for transmission to a remote
selected in the part of the spectrum where high resolution is deeeiver, as is the case for iii).
sired. In Case B, the separation of the sinusoids is smaller thafExample 2: We consider the effectiveness of THREE-based
the theoretically possible distance that can be resolved by filiering in a case where the power spectrum has sharp transi-
periodogram using a 300-point record under ideal noise contiens. More specifically, we consider data generated by passing
tions, which is not satisfied here [29, p. 33]. In fact, with whitevhite noise through a filter with the transfer function (4.14),
noise and large S/N ratio, this minimum separation between thigown at the bottom of the next page. We consider three cases,
lines is(27 /300) ~ .021. To achieve a better resolution (at thavhere# takes values /2.9, /3, and« /3.1. In each case, the
expense of some increased variability), the complex filterbaspectrum of the output has sharp transitions due to the fact that
poles were chosen slightly closer to the circle in Case B.  poles and zeros are close to each other.
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Fig. 3. Estimates of sharp spectral transitions.

In Fig. 3, we show the results of numerical simulation, wheggroved further by allowing a choice of spectral zeros away from

we compare the default setting. This requires the theory developed in the
a) periodogram-based spectral estimatgge(y,50) in nextsection. Hence, Example 2 is considered again in Section V
Matlab); (Fig. 4) with appropriate zero settings.

b) Levinson/AR modeling of order four;

c) THREE-bas_ed modeling of order f_ourwiFh default s_etting V. GENERALIZED ENTROPY AND CONVEX OPTIMIZATION
corresponding to the central solution anfikadselection _ ) ) ) )
of filterbank poles set &, .8¢+3%, 8c+1-37, In this section, we describe how an arbitrary solution of the

@evanlinna—Pick interpolation problem with degree constraints,

In order to avoid the effects of variability in the estimates, w : i Th X ¢
choose a long record of 2000 data samples. However, with sEhdescribed in Theorem 3.1, can be obtained from a convex op-

a long data record, higher order models would be possible afl ,izgtion problem, an_d we_su_mmarize the steps of a n_umerical
hence, more appropriate; the issue here is to compare per jorithm based on this optimization problem. The basic theory
mancé for fixed order mo,dels as been developed in [10], whereas Appendix B in the present

The first column in Fig. 3 corresponds to the choite paper complements and extends certain of the key constructions

7/2.9, the second t& = =/3, and the third t&d = = /3.1, in [10]

whereas each row corresponds to a different method: The first ) L

row corresponds to a), the second row to b), and the third row/o ENtrOPY Functionals and Convex Optimization

c), as explained earlier. In each of these figures, for easy comGiven the polynomial-(z) defined by (3.14), lefC be the
parison, the true power spectrum of the process has been super+ 1)-dimensional vector space of all proper, real, rational

imposed and drawn by a dashed curve. functions
We see that the THREE filter does considerably better than _ w(z) 51
the other two methods. However, its performance can be im- q(z) = 7(2) (5.1)

(z = .96"/32) (z — 9e™77/3:2)
To(z) = - - —— . 4.14
() (z —.9¢9) (2 — 9e ) (2 — .3¢!7/3:5) (z — 3 i7/3-5) (4.14)
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Fig. 4. THREE spectral estimates with nondefault spectral-zero setting.

with denominator-(z), where Conversely, iff is a positive-real function that satisfies the in-
" 1 terpolation conditions as well as (5.9) and (5.10), then it is the
m(2) = mo2" +m 2" Ay unique solution to (5.8).
for some real numbersy, 71, - - -, 7m,,, and letS, be the convex ~ Note that (5.9) is equivalent to requiring thais of degree
set of rational functions with the properties at mostn. The choicel’ = 1 yields the central solution of the
Nevanlinna—Pick theory, which is also known as the “maximum
Q(z) :==q(»)+q(»~*) forsomege K  (5.2) entropy” solution. All other interpolants of degreen can be

Q) >0 foré e [—x, 7). (5.3) obtained by choosing the correspondi@nd solving the gen-
) ] eralized entropy maximization problem given above. However,
Morelover, for each real functiofi, we definef” by f*(z) :=  this optimization problem is infinite-dimensional and, therefore,
f(z7) not easy to solve. As it turns out, it has a dual with finitely many

Itturns out to be useful to represent the positive-real fungtion 5 rianles. and next. we will turn to this problem.
to be estimated, as a quotient between two functiois irather To this end, letw(z) be any real function that is analytic on

than a quotient between two polynomials, as before. Infact, th&y o\ tside the unit circle and satisfies the interpolation condi-
polynomialsx(z) ands(z) in Theorem 3.1 canbereplacedby <

alz J51¢
a(z) = ’FEZ; and b(z) = TEZ; (5.4) w(pr) = wy, k=0,1,---,n.
Then, (3.5) becomes Then, define for each functiof € & the functional
-1 -y = I i i i
a(z)b(z ) + b(z)a(z ) = \I/(z) (5.5) J\I/(Q) — o {Q(C 0) [w(e 0) + w(c 0)]
where — log Q(¢®)U(c®) ). (5.11)
~ p(2)p(z1) . . . : .
W(z) = ] (5.6) 1t will be shown in Appendix B that this functional does not de-
R pend on the particular choicef ») but only on its values in the
belongs toS... In the central solutionf(z) = 1. interpolation points. In fact, it is a quadratic form whose coeffi-
Now, for any¥ € S, define the functional cients are the entries of the Pick matrix (3.4). We could choose

. the unique such function ifC, which is easily determined by
le(f) = 1 / log[f(¢®) + f(e™)W () df  (5.7) solving a linear system of equations (Appendix B). Note that
P - is not positive real in general and, therefore, cannot be used as

on the space of positive real functiorfs This functional is a an interpolant. o
generalization of the entropy gain (4.1). In fact, (4.1) is precisely Using duality theory, the maximization problem of Theorem

L (f). 5.1 can be seen to be equivalent to the following convex opti-
The generalized entropy gain plays a key role in our theofjization problem; see [10, Th. 4.5]. S
In fact, in [10, Th. 4.1], we have the following result. Theorem 5.2:For each¥ € &, the convex optimization

Theorem 5.1:Given any¥ € S, there exists a unique so-problem
lution to the constrained optimization problem

min{Je(Q) | Q@ € St} (5.12)
max{lg(f) | f is positive real, and _ _ o
1y — e fork = 0.1+ .m). 58 has a unique solution. Moreover, to this minimizify there
Hi™) = ey (5-8) corresponds a unigue positive real functipsatisfying the in-
This solution is of the form terpolation conditions
f#) = %’ a,bek (5.9 f(PZI) = Wk, k=0,1,---,n (5.13)
alz

wherepy ' := oc, and

V(z) _ "
a(2)b* (2) + b(2)a* (2) = U(z). (5.10) o0 f(z) + 17 (2).

where

(5.14)
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The functionf(») is precisely the maximizing function (5.9) in  Thus, to formulate an algorithm, we express the functional
Theorem 5.1, where(z) is the minimum-phase spectral factor5.11) via (5.16) in terms of its Markov coordinates to obtain
of

h)=Jdg * 19
a(2)a" () = Q(2) (5.15) J(h) = Ju(g+a") (5.19)

andb(z) is the unique solution of (5.10), givelh anda. Con-
versely, any positive real function satisfying (5.9), (5.10), a
(5.13) is obtained in this way.

The proofs of Theorems 5.1 and 5.2, which are very no
trivial, are given in [10]. Sincely is a strictly convex function i i
on a convex sef,, the minimization problem of Theorem 5.2 g(e”) +q(e™) > 0, for—m <f <. (5.20)
is a convex optimization problem. Therefore, if there is a min-
imum in the open se$.,, this minimum is unique and occurs afThis is done recursively by Newton’s method, upholding con-
a stationary point, i.e., at a point where the gradient is zero. ltdgion (5.5) or, equivalently, (3.5), while successively trying to
proved in [10] that this is indeed the case. Itis then quite straiglsgtisfy the interpolation condition (5.13) by reducing the inter-
forward to show that the optim&) defines a unique interpolant polation errors
f with the required properties. Since this is quite instructive, we

which is a functiodR™ ™! — IR. To each; € K satisfying (5.2)
n%pd (5.3), there corresponds a positive real funciipmhich
IS obtained from? := ¢ + ¢* via (5.14). The idea is now to
H]inimize J(h) over the region where

give an alternative proof of this that is tailored to our present ex- er = wi — f(prt)s E=0,1,---,n. (5.21)
posure in Appendix B. Elements from this derivation will also
be needed to derive the gradient and Hessiadgfwhich s |n order to obtain an expression for the gradient, define the
needed to solve the convex optimization problem. n % n Vandermonde matrix
An advantage of the proof of Theorem 5.2 is that it is con-
structive and therefore yields an algorithm for computing an ar- AL PR |
bitrary interpolant of degree at mostSince( is determined by SRR |
n + 1 variables via (5.2), it is a finite-dimensional optimization V= : : L (5.22)
problem. What these + 1 variables should be depends on what L .
basis we choose fd€. Any functiong € K has a state-space “n Zn, 1
representation
where 2, = p;' for k& = 1,2,---,n. Since the points
q(z) =zl — Ao+ d (5.16) =9, ~1,- -, =, are distinct, this matrix is nonsingular.
Proposition 5.3: Let (5.18) be a point idR"*! such that
where (5.16) satisfies (5.20), letg, ¢, - - -, ¢, be the corresponding
A b interpolation errors (5.21), and set
c d ] r 1
[T =Ty —Tpl —Th hn 7 1 mn
1 0 . 0 0 h1 L, = . - . and
0 1 0 0 hn_2 1 7 o T
- : : : : : : r(er — CO)T(pl_i)
0o 0 - 1 0 h (e2 —eo)T(ps )
! v= M (5.23)
L 0 0 0 1 ho J :
(5.17) L(en — co)m(pp )
with 71, 72, - - -, 7, given by (3.14). The coordinates Then, the gradient of (5.19) atis given by
hy, -1 y/—1
; : VI(h) =2 [PLn;V ”} (5.24)
[ } =h= " (5.18) o
d hy
ho whereP is the solution to the Lyapunov equation
of this representation are the+ 1 first Markov parameters in Y ,
the series expansion P=APA+ce (5.25)
q(z) =ho+hiz7t +hoz™? 4 whereA andc are given by (5.17).

The proof of this proposition is given in Appendix B. Note
and therefore, they will be referred to as Markov coordinates that sinceA is a stable matrix an¢c, A) is an observable pair,
of K. We will write ¢(2) ~ (b, d) to denote this correspondenceP is positive definite. Hence, the gradient is zero if and only if
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the interpolation errorgg, e, - -
with Theorem 5.2.
To apply Newton’s method, we also need the Hessian. To t

-, e, are all zero, in harmony
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B. Algorithm for the Tunable Filter

We now outline the steps of the algorithm provided by The-
Fem 5.2 using Newton’s method in Markov coordinates.

end, we need some notation. Given an arbitrary real polynomial

v(2) = goz™ + 92"t g (5.26)
define first the(n + 1) x (m + 1) matrix
M(v)
go g1 - Gn Gn+41 Om
. g0 491 gn In+1 " Im
go g1 9n Gn+1 " Gm
(5.27)

Second, for any (5.26), determing, A1, - - -, A, such that
V() Ao2™ + A 2™ b A = 22 ()

wherer () is a polynomial of at most degree— 1. This yields
m+ 1 linear equations for the: + 1 unknownshg, A¢, - -+, A\,
in terms of which we define thén + 1) x (m + 1) matrix

)‘rn )‘1 )‘0
)\rn—l )\0
Ny =|"" (5.28)
Ao

Finally, for an arbitrary stable polynomial (5.26), ldt{~) be
the companion matrix with characteristic polynomiathat is
formed analogously tal in (5.17) replacing (z) by (=), and
let P(~) be the uniquen x m-matrix solution of the Lyapunov
equation

P(y) = A(7) P(7)A(y) + ¢(7) ()

wherec() is them row vector(0,0,---,0,1).
Then, we have the following proposition for tiie + 1) x
(n 4+ 1) Hessian matrix
& }n
k,6=0

H =
[ahkahé

The proof will be given in Appendix B.
Proposition 5.4: Given ¥(z), where the polynomialg(z)

(5.29)

andr(z) are given by (3.15) and (3.14), respectively, let (5.18)

be a point inR™ ! such that (5.16) satisfies (5.20), anddét)
be the unique stable polynomial satisfying

alz)a(z71)

W =q(2) + ¢"(2). (5.30)
Then, the Hessian (5.29) of (5.19)/ats given by
H =2H; + Hy + H), (5.31)

where
Hy = L,M(p)N(a?) [P(QQ)

0

ﬂN(aQ)M(p)’Ln (5.32)
P(a?T)

"5

- N(&2T)M(1p) L,,. (5.33)

Here, L, is given by (5.23)L,, is the corresponding matrix ob-
tained by reversing the order of the rows in (5.23), ard) :=
(2.

0

Hy = L, M(7,.p)N(c*r 1

0. Given an initialz, computey € K, satisfying
aa* =q+q*.

1. Compute € X such that*b + b*a = ¥, and
form f =b/a.

2. Check the interpolation error. Stop if it is
sufficiently small.

3. Determine the search directidn= H=1V J.

4. Updatey, and compute a minimum-phasec K
such thata™ = g + ¢*. Then return to Step 1.

To initiate the algorithm, one needs to choose an initial value
for a(z) or, equivalently, for(>) to be recursively updated. The
tuning is done by selecting the polynomials) andp(~) given
by (3.14) and (3.15), respectively.

Given the initiala( ), solve (5.30) fog(z). This can be done
in several ways. One is to solve

T(2)o(z71) 4+ o(2)7(z7") = a(z)a(z71) (5.34)
for o(z) to obtain
_o(2)
q(z) = ) (5.35)

Identifying coefficients of like powers irx, this amounts to
solving a regular linear system ef + 1 equations inn + 1
variables of the same type as (3.12). Then, determining the ini-
tial point in Markov coordinates, (5.18) is standard and can be
done by premultiplying the vector of coefficientsa(fz) by L,,,
which is given by (5.23).

The algorithm now proceeds in four steps.

Step 1) In this step, we computg. Given the current
a-polynomial (3.10), solve (3.5) for thg-poly-
nomial (3.11). This is equivalent to solving the
linear system (3.12). Next, form the corresponding
positive real functionf, which is defined by (3.6),
and compute the interpolation errafg 1, - - -, ¢y,
whch are defined by (5.21).

Step 2) Inthis step we test whether our iterate is sufficiently
close to be a minimizing solution. The algorithm is
terminated ifthe errorg, ¢4, - - -, ¢,, are sufficiently
small, e.g., wherp_g (ex)? is less than a prespeci-
fied tolerance. Otherwise, continue.

Step 3) In this step, the search direction of the optimization
algorithm is determined. Given the interpolation er-
rorseg, e, - - -, ¢,, determine the gradieit.J from
Proposition 5.3, and given the currer{tz), compute
the Hessiarl{ as in Proposition 5.4. Then, the search
direction corresponding to one Newton step is given

by

d=H'VJ. (5.36)
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Let dp,revious denote the search directiehobtained VI. CONCLUSIONS
in the previous iteration. If this is the first iteration,
initialize by settingdprevious = 0.

Step 4) In this step, the solution is being updated to yield

In this paper, we have introduced a new approach to spectral
estimation, which is based on the use of filter banks as a means
ot obtaining spectral interpolation, and which produces an

new ARMA model with arbitrary MA-part. An essential property
hy of this tunable high resolution estimator (THREE) is that its
q2) =c(zI —A)Trg+ ho, g= : performance can be enhanced for specific applications by
hy tuning two sets of tunable parameters,: the filterbank poles and
the spectral zeros. In particular, improved resolution can be
with Markov parameters achieved in designated parts of the spectrum. More specifically,

we have demonstrated that selection of the filterbank poles in
hnew = h = Ad (5.37) the vicinity of any arc of the unit circle results in improved
where X should be chosen so that the nefr) reproduction of the power spectrum in the corresponding
satisfies the positivity condition (5.20). We mayrequency band, as compared to, e.g., traditional AR filtering.
also use a variant of Wolfe’s test [26] to accelPlacing them too close to the unit circle will, however, in-
erate the line search. If, for some constant crease the statistical variability; therefore, there is a tradeoff
ldl <  &lldprevious||, increase the value of abetween resolution and variability of the estimates. The other

parameter\. Otherwise, retain the previous valueSet of tunable parameters (the spectral zeros) may be placed

of A anywhere in the unit circle. Choosing them in the default
Then,a € K is obtained by spectral factorization. More presettir}g, namely, equal to thg filterbank poles,' leads to alsimpler
cisely, giveng(z), we solve solution, namely, the classical central solution, for which we
give an efficient algorithm. However, we demonstrate that even
a(z)a(z 1) = q(2) +q(z7 ) higher resolution can be achieved by choosing the spectral

. ) . , zeros appropriately, away from the filterbank poles, close to the
for the minimum-phase solutiar(z) in terms of whicha(2) = it circle for frequencies where notches in the spectrum are

7(#)a(z). This is standard and is done by solving the algebraig o cted. Practical rules for selection of such parameters, in

Riccati equation the absence of prior information about the process, need to be

P— APA' — (g — APC) (2hg — cPE) " (g — APEY =0 worked out. In cases wherg spectral zeros of the nominal power
spectrum are knowa priori or can be estimated from longer

for the stabilizing solution. This yields data records, these same zeros can be enforced to coincide
with the spectral zeros of the estimates of the power spectrum
a(z) = c(zI — A) "N (g — AP)/\/2ho — cPc! without unduly increasing the complexity of the filters. For ar-
+ /2ho — cPCc. bitrary tuning, we need to solve a convex optimization problem,

which amounts to maximizing a generalized entropy gain. A

(5.20). If this condition fails, this is determined in the factoriza-

tion procedure. In this case, the value)ois scaled down, and APPENDIX A
(5.37) is used to compute a new value k., and then ofy(z) ALGORITHM FOR THE CENTRAL INTERPOLANT

successively, until (5.20) is met. L . ,
Alternatively, an updated value farcan be obtained by de- The parameterization of all solutions to the classical Nevan-

termining the polynomial (3.10) with all roots less than one ilinna—Pick problem (without degree constraints) takes the form

absolute value, satisfying (5.34) witfz) being the updated nu- of a linear fractional transformation (LFT) on a free parameter

merator polynomial of(z), as shown in (5.35). This is a stanfunction, which is typically normalized to be contractive [31].
dard polynomial factorization problem. The computation of the LFT elements amounts to solving linear

Finally, Seth := fnew, and return to Step 1. equations, yvhich can be done gither recursive_ly, e.g., by the

Example 2 (Continued)To illustrate the advantages of the>Chur algorithm [31], or by reducing them to a pair of Lyapunov
tunable THREE filter, we now reprocess the data in Examplefgiuations [14]. _ _
using nontrivial spectral zeros. In general, the spectral zeros calf? [14]; @n LFT is derived for the Nehari problem, and the
be selected in the vicinity of the unit circle at approximately thg°rrésponding formula can be easily modified to the following
frequencies where the spectrum has less energy. This selechi§iyanlinna-Pick problem. Given a set
can be guided by an initial estimate using periodogram. SSka) |k =1,2,---,n,with Re(sy) > Oand|vg| < 1}

In the present example, we select spectral zeros
0,—0.8,0.8¢+7/33 while keeping the same filterbankdetermine all functiond” that satisfy the interpolation con-
poles as before. We use the same setting when processing etiibns (4.6) and are analytic with modulus less than one in
data set, i.e., the ones corresponding the paranfeter2.9, Res) > 0. In fact, the interpolation formulas (4.10) and
3.0, and 3.1. Comparing with the results in Fig. 3, it is eviderf#.11) follow directly from analogous formulas for the Nehari
that the performance is much improved and fairly robust witbroblem given in [14, p. 125] by the following steps, using the
respect to changes th notation of Section IV.
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a) Show thatthe symb@(—s)V (s) appearing in the Nehari with ¢» an arbitrary function that is contractive outside the disc.
problem is given by Hence

B(=s)V(5) = e(s] — 4o)™"b L () ) = LTI Z VTG g

1 »—Lah( )2
whereAdq := A — P~1de _ _ [T+ pzmt ()] o
b) Multiply the numerator coefficients of the LFT for the Ne-Again, 1 + .z~ 14(z) is outer, and hence, (A.6) implies
hari problem, given in [14, p. 125] b (—s) to obtain the ] 1 _
coefficients of the LFT for the Nevanlinna—Pick problem. {log |1+ pz""¢], 1) = 0. (A-8)
In this context, it is important to note tha{ s) is J-unitary in  Then, inserting (A.7) into (A.5) and using (A.8) and (A.6), we
the sense that obtain

L(—s) {_01 ﬂ L(s) = {_01 ﬂ . (A1) 1.(f) = (log(1 — 9"),1) + (log(1 — 1), 1)
_ : — 2log |M3(co)p + Ma(oo))|
Applying the transformations = (» — 1)/(» + 1) andv =
(1 — w)/(1 + w) to the domain and range, respectively, thwhere in the last term, we have also used the fact, derived from
interpolation formulas (4.10) and (4.11) are transformed inf6-4), thata(oo) = Ms(oo)u + My(c0). Clearly, this expres-
(4.2) and (4.13), respectively. In addition, (A.1) transforms inty/on attains it maximum value

the condition thaf\/ (=) is .J-unitary in the sense that () =1 1—p?
c) = 108
o1 01 ' | My (o0) 1+ My(o0)?
M(z™7) M(z) = : (A2 . : :
10 10 precisely fory(z) = 0, i.e., forg = p, as claimed, and hence,

However, the functions defined by (4.2) satisfy the interpoldbe central solution is given by (4.4).
tion conditions (3.1) only fok = 1,2, - -- ,n.Inorder toinclude

k = 0, we must havef(oo) = wp, and hence, we must impose APPENDIX B
the extra condition that PROPERTIES OF THEFUNCTIONAL Jy
o — M (00)@(00) + Ma(o0) Denote byL- the space of functions that are square-integrable
O Ms(00)p(00) + My(o0) on the unit circle. This is a Hilbert space with inner product

or, equivalently, that I N
(f9)=5- | J&)g () db
p(00) = p (A.3) -
whereg*(z) := g(»~1). Next, let H, be the Hardy space of

wherey. is given by (4.5) and is less than one in modulus. Thugy f,ctions that are analytioutsidethe unit circle and have
all interpolants satisfying the complete set of interpolation COQQUare—integrable limits on the boundary
ditions (3.1) are still given by (4.2) with the additional constraint .

thaty is contractive and satisfies (A.3). lim 1 1f(re®)2 db < oo
It remains to be proven that the choigéz) = v is in fact the o+l 21 g
one that maximizes the entropy gdinf) := (log(f + f*),1).

. As usual,H> is identified with the subspace df; with van-
To this end, let

ishing positive Fourier coefficients.

b(z) = M(2) w(z) Ad) Given the real polynomial (3.14), consider the allpass func-
a(z) 1 tion
where(z) is contractive and satisfies (A.3). Clearlf(z) = B(z) = 2t L4 miz+- 4 T 2" 4 72"
b(z)/a(z) is a solution to the interpolation problem for the com- T el 24T,
plete set of data, and all solutions are generated this way. Then a1 () B.1)
11(f) = (log(a"b + ba). 1) - (log(a"a), 1) &

= (log(1 — ¢*¢), 1) — (log(a*a),1) (A.5) Such an allpass function is called a (finite) Blaschke product.

_ ) Next, introduce the coinvariant subspace
where the last equality follows from (A.4) and (A.2). Sinde)

is outer, i.e., analytic and invertible outside the unit disc, we have H(B):= Hy & BH>

that i.e., the orthogonal complement of the invariant subspace

BH, C H, in Hs. The subspacél(B) consists of precisely
all rational functions (5.1), where(z) is allowed to have

hich holds for all f . 12122 151. On th complex coefficients, and therefork, which was introduced
which holas for a oute_r unctlons_e [ » PP. ]. On the in Section V, is the subspace of all real rational functions in
other hand, all contractive that satisfy (A.3) withu| < 1 are H(B)

parameterized by

1 27 )
— / log |a(c™)| df = log |a(oo)| (A.6)
2T 0

The filterbank transfer functions

_ bt 2_11/)(2) oz
P = G Grla) = o

k=0,1,---,n (B.2)
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are Cauchy kernels in the sense that for any funcfien H» Lemma B.1:Let g; andg, be stable, real, rational functions
=, _ with realizations
(Gr f) = Floi ) (B.3) s Al
(G ") = 1(50). ©4) 1 ] and : ] |
In particular, if f is real, f(p;, ) = f(pi'). Itis easy to see that ¢ | d ¢ | d
(B.2) forms a basis foH (B). Hence, ifa € H(B), then Then
a(z) = > nGi(z) (B.5) (91, 92) = i Pha + dydy (B.10)
k=0 (g1,95) = did> (B.11)
for some complexo, v1, -+, vn. If @ € K, v¢ =7, whenever porep i the unique solution of the Lyapunov equation
Pe = Dy
In this notation, the functional (5.11) of Theorem 5.2 can now P=APA+ dc
be written . . :
i.e., the observability gramian.

Ju(Q) =(Q,w+w") — (logQ, V) (B.6) Proof: First, note tha{z*, z¢) = 0 for k # ¢. Therefore,
where, in view of (5.15), the first term may be written since

(a, (w +w*)a) = (a,wa) + (a, wa). g(z) = c(zl =)+ d=d+chz +cAbr 4
However, using the representation (B.5)dand (B.3), we have forz =1

non . andg*(z) = g(z71), (B.11) follows directly by orthogonality.
(g, wa) =3 > FoyjwnG(pr). For the same reason
k=0 k=0

Therefore, the first term in (B.6) becomes (91.92) = (g1 — d1, 92 — d) + dudy.

(Qw+w") =v"Pry, v:i=(0,7, ) (B.7) However

where P, is the Pick matrix (3.4). Clearly, this quadratic form (g, — d;,g> — do) = Zi / B, (e~ — A1

depends only onw via its values at the interpolation points, TS

which is precisely as claimed in Section V. (eI — A) T by df = b Pby
To any@ € &4, there is a unigue positive real functigh ﬁnd hence, (B.10) follows. O

satisfying (5.14). In fact, the left member of (5.14) is positive 0 . " . .
the unit circle, and hence, it can be splitinto a sum of an analyg%\évesazrg r:‘(c))\rlvﬂlqré thrz(?igilttlg: dtzgggligrfﬂg,? fexsprgitsi\l/oerlls (5.24)
function f(~) and its conjugatg¢™( z). Clearly,f is positive real. (5.29) 9 - Tesp -

Next, we prove that if) € S, is optimal for the problem to Proof_of Proposition 5.3:The interpolation errors (5.21)
minimize Jy, then the functiory defined by (5.14) is an inter- can be written
polant. For this, and for later analysis, we need the directional ¢, = o(z) := wy, — f(z), k=0,1,---,n

derivative
Iu(Q + €6Q) — Iy (Q) wherez, := p, *, andy is defined as

6Jdg(Q;6Q) = lim
v e—0 € (p(Z) = w(z) - f(Z)

where §Q is a symmetric pseudo-polynomial such thiat+ . o ]
€5Q) € 8, for sufficiently smalle > 0. Performing the differ- NOw, let ¢ be the orthogonal projection gf onto K. Since

entiation, we have ¢(z) = ¢(z) + B(z)g(z) for somey € H,, we have
695(Q56Q) = <6Q,w +wt - %> (B.8) da)=elzm)  k=01mn

o ) Therefore, the column vectgrof coefficients of the numerator

which, in view of (5.14), yields polynomial
8dg(Q;6Q) = (6Q,w +w™) — {(8Q, f + f*). (B.9) y(2)
. . L ) @(z) == eo+ —=, where

Now, suppose? is the unique minimizing function. Then, 7(%)

I3 (Q;6Q) = 0 for all directionsé @ := ¢ + 6¢* for which y(2) =2 "y,

6q € K. Concequentl
1 a Y is the unique solution of the Vandermonde systém = v,

§I9(Q;6Q) = 2(6q,w — f) +2(d¢",w — f) whereV and v are given by (5.22) and (5.23), respectively.
= 2(6q + 6g(0c0),w — f) =0 Then, it is easy to check thgthas the realization
forall 6¢ € K, and thereforew — f L K, i.e.,f = w+ Bg for A z I
all H,, which, in turn, yields the interpolation conditions (5.13). . . ;o w=L,2, VT
0

Next, to derive an expression for the gradient/gf, we will
need the following lemma. whereL,,_; is given by (5.23).
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Let§g(2) € K, and consider the directional derivativeae To determine the first term in (B.12), we need a state space
&4 in the directiond@ = 6g + é¢*. From (B.9), we see that representation
6Jdw(Q;6Q) = (6q + 6¢", ¢ + ©) = 2(6q, ¢} + 2(6q, ¢") M — (&(=] — A, 1Dk
= 2(6q, @) + 2eo(q, 1). o(z)
Consequently, it follows directly from Lemma B.1 that onthe <2:anoniAc_aI form (5.17), wheris the companion matrix
) of a(2)*, andé is the2n-vector(0,0, - - -, 0, 1). The coefficient
P b vectory of the numerator polynomial
soatansey -2 2] 4] n o

w(2)p(2) = 2™ +m2*" " -+ g
where(bs, ds) are the Markov parameters@f, andP is the so-

lution of the Lyapunov equation (5.25). However, by definitioffa" P& computed ag = M(p)x, where M (p) is given by
(5.27), and consequently

b .
8w (Q;6Q) = VI(hY [ dﬂ h = L(o®) "' M(p) L(7)h.
which establishes the expression (5.24) for the gradvehtas Lemma B.1 then implies that
claimed. O - Pla?) 0
Proof of Proposition 5.3: To compute the Hessian, we de- <a—§, a—§> = I L(T)M(p)N (o) [ (3 ) 1}
termine N(@)M (o) L(r)! (B.13
. « P T)N .
62J (Q 6Q) -— lim 6J‘IJ(Q + 66Q) - 6J‘IJ(Q) . . .
AN TS0 ¢ whereP(«?) is defined as in the theorem.
, U To determine the second termin (B.12), we need a state space
= (0Q7, 2/ realization

Then, the Hessian is the symmetic+ 1) x (n.+ 1) matrix H [ m()r(2)plz) 7 (2)T(2)p(2) }
such that a(z)r(z)  al2)?(2)

o =[é(zl =A™t 1][h K]

WHh={6Q°% — - _ _ .
Q? where A is the companion matrix ofi(»)?7 (=), andé is the
b 3n-vector(0,0,---,0,1). In the same way as above, we obtain
N .

whereh := d‘SJ is the (reversed) vector of Markov parameters ) = L(a?r)~  M(rup) L(v)h
of 6g. Now, replacings@ by 6q + 6¢*, we obtain z 7

k= L(c?7) Y M(rp) L(1)h

W W W -
<6Q2, —2> =2 <6q6q*, —2> +2 <5q2, —2> where the matrix.(7) is obtained by reversing the order of the
Q Q Q rows inL(7) and wherel/(-) is given by (5.27). Consequently,

_ /TP TP TTwf) TuTP .
=2 < o2 a2> 2< i > (B.12) Lemma B.1 yields
where TTep TaTP\ ) Pla?r) 0
. < o?r ' ol > = W L{r)M(r.p)N(a’r) { 0 1
m(z) = moz" +m2" T 4 = 7(2)bg(2) - N(a®1)M(7p)' L(7)h. (B.14)

is the numerator polynomial @f;, which can be determined via From (B.12)~(B.14), the Hessian is then obtained as (5.31),

the system of linear equations where we have adjusted for the fact th&t is not symmetric.
o 1 D
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