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GENERALIZED INTERPOLATION IN H∞

WITH A COMPLEXITY CONSTRAINT

CHRISTOPHER I. BYRNES, TRYPHON T. GEORGIOU, ANDERS LINDQUIST,
AND ALEXANDER MEGRETSKI

Abstract. In a seminal paper, Sarason generalized some classical interpola-
tion problems for H∞ functions on the unit disc to problems concerning lifting
onto H2 of an operator T that is defined on � = H2�φH2 (φ is an inner func-
tion) and commutes with the (compressed) shift S. In particular, he showed
that interpolants (i.e., f ∈ H∞ such that f(S) = T ) having norm equal to ‖T‖
exist, and that in certain cases such an f is unique and can be expressed as a
fraction f = b/a with a, b ∈ �. In this paper, we study interpolants that are
such fractions of � functions and are bounded in norm by 1 (assuming that
‖T‖ < 1, in which case they always exist). We parameterize the collection of
all such pairs (a, b) ∈ � ×� and show that each interpolant of this type can
be determined as the unique minimum of a convex functional. Our motivation
stems from the relevance of classical interpolation to circuit theory, systems
theory, and signal processing, where φ is typically a finite Blaschke product,
and where the quotient representation is a physically meaningful complexity
constraint.

1. Introduction

In 1967, Sarason published a seminal paper [29] which contained, among other
results, a theorem generalizing classical interpolation problems in the class H(D)
of analytic functions on the open unit disc D to a problem concerning operators
commuting with a shift operator on a certain Hilbert space. This work marked the
beginning of a series of important developments in operator theory [31, 1, 3, 27].

In more detail, denote by T the unit circle, by Lp(T) or, simply Lp, the usual
Lebesgue (p-)integrable functions on T, and by Hp the usual Hardy space of func-
tions analytic on D. If U denotes the shift operator in L2 defined by U : f(z) →
zf(z), then by Beurling’s Theorem all U -invariant subspaces in H2 have the form
φH2 for φ an inner function. For the remainder of this paper, we fix φ to be a
nonconstant inner function. Denote by K the coinvariant subspace

K := H2 � φH2,

invariant under U∗, and by S the compressed shift

S = PKU |K .
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For f ∈ H∞, f(S) denotes the compression onto K of the multiplication by f in L2

and, following [29], when an operator T on K can be written as f(S) for a suitable
f ∈ H∞, then we say that f interpolates T . The operators f(S) are precisely those
that commute with S. Sarason’s Theorem deals with the converse. It states that, if
T is a bounded operator on K commuting with S, then there is a function f ∈ H∞

such that T = f(S) with ‖f‖∞ = ‖T ‖. He also shows that, if T has a maximal
vector, then there is a unique such interpolant, which takes the form

(1.1) f =
b

a
, a, b ∈ K,

and, in this case, f/‖T ‖ is inner [29, Proposition 5.1].
Sarason also raised the question of describing, for ‖T ‖ ≤ 1, the class of all inter-

polants f ∈ H∞ with ‖f‖∞ ≤ 1 [29, p. 190]. This question is now classical and has
been answered in various forms of generality in the literature. Here we will focus on
the subclass of interpolants satisfying (1.1). We refer to the representation (1.1) of
an interpolant as a quotient of two functions in K as a complexity constraint. As so
often happens, there is a two-way street between results in pure mathematics and
problems in engineering and the sciences. In particular, the complexity constraint
in Sarason’s framework arises naturally in engineering, where interpolants give rise
to a controller or a filter which meets certain performance criteria and design spec-
ifications. In some important engineering applications, the problem specifications
dictate that φ be a finite Blasckhe product, in which case the complexity constraint
requires that f be a rational function with degree bounded by the degree of φ. In
these applications, f is viewed as the transfer function of a circuit to be designed,
and the degree bounds the number of dynamical components required to realize the
circuit, while the design specifications are encapsulated in the pair T, φ and a bound
for ‖f‖∞. In our earlier work [17, 18, 19, 4, 5, 6, 7, 8, 9, 20] which dealt with the
case of finite Blaschke products, we have discovered that all rational interpolants of
bounded degree can be conveniently parameterized by the roots of 1 − f∗f inside
D, where f∗(z) = f(1

z̄ ).
In this paper, we consider this question for arbitrary inner functions and for the

case of commutants that are strict contractions, i.e., ‖T ‖ < 1. We give a complete
parameterization of those interpolants f , with ‖f‖∞ ≤ 1, which are quotients of
two functions in K. Indeed, suppose f = b/a, with a, b ∈ K, interpolates T and
satisfies ‖f‖∞ ≤ 1. It follows that b = Ta, but, in contrast to the case treated by
Sarason, f/‖T ‖ is not an inner function in general. The function

Ψ(z) := |a(z)|2 − |b(z)|2

is nonnegative and not identically zero on T. We observe that |a|2 and |b|2, and
hence Ψ, belong to the (closed) subspace M ⊂ L1

R
(T) of real-valued functions

spanned by {Re(gh̄) | g, h ∈ K} and hence, in particular, to the subset Q of non-
negative functions in M . It can be shown that Ψ ∈ Q if and only if Ψ = |σ|2 for
some outer σ ∈ K (Proposition 9). In fact, we may choose a unique such σ in K0,
the subset of all outer functions in K which are positive at the origin.

The function σ determined from Ψ by such an interpolant f is on one hand
a measure of how far f is from being an inner function and on the other hand
determines f uniquely. Moreover, it gives a complete parameterization of all such
interpolants by K0. This is made precise in the statement of our first main result.
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Theorem 1. Let T be an operator in K that commutes with S and has norm
‖T ‖ < 1, and let σ be an arbitrary function in K0. Then there exists a unique pair
of elements (a, b) ∈ K0 × K such that

(i) f = b/a ∈ H∞ with ‖f‖∞ ≤ 1,
(ii) f(S) = T , and
(iii) |a|2 − |b|2 = |σ|2 a.e. on T.

Conversely, any pair (a, b) ∈ K0 × K satisfying (i) and (ii) determines, via (iii), a
unique σ ∈ K0.

Sarason’s Theorem [29] provides us with the existence of a function w ∈ H∞

such that w(S) = T and ‖w‖∞ < 1, in terms of which the interpolation condition
(ii) can be written

(1.2) f = w + φv, v ∈ H∞.

When such an interpolant satisfies condition (i), it is said to belong to the Schur
class S. A theorem analogous to Theorem 1 can be formulated for the Carathèodory
class C of functions in H(D) with a nonnegative real part (or, more precisely, in the
Smirnov class N+). In fact, it is well known that the (involutory) linear fractional
transformation

(1.3) S → C : f �→ ϕ =
1 − f

1 + f

is a bijective correspondence between C and S, and, if f = b/a as in Theorem 1,
then

(1.4)
[
β
α

]
=

1√
2

[
1 −1
1 1

] [
b
a

]
,

provides a corresponding representation ϕ = β/α, for which Re{ᾱβ} = Ψ.

Theorem 2. Let T be a bounded operator on K that commutes with S and satisfies
ReT > 0, i.e., 1

2 〈x, (T + T∗)x〉 ≥ ε‖x‖2 for some ε > 0, and let σ be an arbitrary
function in K0. Then, there exists a unique pair of outer functions (α, β) ∈ K0×K

such that
(i) ϕ = β/α ∈ C,
(ii) ϕ = c + φv for some v ∈ H(D) and any c ∈ H∞ such that c(S) = T, and
(iii) Re{ᾱβ} = |σ|2 a.e. on T.

Conversely, any (α, β) ∈ K0×K satisfying (i) and (ii) determines via (iii), a unique
σ ∈ K0.

The interpolation data in the two theorems relate via

(1.5) T = (I − T )(I + T )−1

which sets up a bijective correspondence between contractive and positive operators.
Theorems 1 and 2 extend the earlier work [18, 19, 4, 5, 20] to the case of a

general inner function φ and characterize all interpolants f that can be expressed
as a fraction of two functions in K. The ideas of proof used in [18, 19, 4, 5, 8, 20] are
topological in nature and are not directly extendable to infinite dimensions without
the very strong assumption that T is compact. A constructive method of proof in
the subsequent work [6, 7, 9, 11, 21] uses a nonlinear convex optimization approach
inspired by entropy-theoretic methods. Indeed, in the next section we shall give an
intrinsic derivation of one of these convex optimization schemes, by reinterpreting
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the generalized interpolation problem with the complexity constraint (1.1) in the
context of differential forms on a convex subset of M .

The proofs of Theorem 1 and Theorem 2 will be given in Section 3. In Section 2
we develop a circle of ideas that lead to our method of proof. In Section 4 we
show that the problem of generalized interpolation with the complexity constraint
(1.1) is well-posed, in the sense of Hadamard, with respect to natural choices of
topologies. Finally, in Section 5 we discuss connections to Carathéodory extension
and Nevanlinna-Pick interpolation and provide an example, with φ being a singular
inner function, motivated by systems theory. In this example, condition (iii) in
Theorem 1 has a natural physical interpretation as energy dissipated in a passive
system.

We would like to thank Harold Shapiro for many valuable discussions on various
aspects of this work and Institut Mittag-Leffler for providing the ideal meeting place
for finishing this paper.

2. Generalized interpolation, differential forms and optimization

We begin our analysis by restricting our attention to interpolants f ∈ S that,
in the context of Theorem 1, are strictly contractive, i.e., ‖f‖∞ < 1. These are
in bijective correspondence, via (1.3), with interpolants ϕ in the framework of
Theorem 2 that belong to C+∩H∞, where C+ is the subclass of C of functions with
real part bounded away from zero. The interpolant in Sarason’s Theorem is of this
type.

Starting out in the framework of Theorem 2, we note that, for ϕ ∈ C+ ∩ H∞,
condition (ii) of Theorem 2 can now be written as ϕ(S) = T, and, in view of (i),

(2.1) Φ := Re{ϕ} =
|σ|2
|α|2 =

Ψ
Q

∈ L∞
R

(T),

where Q := |α|2 and L∞
R

(T) is the space of real functions in L∞(T).
Denote by Q+ the subset of Q consisting of those functions in M for which the

essential infimum is positive, and suppose that Ψ = |σ|2 ∈ Q+. From (2.1) it follows
that Q ∈ Q+. To determine an interpolant ϕ from σ, it suffices to find α ∈ K0, in
terms of which β ∈ K is given by β = Tα. The problem is thus reduced to finding
Q, from which we can obtain α as its outer factor. Thus our next goal is to express
all the constraints in terms of Q. We note that Q+ is a convex subset of M , a fact
which will make calculus and optimization very applicable.

We shall temporarily relax the interpolation condition ϕ(S) = T by replacing
it by Φ(S) = Re T, where Φ(S) : K → K is the bounded operator sending α to
PKΦα, or, equivalently, by

(2.2) Φ(S) = C(S),

where C is given by

(2.3) C := Re{c} =
1 − |w|2
|1 + w|2 ∈ L∞

R
(T)

with w is as in (1.2). In fact, ϕ(S) = T = c(S) implies that
(2.4)

Φ(S)α =
1
2
PK(ϕ + ϕ̄)α =

1
2

(ϕ(S) + ϕ(S)∗)α =
1
2

(c(S) + c(S)∗)α = C(S)α
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for all α ∈ K. In particular,

〈α, Φ(S)α〉 = 〈α, Re(T)α〉,
which is the Pick form.

We observe that, for any V ∈ L∞
R

, to say that V (S) = 0 is to say that∫
T

gh̄V dm = 〈h, V g〉 = 〈h, PKV g〉 = 0 for all g, h ∈ K,

where dm denotes the Lebesgue measure on T. This is in turn equivalent to∫
T

PV dm = 0 for all P ∈ M ⊂ L1
R
(T).

Hence the space of annihilators M⊥ consists of all V ∈ L∞
R

such that V (S) = 0. In
particular, the interpolation condition (2.2) holds if and only if Φ = C in M∗ :=
L∞

R
/M⊥.
With this in mind, we provisionally assume that Ψ is an L∞ function and (fol-

lowing [10]; see also [9]) consider the 1-form

(2.5) ω =
∫

T

(
C − Ψ

Q

)
dQ dm

which is defined at points in the convex set Q+ ⊂ M . The tangent space to M at
a point Q is canonically isomorphic to M , and the value ω(Q)(v) at the tangent
vector v ∈ M is given by

ω(Q)(v) =
∫

T

(
C − Ψ

Q

)
v dm.

In particular, to say that ω vanishes at Q is to say that Ψ/Q interpolates C. We
claim that this occurs at the unique minimum of a potential function. Indeed, fixing
a base point Q0 in Q+, we consider the integral

JΨ(Q) =
∫ Q

Q0

ω

along the line from Q0 to Q as a function of its upper limit. Suppose Qn tends to
Q in Q+ and consider the triangle bounded by traversing the line from Q0 to Q,
the line from Q to Qn and the line from Qn to Q0. On this triangle,

dω =
∫

T

Ψ
Q2

dQ ∧ dQ dm = 0,

so that the integral along the path is zero, by Green’s Theorem. In particular,
JΨ(Qn) tends to JΨ(Q).

More generally, a similar argument shows that the integral is independent of the
path. In particular, modulo a constant of integration we have

(2.6) JΨ(Q) =
∫

T

CQdm −
∫

T

Ψ logQdm.

Clearly, JΨ : Q → R̄ is a strictly convex functional on its effective domain. The
first term is a Pick form, which is required to be positive. In fact, since Q ∈ Q,
there is an α ∈ K such that Q = |α|2, and hence

(2.7)
∫

T

CQdm = 〈α, Re(T)α〉.
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This derivation of JΨ is meant to underscore the fact that nonlinear convex
optimization methods are intrinsic to the problem of generalized interpolation with
the complexity constraint (1.1). Indeed, the assumption that Ψ be an L∞ function
is not needed for the rigorous analysis of this minimization problem, as stated in
the following theorem.

Theorem 3. Suppose that ‖T ‖ < 1 and that f ∈ H∞ satisfies the conditions
(i) f = b/a ∈ H∞ with ‖f‖∞ < 1 and (a, b) ∈ K0 × K,
(ii) f(S) = T , and
(iii) Ψ := |a|2 − |b|2 satisfies∫

T

Ψ log+ Ψ dm < ∞.

Then the functional JΨ has a unique minimum, and

(2.8) a =
√

2(I + T )−1α, b =
√

2T (I + T )−1α

where α ∈ K0 is uniquely defined by

(2.9) |α|2 = arg min
Q∈Q

JΨ.

Moreover, setting β = (a − b)/
√

2 and ϕ = β/α, we have ϕ ∈ C and

ϕ(S) = (I − T )(I + T )−1.

Proof. First we note that JΨ is a strictly convex functional in its effective domain.
Hence, if a minimizer exists, then it is unique. Next, set α = (a + b)/

√
2, β =

(a − b)/
√

2, and Q̂ = |α|2. In view of condition (i), ϕ = β/α satisfies

(2.10) Φ :=
Ψ
Q̂

= Re{ϕ} ∈ L∞(T),

and hence Φ(S) = C(S) by the calculation (2.4), or, equivalently, Φ = C in M∗.
Moreover, because of (iii) and (2.10), JΨ(Q̂) < ∞. Taking now a Newton quotient
in the direction v, we have

(2.11) dJΨ(Q̂)(v) =
∫

T

(
C − Ψ

Q̂

)
v dm = 0

for all v ∈ TQ̂Q = M , i.e., Q̂ is a stationary point and hence the unique minimizer.
Finally, observing that b = Ta, the rest follows from ϕ = (1 − f)(1 + f)−1, (1.4)
and (1.5). �

The convex optimization problem of Theorem 3 is the dual of the concave max-
imization problem to find a Φ in

F := {Φ ∈ L∞
R

(T) | ess infΦ(eiθ) > 0},

that maximizes the functional

(2.12) Φ �→
∫

T

Ψ log Φ dm

subject to Φ(S) = C(S). Indeed, setting up the Lagrangian for this constrained
optimization problem, Q in (2.6) appears as a Lagrange multipier.
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In fact, since the constraint Φ(S) = C(S) is equivalent to Φ = C on M∗, we may
form the Lagrangian

L(Φ, Q) =
∫

T

Ψ logΦ dm +
∫

T

Q(C − Φ)dm,

where the Lagrange multiplier Q is a real-valued function in the predual M . We
want to minimize the dual function Q �→ supφ∈F L(Φ, Q), which can only take finite
values for Q ∈ Q. Therefore, without lack of generality, we may restrict Q to Q.

The derivative

dL(Φ, Q)(v) =
∫

T

(
Ψ
Φ

− Q

)
v dm

vanishes in all directions v ∈ TΦF if Φ = Ψ/Q. Inserting this into the Lagrangian,
we obtain

L

(
Ψ
Q

, Q

)
= JΨ(Q) + κ,

where JΨ is defined by (2.6) and

(2.13) κ :=
∫

T

Ψ(log Ψ − 1)dm.

Assuming condition (iii) of Theorem 3, κ is guaranteed to be well defined. In fact,
0 ≥

∫
T

Ψ log− Ψ dm > −∞, since Ψ = |σ|2 with σ ∈ H2. Now, it can be seen
that the primal problem to maximize (2.12) over F subject to Φ(S) = C(S) can be
reformulated as maximizing the concave functional

(2.14) IΨ(ϕ) =
∫

T

Ψ log (Re{ϕ}) dm,

subject to the original interpolation condition ϕ(S) = c(S).

Theorem 4. Let T be a bounded operator on K that commutes with S and satisfies
ReT > 0. Suppose ϕ ∈ C+ ∩ H∞ satisfies ϕ(S) = T and ϕ = β/α with (α, β) ∈
K0 × K0, and set Ψ = Re{ᾱβ}. Then IΨ : C+ ∩ H∞ → R ∪ {−∞} has a unique
maximizer in the class of interpolants ϕ(S) = T, and this maximizer is precisely ϕ.

Proof. For notational convenience, let ϕ̂ ∈ H∞ be the function ϕ in the theorem,
i.e., ϕ̂(S) = T and ϕ̂ = β/α, and set Q̂ = |α|2. Then

Φ̂ := Re{ϕ̂} =
Ψ
Q̂

belongs to L∞
R

(T) and satisfies Φ̂(S) = C(S). Moreover, since ϕ̂ ∈ C+ ∩ H∞, we
have Re{ϕ̂} bounded away from zero and infinity, and therefore IΨ(ϕ̂) is finite.
Since Φ �→ L(Φ, Q̂) is strictly concave, and since

dL(Φ̂, Q̂)(v) =
∫

T

(
Ψ
Φ̂

− Q̂

)
v dm = 0, for all v ∈ TΦ̂F ,

it follows that

(2.15) L(Φ, Q̂) ≤ L(Φ̂, Q̂), for all Φ ∈ F ,

with equality if and only if Φ = Φ̂. However, since Φ̂ = C in M∗, L(Φ̂, Q̂) = IΨ(Φ̂).
Moreover, for each ϕ ∈ H∞ ∩ C satisfying ϕ(S) = T, it holds that Φ := Re{ϕ}
satisfies Φ = C in M∗. Hence

IΨ(ϕ) ≤ IΨ(ϕ̂), for all ϕ ∈ H∞ ∩ C such that ϕ(S) = T,
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with equality if and only if Re{ϕ} = Re{ϕ̂}. In view of the Riesz-Herglotz repre-
sentation

ϕ(z) =
1
2π

∫ π

−π

eiθ − z

eiθ + z
Re{ϕ(eiθ)}dθ + iγ, γ ∈ R,

Re{ϕ} = Re{ϕ̂} if and only if ϕ and ϕ̂ differ by an imaginary constant. However,
this constant must be zero. Indeed, if ϕ(S) = ϕ̂(S), then φ̄(ϕ − ϕ̂) ∈ H∞, which
implies that ϕ = ϕ̂, as φ is nonconstant. Consequently, ϕ̂ is the unique solution to
the optimization problem of Theorem 4, as claimed. �

Translating Theorem 4 to the Schur setting, we see that a function f ∈ S satis-
fying conditions (i) and (ii) of Theorem 3, is the unique maximizer of

(2.16) f �→ IΨ

(
1 − f

1 + f

)
= KΨ(f) − ρ(f)

in the class of functions f ∈ S satisfying f(S) = T , where Ψ = |a|2 − |b|2,

(2.17) KΨ(f) =
∫

T

Ψ log
(
1 − |f |2

)
dm,

and

ρ(f) =
∫

T

Ψ log(|1 + f |2)dm.

Now the derivative of ρ at any point f and in any direction φv in which the inter-
polation conditions are preserved is

dρ(f)(v) = 2Re
∫

T

Ψ
φv

1 + f
dm = 0,

since Ψ ∈ φ̄H1
0 (Lemma 10) and v(1 + f)−1 ∈ H∞. Moreover, it is easy to check

that KΨ is strictly concave, and it therefore follows that KΨ has a maximum at the
same point as (2.16). Consequently, we have shown that a Schur function satisfying
(i) and (ii) in Theorem 3 is the unique maximizer of KΨ as well. In fact, we shall
establish next that, for any σ ∈ K0, the corresponding interpolant f satisfying
the conditions of Theorem 1 can be obtained as the unique maximizer of KΨ for
Ψ = |σ|2.

Theorem 5. Let T be an operator in K that commutes with S and has norm
‖T ‖ < 1, and let σ be an arbitrary function in K0. Then, setting Ψ = |σ|2, the
functional KΨ has a unique maximizer in the class of functions satisfying f(S) = T ,
and this maximizer is precisely the unique f ∈ S satisfying conditions (i), (ii) and
(iii) in Theorem 1.

3. Proofs of Theorems 1, 2 and 5

Optimization is the main ingredient in the proof of Theorem 1. Therefore, we
begin by establishing that the functional (2.17) has a unique maximizer in the class
of functions satisfying f(S) = T or, equivalently, satisfying f = w + φv for some
v ∈ H∞, where w ∈ H∞ is an arbitrary function satisfying w(S) = T and ‖w‖ < 1.
Sarason [29] ensures the existence of such a function and that

(3.1) X = {v ∈ H∞ | ‖w + φv‖ ≤ 1}
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is nonempty. Elements in X are in bijective correspondence via (1.2) with contrac-
tive interpolants of T , i.e., with elements of the set

(3.2) Y = {f ∈ H∞ | ‖f‖ ≤ 1 and f(S) = T }.

Setting F (v) := KΨ(w + φv) and Ψ = |σ|2, we obtain a strictly concave functional
F : X → [−∞, 0) given by

(3.3) F (v) =
∫

T

|σ|2 log(1 − |w + φv|2)dm

with the value −∞ if the Lebesgue measure of the set {z ∈ T | |w + φv| = 1} is
positive.

Main Lemma 6. The functional (3.3) has a unique maximum on X.

More specifically, we will show that this functional has a unique maximum which
yields the unique pair (a, b) ∈ K0 × K corresponding to a given σ as claimed in
Theorem 1.

3.1. Proof of the Main Lemma. We begin with the existence part, for which
we need the following lemma.

Lemma 7. There exists a set L of continuous affine functionals on H∞ of the
form

(3.4) λ(v) = λ0 +
∫

T

Re(hv)dm

with λ0 ∈ R, h ∈ L1, such that

(3.5) F (v) = inf
λ∈L

λ(v) for every v ∈ X.

Proof. For all a, x > 0, log(x) ≤ log(a) + x−a
a . Hence for all |s| ≤ 1, |z| ≤ 1, and

ε > 0 we have

log(1 + ε − |s|2) ≤ log(1 + ε − |z|2) +
|z|2 − |s|2

1 + ε − |z|2

≤ log(1 + ε − |z|2) + 2
|z|2 − Re(z̄s)
1 + ε − |z|2

with equality whenever z = s. Consequently,

F (v) = inf
ε>0

∫
T

|σ|2 log(1 + ε − |w + φv|2)dm

≤ inf
u∈X

inf
ε>0

∫
T

|σ|2
(

log(1 + ε − |w + φu|2)

+ 2
|w + φu|2 − Re(w + φu)(w + φv)

1 + ε − |w + φu|2

)
dm

where the outer infimum is achieved at u = v. Therefore, if L is the class (3.4) of
affine functionals on H∞ defined via

λ0 =
∫

T

|σ|2
(

log(1 + ε − |w + φu|2) + 2
|w + φu|2 − Re(w + φu)w

1 + ε − |w + φu|2

)
dm ∈ R
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and

h = −2|σ|2 (w + φu)φ
1 + ε − |w + φu|2 ∈ L1

for all ε > 0 and u ∈ X , then the representation (3.5) holds. �

We now show that there exists a v̂ ∈ X such that

F (v̂) ≥ F (v) for all v ∈ X.

To this end, we first note that X is sequentially weak∗ compact. To see this,
take a sequence

(
vk

)∞
k=1

in X , and consider the corresponding sequence
(
fk

)∞
k=1

defined by fk = w + φvk. Since the unit ball in H∞ is sequentially weak∗ compact,
there exists a subsequence

(
fj

)∞
j=1

converging to a weak∗ limit f̂ ∈ H∞ with

norm ‖f̂‖ ≤ 1. Then, for any h ∈ L1,
∫

h(f̂ − fj)dm → 0 as j → ∞, and, in
particular, this is true for h = φ̄u and any u ∈ H1

0 . But in this case, the integral∫
φ̄u(f̂ − fj)dm =

∫
φ̄u(f̂ − w)dm is independent of j and hence identically zero.

From this fact it follows readily that f̂ is of the form w + φv̂ for some v̂ ∈ H∞

which then is the weak∗ limit of the sequence
(
vj

)∞
k=1

and belongs to X .
Now, let

ρ := sup
v∈X

F (v) ≥ F (0) > −∞,

and note that ρ ≤ 0. Then, let
(
vk

)∞
k=1

be a (maximizing) sequence in X such
that F (vk) → ρ as k → ∞, and let

(
vj

)∞
j=1

be a subsequence having a weak∗ limit
v̂ ∈ X . Since the predual of H∞ is L1/H1

0 ,∫
T

hvj dm →
∫

T

hv dm

for all h ∈ L1, and hence

λ(v̂) = lim
j→∞

λ(vj)

for all λ ∈ L. From Lemma 7 we also have that

lim
j→∞

λ(vj) ≥ lim inf
j→∞

F (vj) = ρ

for any λ ∈ L. Therefore, in view of (3.5), we conclude that F (v̂) ≥ supv∈X F (v),
as claimed. This establishes the existence part of the theorem.

Next, we turn to the question of uniqueness of the maximum of F (v).

Lemma 8. The functional (3.3) is strictly concave on its effective domain.

Proof. Since, for each z ∈ T, we have that v(z) �→ 1− |w(z) + φ(z)v(z)|2 is strictly
concave for |w(z)+φ(z)v(z)| ≤ 1, and since the log function is strictly concave and
monotonically increasing on (0,∞), it follows that v(z) �→ log(1−|w(z)+φ(z)v(z)|2)
is strictly convex, and hence so is F on its effective domain, i.e., where F (v) >
−∞. �

Consequently, the maximizer, whose existence we have established, is also unique.
This concludes the proof of the main lemma.
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3.2. Factorization in K of nonnegative functions in M .

Proposition 9. Let Q be the set of nonnegative functions in M . Then, Q ∈ Q if
and only if there is an outer function a ∈ K such Q = |a|2.

Proof. Clearly, if Q = |a|2 with a ∈ K, then Q ∈ Q. For the converse, we first note
that for g, h ∈ K, we have gh̄ ∈ φ̄H1

0 since K̄ ⊂ φ̄H2
0 . Hence φM ⊂ H1

0 . Now, since
Q ∈ Q ⊂ φ̄H1

0 ,

(3.6)
∫

T

log Qdm > −∞

(see, e.g., [14, p. 17]), and hence Q = |a|2 for some a ∈ H2; see, e.g., [23, p.
53]. Then, since φQ ∈ H1

0 , the rest of the proposition follows from the following
lemma. �

Lemma 10. If g ∈ K, then φ|g|2 ∈ H1
0 . Conversely, if g ∈ H2 and φ|g|2 ∈ H1

0 ,
then the outer factor of g is in K.

Proof. Since K = (φH̄2
0 ) ∩ H2, we have

(3.7) g ∈ K ⇔ φḡ ∈ H2
0 and g ∈ H2.

Then, it immediately follows that φ|g|2 ∈ H1
0 . For the converse statement, the

fact that φ|g|2 ∈ H1
0 implies that φ|go|2 ∈ H1

0 , where go is the outer factor of g.
Since therefore φḡogo ∈ H1

0 with go outer in H2, it follows that φḡo belongs to the
Smirnov class N+. However, φḡo is also in L2(T), and hence φḡo ∈ H2

0 (see, e.g.,
[14, Theorem 2.11]). Consequently, it follows from (3.7) that go is in K. �

Corollary 11. M ⊂ φ̄H1
0 ∩ φH̄1

0 .

3.3. Proofs of Theorems 1 and 5. We show that the maximizer of the functional
F gives rise to an interpolant of the form claimed in the statement of Theorem 1.
This follows from the stationarity conditions. Uniqueness follows from strict con-
cavity. Recalling that F (v) = KΨ(w + φv), this also proves Theorem 5.

Lemma 12. Let f = w + φv, where v = argmax(F ). Then

|σ|2
1 − |f |2 ∈ L1.

Proof. If v = 0, then f = w and thus ‖f‖ < 1. Now suppose that v �= 0, and
consider, for t ∈ (0, 1), the differentiable function ψ : t �→ F ((1 − t)v) with
derivative

ψ̇(t) =
∫

T

ϕtdm where ϕt := |σ|2 Re{[f̄ + t(w̄ − f̄)][f − w]}
1 − |f + t(w − f)|2 .

Since F has a maximum at v, ψ̇(t) ≤ 0 for t small. Choose a γ such that ‖w‖ ≤ γ <
1, and let I1 and I2 be the subintervals of T where |f | < 1

2 (1+γ) and |f | ≥ 1
2 (1+γ),

respectively. On I1, the denominator of ϕt is bounded away from zero, and hence∣∣∣∣
∫

I1

ϕt dm

∣∣∣∣ < ∞,
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while on I2 ϕt > 0 for sufficiently small t. Therefore, to say that |σ|2
1−|f |2 �∈ L1 is to

say that ∫
I2

ϕt dm → +∞,

contradicting the nonpositivity of ψ̇(t) for t small. �
Since σ is in H2, we have

∫
T

log |σ|2dm > −∞; see, e.g., [23, p. 53]. Therefore,
since 1 − |f |2 is bounded,∫

T

log
(

|σ|2
1 − |f |2

)
dm =

∫
T

log(|σ|2)dm −
∫

T

log(1 − |f |2) dm > −∞.

Hence, there is a unique outer function a ∈ H2 with a(0) > 0 such that

(3.8) |a|2 =
|σ|2

1 − |f |2 ,

and, if we define b := fa ∈ H2, a and b satisfy

f =
b

a
,(3.9)

|σ|2 = |a|2 − |b|2.(3.10)

To show that a, b ∈ K we need the following lemma.

Lemma 13. Let f = w + φv, where v = argmax(F ). Then

(3.11)
|σ|2

1 − |f |2 f̄φ ∈ H1
0 .

Proof. From Lemma 12 and the fact that
∫

T
log |σ|2dm > −∞ we see that∫

T

log(1 − |f |2)dm > −∞,

which implies that 1 − |f |2 = |g|2 for some outer g ∈ H2. For any h ∈ H∞ with
norm ‖h‖∞ ≤ 1, we have v + tφg2h ∈ X for t ∈ (−ε, ε) and ε sufficiently small. In
fact, since Re{tf̄φg2h} ≤ |t| · |g|2|h|, we have

1 − |f + tφg2h|2 ≥ |g|2(1 − 2|t| · |h| − t2|g|2|h|2),
which is nonnegative for |t| sufficiently small. Since v = argmax(F ), the derivative
of F must be zero at v in the directions ±φg2h for arbitrary h ∈ H∞ of norm
‖h‖∞ ≤ 1, i.e., ∫

T

|σ|2 Re{f̄φg2h}
1 − |f |2 dm = 0

for all h ∈ H∞ in the unit ball. Therefore,

|σ|2 f̄φg2

1 − |f |2 ∈ H1
0 ,

so, since g is outer and |σ|2 f̄φ
1−|f |2 ∈ L1 (Lemma 12), (3.11) follows. �

In view of (3.8), we may write (3.11) as

(3.12) |a|2f̄φ ∈ H1
0 .

Since f ∈ H∞, (3.12) implies that |a|2|f |2φ ∈ H1
0 , and hence, φ|b|2 ∈ H1

0 . There-
fore, since |a|2 = |σ|2 + |b|2, where a is outer and σ ∈ K, it follows from Lemma 10
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that a ∈ K. To prove that b ∈ K, note that (3.12) implies that b̄aφ ∈ H1
0 and, since

a is outer, b̄φ ∈ N+. Therefore, since b̄φ is also in L2, we have b̄φ ∈ H2
0 [14, p. 28],

which, by (3.7), implies that b ∈ K.
This establishes the existence of an interpolant f of the form stated in Theo-

rems 1. It remains to prove uniqueness. To this end, suppose that there are two
such interpolants, i.e., that there exist vk ∈ X , k = 1, 2, such that

fk =
bk

ak
= w + φvk, bk, ak ∈ K, |ak|2 − |bk|2 = |σ|2.

If so, then

(3.13)
|σ|2

1 − |fk|2
= |ak|2 ∈ L1, k = 1, 2.

Since X is convex, v1 + t(v2 − v1) ∈ X for t ∈ [0, 1]. Then, given (3.3), the function
ψ : [0, 1] → R, defined by

ψ(t) = F (v1 + t(v2 − v1)),

is differentiable at t = 0 and has the derivative

ψ̇(0+) =
∫

T

|σ|2 2Re{f̄1(f1 − f2)}
1 − |f1|2

dm

there. In fact, taking q1 = 1 − |f1 + t(f2 − f1)|2 and q2 = 1 − |f1|2 in

log q1 − log q2 ≤ q1 − q2

q2
,

we obtain
1
t

[
log

(
1 − |f1 + t(f2 − f1)|2

)
− log

(
1 − |f1|2

)]
−2Re{f̄1(f1 − f2)}

1 − |f1|2
≤ −t

|f1 − f2|2
1 − |f1|2

≤ 0,

and hence we are allowed to differentiate inside the integral.
Now, in view of (3.13), we have

ψ̇(0+) = 2Re
∫

T

a1b̄1φ(v1 − v2)dm,

which equals zero since b̄1φ ∈ H2
0 and therefore a1b̄1φ(v1 − v2) ∈ H1

0 . The same
argument can then be used to show that ψ̇(1−) = 0. This contradicts strict con-
cavity of F unless v1 = v2. Therefore, f1 = f2, and hence |a1|2 = |a2|2 by (3.13).
Consequently, since a1, a2 ∈ K0, we must have a1 = a2 and b1 = f1a1 = f2a2 = b2.

For the converse statement of Theorem 1, observe that (i), (ii) and (1.2) imply
that b = wa + φva and hence that b = PKwa = Ta. Therefore, since ‖T ‖ < 1,
Ψ := |a|2 − |b|2 ≥ 0 and hence, by Proposition 9, there is a unique σ ∈ K0 such
that Ψ = |σ|2.

3.4. Proof of Theorem 2. In view of the bijective correspondence (1.3) between
C and S, Theorem 2 follows quite directly from Theorem 1. To see this, note that,
since T is bounded and Re T > 0, T = (I−T)(I +T)−1 is a bounded linear operator
on K and ‖T ‖ < 1. Moreover, T commutes with S if and only if T does. Now,
according to Theorem 1, there exist a, b ∈ K with |a|2 − |b|2 = |σ|2 such that
f = b/a ∈ H∞ satisfies ‖f‖∞ ≤ 1 and f(S) = T . Then, define α, β via (1.4). Since
a is outer and |a| ≥ |b| a.e. on T, by an analogue of Rouché’s Theorem developed
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in [1, Lemma 3.1, p. 47], α and β are both outer. It is now easy to check that ϕ
satisfies conditions (i), (ii) and (iii) of Theorem 2.

4. Well-posedness in the sense of Hadamard

Given any inner function φ, Theorem 1 yields a complete parameterization of
solutions to the generalized interpolation problem with the complexity constraint
(1.1) in terms of two sets of data, T and Ψ := |σ|2. Fixing a choice of Ψ, for every
choice of the operator T , there is a unique generalized interpolant f satisfying the
complexity constraint. On the other hand, fixing T , for every choice of Ψ there
is a unique generalized interpolant as well. In each case, the resulting bijections
show that a generalized interpolant exists and is uniquely determined by the choice
of problem data. Hadamard was among the first to emphasize that, in addition
to existence and uniqueness of solutions to a (linear or) nonlinear problem, it is
highly desirable to also prove continuous dependence of the solution with respect
to variations in the problem data. We will now make these statements precise with
appropriate choices of topologies.

Theorem 14. Let T be an operator in K that commutes with S and has norm
‖T ‖ < 1, let (Ψn) be a sequence in Q converging strongly to Ψ ∈ Q, and let (fn), f ∈
H∞ be the corresponding generalized interpolants prescribed by Theorem 1. Then
fn → f weak∗.

Proof. By the Main Lemma 6, the functional F defined by (3.3) with Ψ = |σ|2 has
a unique maximizer, which we denote v̂. Analogously, for n = 1, 2, 3, . . . , define
v̂n = argmaxFn where

Fn(v) =
∫

T

Ψn log(1 − |w + φv|2)dm.

Lemma 15.
(
Fn(v̂n)

)
is a bounded sequence in R.

Proof. Let w be a Sarason interpolant, i.e., an interpolant of minimum norm. Then
‖w‖∞ = ‖T || < 1. By optimality of v̂n,

Fn(0) ≤ Fn(v̂n) ≤ 0.

However, Fn(0) is bounded from below by log(1−‖T ‖2)‖Ψn‖1, and ‖Ψn‖1 → ‖Ψ‖1,
and hence there is a uniform lower bound. �

Therefore, since (v̂n) ∈ X , there is a subsequence (v̂j) converging weakly∗ to
some v∞ in X and a Cauchy subsequence

(
Fk(v̂k)

)
of

(
Fj(v̂j)

)
converging to some

F ∗ ≤ 0.

Lemma 16. For all v ∈ X, we have F (v) ≤ F ∗.

Proof. For any v ∈ X+ = {v | ‖w + φv‖∞ < 1},

Fk(v) =
∫

T

Ψk log(1 − |w + φv|2)dm →
∫

T

Ψ log(1 − |w + φv|2)dm = F (v),

since log(1 − |w + φv|2) ∈ H∞. By optimality, Fk(v) ≤ Fk(v̂k), and consequently
F (v) ≤ F ∗ for all v ∈ X+. Now, for any λ ∈ [0, 1),we have λv̂ ∈ X+, and hence
F (λv̂) ≤ F ∗. However, F is strictly concave and v̂ = argmaxF , and therefore
λ �→ F (λv̂) is monotonely increasing. Consequently, F (v̂) ≤ F ∗, and a fortiori
F (v) ≤ F ∗ for all v ∈ X+. �
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Lemma 17. Let v∞ be the weak∗ limit of (v̂k). Then, F (v∞) = F ∗.

Proof. For ε > 0, by Lemma 7, there is λ ∈ L, such that

F (v∞) ≥ λ(v∞) − ε.

Let
λk(v) = λ0k + Re〈hk, v〉

be defined from λ by exchanging Ψ for Ψk. Then hk → h strongly as k → ∞, and
therefore, since v̂k → v∞ weak∗,

〈hk, vk〉 → 〈h, v∞〉.
(See, e.g., [33, p. 148].) Since, in addition, λk(v) → λ0k, we have λk(v̂k) → λ(v∞)
so that

F (v∞) ≥ λk(v̂k) − 2ε

for k sufficiently large. However, by Lemma 7, λk(v̂k) ≥ Fk(v̂k), which tends to F ∗

as k → ∞. Consequently, F (v∞) ≥ F ∗. However, by Lemma 16, F (v∞) ≤ F ∗, and
hence F (v∞) = F ∗ as claimed. �

Then, by Lemma 16 and Lemma 17,

F (v̂) ≤ F ∗ = F (v∞).

However, v̂ = argmaxF , and hence we must have F (v̂) = F (v∞). Therefore, since
F is strictly concave, v̂ = v∞. Consequently, vk → v̂, and thus fk = w + φvk → f ,
weak∗.

Therefore, the full sequence (fn) has the property that every convergent sub-
sequence (fk) converges weak∗ to the same f . It follows that fn → f weak∗. In
more detail, if this were not the case, there would be an (infinite) subsequence (vν)
of (vn) that must be excluded in order for the remaining sequence to converge to
v∞. Then, since (vν) is bounded, there is a subsequence (vµ) converging weak∗ to
some limit ṽ∞ that does not equal v∞. However, going again through the proof
above, we see that ṽ∞ = v̂ and hence that ṽ∞ = v∞, contrary to our assumption.
Consequently, (fn) tends to f weak∗, as claimed.

This concludes the proof of Theorem 14. �

Theorem 18. Let T be an operator in K that commutes with S and has norm
‖T ‖ < 1, and let (Tn) be a sequence of operators in K with norm ‖Tn‖ < 1 also
commuting with S such that Tn → T in operator norm. Moreover, given any
Ψ ∈ Q, let (fn), f ∈ H∞ be the corresponding generalized interpolants prescribed by
Theorem 1. Then fn → f weak∗.

Proof. Let w be a Sarason interpolant of norm ‖w‖∞ = ‖T ‖ < 1. In the same
way, let un be a Sarason interpolant of Tn − T of minimum norm. It follows that
‖un‖∞ = ‖Tn − T ‖ → 0. Setting wn = w + un, we have that wn → w strongly.
Then, along the lines of the proof of Theorem 14, we define v̂n = argmaxFn, where
now

Fn(v) =
∫

T

Ψ log(1 − |wn + φv|2)dm.

Lemma 19. For some sufficiently large N ,
(
Fn(v̂n)

)∞
n=N

is a bounded sequence in
R.



16 C. I. BYRNES, T. T. GEORGIOU, A. LINDQUIST, AND A. MEGRETSKI

Proof. Again by optimality of v̂n, we have Fn(0) ≤ Fn(v̂n) ≤ 0. Moreover,

Fn(0) − F (0) =
∫

T

Ψ log
(

1 − |wn|2
1 − |w|2

)
dm.

Now, 1−|w|2 > 0 on T. Since wn → w strongly, 1−|wn|2 > 0 on T for n ≥ N with
N sufficiently large, and Fn(0) → F (0) as n → ∞. Hence F (0) − ε ≤ Fn(v̂n) ≤ 0
for ε > 0 and n sufficiently large. �

Consequently, as above, there is a subsequence (v̂j) converging weakly∗ to some
v∞ in X and a Cauchy subsequence

(
Fk(v̂k)

)
of

(
Fj(v̂j)

)
converging to some F ∗ ≤ 0.

Lemma 20. For all v ∈ X, we have F (v) ≤ F ∗.

Proof. In the same manner as above, we observe that

Fk(0) − F (0) =
∫

T

Ψ log
(

1 − |wk + φv|2
1 − |w + φv|2

)
dm → 0

for v ∈ X+ as k → ∞. Then the rest of the proof is similar to that for Lemma 16.
�

Lemma 21. Let v∞ be the weak∗ limit of (v̂k). Then, F (v∞) = F ∗.

Proof. The proof is the same as for Lemma 17 after observing that

hk − h = −2Ψ
(

(wk + φu)φ
1 + ε − |wk + φu|2 − (w + φu)φ

1 + ε − |w + φu|2

)
tends to zero strongly for all ε > 0 and u ∈ X . �

Finally, as in the proof of Theorem 14, we now see that vk → v̂ weak∗, and in
fact vn → v̂ weak∗. Then the same holds for fn = wn + φvn → f . This concludes
the proof of Theorem 18. �

5. Applications to interpolation

We now present three different examples where the theory is relevant. The first
two are drawn from the trigonometric moment problem and from classical analytic
interpolation, respectively. They correspond to cases where the inner function φ is
a finite Blaschke product, and hence K is finite-dimensional. The last example is
drawn from systems theory and corresponds to a case where φ is a singular inner
function.

5.1. The Carathéodory extension problem. Given n + 1 complex numbers

c0, c1, . . . , cn,

consider the class of functions in the Carathéodory class C whose power series begins
with the term c0 + c1z + · · · + cnzn. If c is one such function, all the others take
the form

ϕ = c + φv, v ∈ H(D),
where φ is the inner function

φ(z) = zn+1.

The problem to characterize this class of interpolants has been widely studied by,
among others, Carathéodory and Fejer [12], Toeplitz [32] and Schur [30], the latter
of whom completely parameterized all interpolants in terms of what are now known
as the Schur parameters.
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In this context, the interpolants of the form β/α with α, β ∈ K := H2 � φH2,
studied in this paper, are the rational interpolants of degree at most n. In fact, K

is the n+1-dimensional space spanned by the monomials 1, z, z2, . . . , zn, and hence
the functions in K are the polynomials of degree less or equal to n. In this basis,
the shift has the matrix representation

S =




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 ,

and consequently an operator T on K commutes with S if and only if its matrix
has the form

(5.1) T =




c0 0 0 · · · 0
c1 c0 0 · · · 0
c2 c1 c0 · · · 0
...

...
...

. . .
...

cn cn−1 cn−2 · · · c0


 .

The interpolation problem has a solution if and only if the Toeplitz matrix

(5.2) Re T =
1
2




c0 + c̄0 c̄1 c̄2 · · · c̄n

c1 c0 + c̄0 c̄1 · · · c̄n−1

c2 c1 c0 + c̄0 · · · c̄n−2

...
...

...
. . .

...
cn cn−1 cn−2 · · · c0 + c̄0




is positive semidefinite. If this Toeplitz matrix is singular, there is a unique inter-
polant, namely the one discussed by Sarason in [29]. This solution, which has all its
poles and zeros in the unit circle T (see, e.g., [22, p. 148] for an explicit expression)
has been used extensively in signal processing and statistics in the context of spec-
tral analysis of time series. In fact, even if ReT > 0, the interpolation problem can
be reduced to one where the Toeplitz matrix Re T is singular by subtracting a mul-
tiple of the identity. An interpolant for the original problem can be reconstructed
by adding back that constant. Such a solution is known in signal processing as the
Pisarenko solution.

In general, if ReT > 0, there are infinitely many rational interpolants of degree
at most n, and it is precisely these we characterize in this paper. We reformulate
Theorems 2 and 3 in the present setting. To this end, let P(n) be the class of
polynomial with degree at most n and with all its roots in the complement of the
open unit disc D, and let P+(n) be the subclass of σ ∈ P(n) such that σ(0) > 0.
Moreover, let Q+ be the class of trigonometric polynomials

Q+ = {Q = Re{q} > 0 on T | q is a polynomial of degree at most n}.

Theorem 22 ([18, 4, 20, 6]). Let c0, c1, . . . , cn be complex numbers such that the
Toeplitz matrix (5.2) is positive definite, and let T be given by (5.1). Then, to each
σ ∈ P+(n) there corresponds a unique pair (α, β) ∈ P+(n)× ∈ P(n) such that

(i) ϕ = β/α ∈ C,
(ii) ϕ(z) = c0 + c1z + · · · + cnzn + · · · , and
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(iii) ᾱβ + αβ̄ = 2|σ|2 on T.
Conversely, any ϕ satisfying (i) and (ii) determines via (iii), a unique σ ∈ P+(n).
Moreover, if σ has no zeros on the unit circle, the functional Jσ : Q+ → R, given
by

Jσ(Q) = Re〈c, q〉 −
∫

T

|σ|2 log Qdm,

has a unique minimum in Q+, α is the unique solution in P+(n) of

|α|2 = Q̂ := argmin(Jσ),

and β = Tα.

The existence part of this theorem was proven in [18], where uniqueness was
conjectured. Uniqueness was proved in [4], except when σ has a zero on T, which
was settled in [20]. These proofs were nonconstructive, using degree theory and
the theory of foliations. The (constructive) optimization method was introduced
in [6], which was selected by the SIAM editorial board as a SIGEST paper and
republished in enhanced form as [9].

Rational Carathéodory interpolants of bounded degree are of particular interest
in several engineering applications, since the degree relates to the complexity of
the apparatus to be constructed. For lack of computational procedure, one has
traditionally been confined to two solutions, namely the Pisarenko solution and the
so-called maximum entropy solution ϕ0, the interpolant that maximizes the entropy
rate ∫

T

log (Re{ϕ})dm.

The maximum entropy solution, which is the interpolant corresponding to σ = 1,
can be determined by solving simple linear (normal) equations. In fact, ϕ0 = β/α,
where α and β are the n:th Szegö polynomials (orthogonal on the unit circle) of
the first and second kind, respectively; see, e.g., [22]. Theorem 4, interpreted in the
present setting, describes the interpolant of degree at most n corresponding to an
arbitrary σ as the maximizer of the generalized entropy rate∫

T

|σ|2 log (Re{ϕ})dm.

It is interesting to notice that this optimization problem is equivalent to mini-
mizing ∫

T

Ψ log
(

Ψ
Φ

)
dm,

over Φ, where Ψ = |σ|2 and Φ = Re{ϕ}, which functional is precisely the Kullback-
Leibler divergence between Φ and Ψ, when these are suitably normalized and inter-
preted as probability distributions. Such functionals have been extensively studied
in probability and statistics [24].

5.2. The Nevanlinna-Pick interpolation problem. The following problem was
first studied by Nevanlinna [26] and Pick [28]. Given n distinct points z0, z1, . . . , zn

in the unit disc D and n + 1 complex numbers w0, w1, . . . , wn, find a function f in
S (or in C) such that

(5.3) f(zk) = wk, k = 0, 1, . . . , n.
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For simplicity of notation, we also assume that z0 = 0. (This can be done without
loss of generality since the the bianalytic map z �→ (z− z0)/(1− z̄0z) maps the disc
into itself and sends z0 to zero.)

To transform this problem to the Sarason setting, it is standard to take the inner
function φ to be the finite Blaschke product

φ(z) = z

n∏
k=1

z̄k

|zk|
(zk − z)
(1 − z̄kz)

.

Then, as is well known, the coinvariant subspace K := H2 � φH2 is the n-dimen-
sional subspace spanned by g0, g1, . . . , gn, where

g0 = 1, gk(z) =
1

1 − z̄kz
, k = 0, 1, . . . , n,

are the evaluation kernels satisfying 〈g, gk〉 = g(zk) for all g ∈ H2. Since

〈g, f(S∗)gk〉 = 〈fg, gk〉 = f(zk)g(zk) = 〈g, f(zk)gk〉
for all g ∈ K, we have

(5.4) f(S)∗gk = f(zk)gk, k = 0, 1, . . . , n,

i.e., g0, g1, . . . , gn are the eigenvectors of f(S)∗ with eigenvalues f(z0), f(z1), . . . ,
f(zn). In particular,

(5.5) S∗gk = z̄kgk and T ∗gk = w̄kgk, k = 0, 1, . . . , n,

if T is an operator on K that commutes with S.
The condition ‖T ‖ < 1 in Theorem 1 can be written 1 − TT ∗ > 0. Therefore,

if g = α0g0 + a1g1 + · · · + angn, then, in view of (5.5), the condition ‖T ‖ < 1 is
equivalent to

〈g, (1 − TT ∗)g〉 = 〈g, g〉 − 〈T ∗g, T ∗g〉 = a∗Pna > 0,

where Pn is the Pick matrix

(5.6) Pn =
[
1 − w̄jwk

1 − z̄jzk

]n

j,k=0

.

Likewise, the condition Re T > 0 in Theorem 2 can be written

〈T ∗g, g〉 + 〈g, T ∗g〉 = a∗Πna > 0,

where Πn is the Pick matrix

(5.7) Πn =
[
w̄j + wk

1 − z̄jzk

]n

j,k=0

.

Again, if the Pick matrix, given by (5.6) in the case when f ∈ S and by (5.7) in
the case when f ∈ C, is singular, there is only one interpolant. If the Pick matrix
is positive definite, there are infinitely many solutions, and we are interested in the
ones that can be written as a quotient of two functions in K. Since any g ∈ K,
takes the form π/τ , where

τ(z) =
n∏

k=1

(1 − z̄kz)

and π is an arbitrary polynomial of degree at most n, the class of interpolants
under consideration consists precisely of all rational functions of degree at most n,
the same complexity constraint as in the Carathéodory extension problem. In the
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present setting, Theorems 2 and 3 can then be formulated in the following way,
where we now take Q+ to be

Q+ =

{
q = (q0, q1, . . . , qn) ∈ R × C

n | Q := Re

(
n∑

k=0

qkgk

)
> 0 on T

}
.

Theorem 23 ([19, 20, 7]). Let w1, w2, . . . , wn be complex numbers such that the
Pick matrix (5.7) is positive definite, and let T be given by (5.5). Then, to each
ρ ∈ P+(n) there is a unique pair (π, χ) ∈ P+(n)× ∈ P(n) such that

(i) f = χ/π ∈ C,
(ii) f(zk) = wk, k = 1, 2, . . . , n , and
(iii) π̄χ + πχ̄ = 2|ρ|2 on T.

Conversely, any f satisfying (i) and (ii) determines via (iii), a unique ρ ∈ P+(n).
Moreover, if ρ has no zeros on the unit circle, the functional Jρ : Q+ → R, given
by

Jρ(q) = Re
n∑

k=0

wkqk −
∫

T

∣∣∣ρ
τ

∣∣∣2
(

log Re
n∑

k=0

qkgk

)
dm,

has a unique minimum in Q+, π is the unique solution in P+(n) of

|π|2 = |τ |2argmin(Jρ),

and χ = τT (π/τ).

The existence part of this theorem was proved in [19], and a uniqueness proof
was given in [20]. A constructive proof, introducing the optimization problem of
the theorem, was presented in [7]. The corresponding theorem for f ∈ S is obtained
by replacing Pick matrix (5.7) by (5.6) and conditions (i) by

(i) f = (π − χ)/(π + χ) ∈ S.
The unique interpolant corresponding to ρ can also be obtained as the unique

maximizer of a generalized entropy rate over the space of functions satisfying the
interpolation condition (5.3). By Theorem 4, this entropy rate is

Iρ(f) =
∫

T

∣∣∣ρ
τ

∣∣∣2 log (Re{f})dm

for f ∈ C, and, by Theorem 5, it is

Kρ(f) =
∫

T

∣∣∣ρ
τ

∣∣∣2 log
(
1 − |f |2

)
dm

for f ∈ S. Nevanlinna-Pick interpolation problems with degree constraint abound
in applications, ranging from signal processing to robust control engineering (see,
e.g., [7, 9] for references), and often one has had to content oneself with the central
(or maximum entropy) solution obtained by taking ρ = τ , which can be computed
using linear algebra. For example, in robust H∞ control, the problem to determine
a control system whose “sensitivity function” f maximizes∫

T

log
(
1 − |f |2

)
dm

is known as the maximum entropy controller [25].
Needless to say, more general Nevanlinna-Pick interpolation problems, allowing

for multiple interpolation points, can also be handled by the theory presented in
this paper by choosing the appropriate inner function φ.
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5.3. A problem in systems theory. Let Lp(iR) be the Lp space over the imag-
inary axis and Hp(C+) the corresponding Hardy space of functions analytic in the
right half of the complex plane. Given w ∈ H∞(C+), consider the map Σw defined
by the commutative diagram

L2[0,∞) Σw−−−−→ L2[0,∞)

F

� �F

H2(C+) Mw−−−−→ H2(C+)

where Mw denotes the multiplication with w and

F : â �→ a(s) =
1√
2π

∫ ∞

0

estâ(t)dt.

Consider the singular inner function φ(s) = e−s and the subspace

K = H2(C+) � φH2(C+),

and suppose that the compressed operator

T = PKMw|K
has norm less than one. Since F−1MφF sends â(t) to â(t − 1), the subspace K is
mapped via F−1 onto L2[0, 1] which is identified with the subspace of L2[0,∞) of
functions which are zero on the interval (1,∞).

In systems theory the map Σw constitutes a model for a linear stable dynamical
system that transforms an input signal â to an output signal b̂. The domain and
range of Σw are referred to as the input and output spaces, and the square of the
L2-norm represents the energy of the signal. Thus, if ‖w‖∞ < 1, then Σw is said to
be passive since the energy of the input always exceeds the energy of the output;
see, e.g., [2]. The operator T , on the other hand, represents observed data about
Σw collected on the time interval [0, 1]. The problem we address is therefore to
parametrize the family of all input-output pairs (â, b̂) that are consistent with the
data T , correspond to a passive underlying system, and have support on the time
interval [0, 1]. Each such pair gives rise to a possible model Σf , where f = b/a

with a = Fâ and b = Fb̂. Such a model is consistent with the data in the sense
that PKMf |K = T . This can be seen as an inverse problem, where the underlying
model Σw is unknown and only information about its behavior on the interval [0, 1]
is available in the form of T .

Transforming an interpolation problem in H∞(C+) into one in H∞(D) is stan-
dard and relies on the linear fractional transformation

C+ → D : s �→ z =
s − 1
s + 1

.

Accordingly, a function f̃ ∈ H∞(D) is transformed to a function f ∈ H∞(C+) via

f(s) = f̃

(
s − 1
s + 1

)
,

while a function ã ∈ H2(D) is transformed to a function a ∈ H2(C+) via

a(s) =
1

s + 1
ã

(
s − 1
s + 1

)
.
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(Cf. [23, p. 130].) Under this correspondence the inner function φ(s) = e−s is
transformed to the singular inner function φ̃(z) = exp

(
z+1
z−1

)
, while the ordinary

shift Mz in H2(D) corresponds to multiplication with (s − 1)/(s + 1). It is also
interesting to note that this operator corresponds in L2[0,∞) to

F−1M( s−1
s+1 )F = (I − V )(I + V )−1,

where V : L2[0,∞) → L2[0,∞) is the Volterra operator V â(t) =
∫ t

0
â(τ)dτ . (Cf.

[29].)
Thus applying Theorem 1 to the present setting via the above correspondence

we have the following result. For any σ in

K0 = {σ ∈ K | σ outer in H2(C+) and σ(1) > 0},
there exists a unique pair (a, b) ∈ K0 × K such that

(i) f = b/a ∈ H∞(C+) with ‖f‖∞ ≤ 1,
(ii) PKMf |K = T , and
(iii) |a|2 − |b|2 = |σ|2 a.e. on iR.

The correspondence between the pair (a, b) ∈ K0 × K and σ ∈ K0 is bijective.
Consequently, for each σ̂ ∈ F−1K0, there is a unique model Σf that explains

the data T , and a corresponding input-output pair (â, b̂) ∈ L2[0, 1] × L2[0, 1]. It is
interesting to remark that

‖a‖2 − ‖b‖2 = ‖σ‖2

represents the total energy dissipation in the model Σf when â is the input. In
fact, |a|2 − |b|2 = |σ|2 describes the distribution of dissipation across frequencies.
Thus σ may be selected to reflect additional prior information about the underlying
system.
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