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Predictability and Unpredictability in Kalman 
Filtering 

C .  I. Byrnes, Fellow, IEEE, A. Lindquist, Fellow, IEEE, and T .  McGregor 

Abstract-In this paper, we study the dynamical behavior of 
the Kalman filter when the given parameters are allowed to vary 
in a way which does not necessarily correspond to an underlying 
stochastic system. This may correspond to situations in which 
the basic parameters are chosen incorrectly through estimates. 
We show that, as has been suggested by Kalman, the filter 
equations converge to a limit (corresponding to a steady-state 
filter) for a subset of the parameter space which is much larger 
than that corresponding to bona fide stochastic systems. More 
surprisingly, in the complement of this subset, the filtering 
equations behave in both a regular and an unpredictable man- 
ner, representative of some of the basic aspects of chaotic 
dynamics. This interesting dynamical behavior occurs already 
for one-dimensional filters, and we give a complete phase por- 
trait in this case. 

I. INTRODUCTION 
WEN a (scalar) stationary stochastic process { y , ;  t E Z} G with an n-dimensional minimal stochastic realization 

Convergence of (1.4), and hence (1.3), is well understood 
in the classical case when the parameters (F, g ,  h) corre- 
spond to a stochastic system (1. l), but it has been an impor- 
tant open problem to understand precisely for what other 
parameter values (1.3) will converge to a steady-state value. 
In the classical case, corresponding, for example, to com- 
plete knowledge of the correlation coefficients 

ci = E{ y , + i y , }  i = 0 , 1 , 2 ,  (1 5 )  

of the stationary stochastic process, the parameters ( F ,  g ,  h )  
can be determined from the spectral density 

m 

9( z )  = CO + c;( z’ + z-‘) 
i= 1 

of { y , } .  Assuming, as we shall throughout this paper, that 
co = E{ y : }  = 1, these parameters are obtained as a realiza- 
tion of the positive real part 

(1.1) 9 + ( z )  = 1/2 + h’(z1- F)-lg (1 4 X,+I = Fx, + U, 
yr = h’x ,  + w, 

of 9 ( z ) .  The matrix function 9 + , being positive real ensures 
that (F, g ,  h) corresponds to a stochastic system, or equiva- 
lently that the Toeplitz matrices 

(where {U,, wt}  is white noise and prime denotes transpose), 
it is well known that the Kalman filter 

c, ... 
CO c1 ... = F i t  + k , ( y ,  - h ’ i , )  io = 0 (1.2) 

depends only on the covariance data of { y,} and is independ- 
T , = [ T  7 . . .  

c, ct-1 CO 
ent of the particular choice of realization (1.1) [6], [8]. 

More specifically, the gain sequence { k,} is given by 

k, = (1 - h ’ I I , h ) - ’ ( g  - F n , h )  

... 

(1.3) 
where g:= E{ X,+~Y,} and { II,} is the solution of the 
discrete-time matrix Riccati equation 

n,,, = FrI,F’ + (g - FrI ,h)( l  - h ’ n , h ) - ’  

are positive definite for all t .  Under these conditions, as 
t + m, the gain sequence { k,} tends to a limit k, and the 
steady-state Kalman filter is identical to the realization (1.1) 
with the smallest state covariance P - .  . Likewise, n,  -+ P - .  . 
Moreover, for such classical parameters it is known that the 
conditions 

* ( g  - Fn,h) ’ ;  no = 0. (1.4) 1 - h’rI,h L 0 (1.8a) 

(This is the invariant Riccati equation of stochastic realiza- 1 - h’II,h = 0 * g - FII,h = 0 (1.8b) . .  
tion, with II,:= E { i , i i }  the covariance of the state esti- 
mate.) hold for all t 2 0 and, conversely, that if (1.8) holds for all 

t 2 0, then the parameters correspond to a positive real 
Manuscript received June 23, 1989; revised June 8, 1990. Paper recom- 

mended by Past Associate. Editor, M. Gevers. This work was supported in 

Foundation, and the Swedish National Board for Technical Development. 

function (1.6). 
However, as pointed out in lectures by Kalman, positivity 

interesting question of characterizing those values of the 
Darameters (F, 8 ,  h) for which (1.3) will converge, leading 

Part bY the Air Force Office of Scientific Research, the National Science is not necessary for convergence of the filter, raising the very 
C. 1. Bymes is with washington university, St. h u i s ,  MO 63130, 
A. Lindquist is with the Royal Institute of Technology, 10044 Stockholm, . -  

both to a more complete theoretical understanding of the 
Kalman filter and to the potential development of “condition- 
ing numbers” for the numerical analysis of filtering prob- 

Sweden. 

Pheonix, A 2  85021. 
T. McGregor is with Honeywell Inc., Commercial Flight Systems Group, 

IEEE Log Number 9143259. 

0018-9286/91/05W563%01.00 0 1991 IEEE 



564 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 5, MAY 1991 

lems. Understanding of the dynamics of (1.3) or (1.4) is also 
crucial, since one typically will only have estimates of the 
{ ci}  , and not only questions concerning convergence, but 
also broader issues such as sensitivity to initial data, become 
important in applications of the Kalman filter. 

This question has also arisen in the study of the fast 
algorithm 

l k [ + l  = [ l  - ( h ’ k : ) 2 ] -  ‘ [ k t  - (h’kT)FkT]; k, = g 

\k?+, = [ l  - ( h ‘ k : ) 2 ] - 1 [ F k :  - (h’kT)k , ] ;  k,* = g 

for Kalman filtering, due to Lindquist [15]. Indeed, some 
“chaotic” behavior has been observed when this algorithm 
has been used with parameters (F, g ,  h) estimated from 
statistical data. As is suggested by our present results, this is 
because the sequence (1.5) has lost its positive real property. 
The fast algorithm (1.9) can be reformulated so that all the 
parameter dependence enters in the initial conditions and 
none of the parameters (F, g ,  h) enters in the recursions 
themselves [ 161, thereby reducing the convergence question 
to one of studying the sensitivity in the initial conditions of a 
nonlinear dynamical system and to one of determining for 
which initial conditions there is convergence to a limit point. 

For this reason, and because of its intimate connection 
with spectral factorization, the Kalman filtering algorithm 
(1.9) allows for a systems theoretic interpretation of the 
convergence of the Riccati equation (1.4) for nonclassical 
parameter data, e.g., for initial conditions of the reformu- 
lated fast algorithm for which (1.8) holds only for t I T but 
not at time T + 1 .  As we observe (see Remarks 3.11 and 
4.6), this situation is a point at which the continuous-time 
case and the discrete-time case differ in a substantial manner, 
not in the methods which underlie the analysis of the respec- 
tive dynamics but rather in the conclusions which we can 
draw from this analysis. Indeed, our analysis of (1.4) or (1.9) 
uses a variant of the power method initiated by Vaughan 
[26], which is the discrete-time analog of Riccati’s 
“state-costate’’ representation of the Riccati equation (cf. 
Remark 4.5).  It is here, however, that the analogy ends. 
Consider, for example, a nonclassical choice of parameters 
as above, where (1.8) is satisfied only in a finite-time interval 
[0, T). In the continuous-time case, it is well known that for 
some finite T the trajectory of the Riccati differential equa- 
tion will escape. This can happen as well for the discrete-time 
Riccati equation (1.4), e.g., when (1.8b) is violated in the 
sense that 

(1.9) 

1 - h’rI,h = 0, g - FrI,h # 0 

However, for nonclassical initial conditions we show that 
solutions of the fast algorithm can also 

1) evolve in unbounded, complicated excursions; or 
2) exhibit periodic behavior of every period, p 2 3 (which 

3) converge to a classical limit. 
The situations 1)-2) are of course reminiscent of some of 

the features of chaotic dynamics. We have, however, re- 
frained from describing these dynamics as being chaotic since 

reduces to p 2 2 for the Riccati equation); or 

a spectral factorization interpretation implies the existence of 
certain invariants of motion (see Section 111) and therefore 
these dynamics cannot be topologically or measure-theoreti- 
cally transitive (as required in some definitions of chaos [7]; 
see, however, Remark 3.12). On the other hand, 3) is 
particularly interesting from a systems-theoretic perspective, 
since convergence to a classical limit occurs when the Riccati 
equation has lost its variational interpretation, i.e., when 
(1.8) is violated. Among the results we prove is a general 
necessary condition for 3) to occur, expressed in terms of 
spectral factorization. For the one-dimensional case, this is 
also sufficient, and there is reason to believe that it is true in 
general (see [5 ] ) .  As a matter of fact, our preliminary 
analysis in the higher dimensional case has shown that the 
Riccati equation admits for more complicated dynamic behav- 
ior than the fast algorithms which are lower dimensional, 
essentially focusing on computing the n-vector n , h  rather 
than the n x n symmetric matrix n,. This relative simplicity 
in dimensions n > 1 is one reason our basic analysis begins 
with the fast algorithm, but there are other reasons as well. In 
particular, using the fast algorithm, one can give a systems- 
theoretic interpretation of the classical limit of a trajectory 
with a nonclassical initial condition in terms of spectral 
factorization and stochastic realizations (see Remarks 3.6 and 
4.4).  

In order to keep the paper reasonably self-contained and to 
fix notation, in Section 11 we present preliminaries on fast 
filtering algorithms, positive real conditions, and some classi- 
cal convergence results for Kalman filtering. We begin Sec- 
tion 111 by stating some results for scalar output systems of 
arbitrary dimension. In particular, for the fast filtering algo- 
rithms, we describe some invariants of motion, a characteri- 
zation of the equilibrium set and necessary conditions for 
convergence to a classical limit. For any p 1 3, we claim the 
existence of initial conditions, of course not satisfying these 
necessary conditions, which are periodic of period p. More- 
over, we also assert the existence of initial data which are 
arbitrarily close to these periodic points and which have 
unbounded trajectories, defined for all positive times. Taken 
together, these results prove that the fast filtering equations 
are sensitive to initial conditions, in the region of initial data 
for which there is not convergence to a classical limit. 

As we have remarked, convergence is related to a spectral 
factorization problem; viz. the factorization of a pseudopoly- 
nomial canonically associated to the initial data. Based on this 
pseudopolynomial and its sign definiteness we can give a 
complete phase portrait for the case of one-dimensional sys- 
tem. In particular, we find that convergence occurs exactly 
when the pseudopolynomial is sign definite, although not 
necessarily positive real, on the unit circle. This also turns 
out to correspond (in the present one-dimensional case) to the 
condition that the pseudopolynomial has real roots. When this 
does not occur, the existence of periodic orbits or unbounded 
excursions depends on whether the phase of such a root is, or 
is not, a rational multiple of T ,  yielding what we feel is a 
surprisingly rich phase portrait in the discrete-time case. 

In Section IV, we discuss the ramifications of this phase 
portrait for the dynamics of the Riccati equation (1.4), which 
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depends also on the pseudopolynomial introduced in Section 
III. Of course, each of the corresponding Riccati equations 
has a measure zero set of initial conditions which escape in 
finite time. We show that, depending on the phase of the root 
of this pseudopolynomial, we either have, for initial data 
which does not escape, convergence, periodic orbits of some 
period p (all periods p r 2 are possible), or every orbit 
being dense. While the first two conclusions are immediate 
from Vaughan's method, a precise determination of the pe- 
riod and a proof of density require a more refined analysis. 
Moreover, our interpretation of convergence in the nonclassi- 
cal case reposes on analysis of the fast filtering algorithm. 
Section V contains the proofs of our main theorems, provid- 
ing an analysis of the dynamics via power methods, as well 
as an explanation of the similarities and differences between 
the continuous-time and discrete-time cases. In particular, 
since the continuous-time dynamics either converge or escape 
in finite time in any dimension, the perhaps plausible expecta- 
tion that the one-dimensional discrete-time Riccati equation 
would perhaps behave more like a two-dimensional continu- 
ous-time Riccati equation does not explain the presence of 
both predictable and rather unpredictable dynamical behavior 
of the discrete-time Kalman filter-a point to which we 
return in our conclusions, summarized in Section VI. 

11. PRELIMINARIES 
In this section, we review some relevant facts about the 

fast algorithms [15]-[17] for Kalman filtering and their rela- 
tionship to the Szego polynomials orthogonal on the unit 
circle [l], [lo], [12], the Levinson algorithm 1141, positive 
realness, and classical convergence results. 

A version of these algorithms will be our basic tool for 
analyzing the dynamics of the Kalman filter. The n-dimen- 
sional Kalman filter can be characterized by 2n  parameters 
and, as we shall see, the fast algorithm can be interpreted as 
a recursion in the parameter space R'", generating a se- 
quence of Kalman filters. This naturally brings in questions 
of positive realness and convergence. 

Given a stationary stochastic system (l.l),  we have 

E{ x k + , y , }  = Fk-'g for k L j (2.1) 

where g:= E{ x1 y o ] .  From this we obtain the realization 

ck = h'Fk-'g; k = 1 , 2 ,  (2 4 

polynomials { cp,(z), cpl(z), cp2(z), }, a sequence of 
monic polynomial 

CP,(Z) = Z' + cptlz'-' + * e *  +vtr (2.5) 

which are orthogonal on the unit circle. The Szego polynomi- 
als are determined from the sequence { c,, c,, c2 ,  * * - } 
through the polynomial recursions 

(2 4 c p f + l ( Z )  = z d z )  - y,cpT(z); c p o ( 4  = 1 
cp;(z) = 1 i cp*,,l(Z) = cpT(z) - y,z(O,(z); 

where {yo, y, , y, , } are the Schur parameters 

1 t  

and { ro, rl , r2,  - * } are given by the recursion 

r,+l = (1 - y?)r , ;  ro = 1. (2.8) 

It can be shown that there is a one-to-one correspondence 
between the subsequences { 1, c1, c 2 ; * * ,  c,} and {yo, 
y,,. . . , Y , - ~ }  for all t = 1, 2, 3 , * . * ,  and that 

T , > O e l y k I < l  f o r k = 0 , 1 , 2 ; . . , t - l .  (2.9) 

(See [l], [lo], [24].) Consequently, in our analysis the 
covariance sequence { c,} can be replaced by the sequence 
{ y,} of Schur parameters, and @ +( z) is positive real if and 
only if all Schur parameters are less than one in modulus, a 
test that still is infinite but simpler than testing { T,} .  As we 
shall see, the fast algorithm serves as a finite dimensional but 
nonlinear realization of the Schur sequence. 

The recursions (2.6)-(2.8) are equivalent to the Levinson 
algorithm [14]. To see this, note that the two recursions 
(2.6) are equivalent, { cp?} being the reversed polynomials 

cpT(z) = 'P,,z' + cp,,,-,zt-l + .. .  + l .  (2.10) 

The connection between Szego's polynomials and least- 
squares prediction is well known [12]. In fact, if 
{ yo, y l ,  y, , - } is a stationary purely nondeterministic 
stochastic process with zero mean and covariance sequence 
{ ~ , C , , C , , C , ; ~ ~ } ,  Ck:=E{yty,+k},  thenthelinear least- 
squares estimate of y, given { yo, y ,  , * * - , y, - ,} is given by 

9, = --cp,lY,-l - cpfZYt-2 - * * *  - PrtYo (2.11) 

where { qtk} are the coefficients of the t : th Szego polyno- 
mial. Moreover, the orthogonality of { cp,} on the unit circle 
is equivalent to the orthogonality of the innovation process 

for the covariance sequence { 1, c,, c2 ,  * 
process { y o ,  y,, y,, 
1. Now, { ck}  being a covariance sequence requires that 

} of the output 
* }; for normalization we take co = 

{ J'} 
@ + ( z )  = + h'(z1- F ) - ' g  

is positive real, i.e., satisfies the Popov condition 

@ + ( z )  + CP+(l/z) > 0 ontheunitcircle (2.4) 

and the condition that F is a stability matrix, having all its 
zeros inside the unit circle. 

Another criterion for positive realness of CP + ( z )  is testing 
that all Toeplitz matrices { T,, t = 0, 1,2,  * * } are positive 
definite. The study of such Toeplitz forms lead to the Szegii 

9,:= Y ,  - 9, = Y ,  + cp,lYt-I + * * .  +cptrYo (2.12) 

in the inner product ([, 7 )  = E{ t ~ } .  More specifically, we 
have 

E { J f k }  = rrsrs (2.13) 

where { r,} are given by (2.8). 
To apply this theory to Kalman filtering, we assume that 

the stochastic process { y o ,  y ,  , y 2  , } is the output of the 
stochastic system (1.1) and that, consequently, the covariance 
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sequence { c1, c2, cg , * * * } is given by the finite-dimensional 
realization (2.2). The Kalman filter is a recursion updating 

only in the initial conditions. To this end, choose the canoni- 
cal form - 

the linear least-squares estimate of x ,  given 
{ Y O ,  Y ~ , - * - ,  Y ~ - ~ } .  Since { J o ,  J l , - * - ,  JtpI}  isanorthogo- 
nal basis of Y,- ] :=  span{y,, y l ; -* ,  Y , - ~ }  

r - I  1 F =  

However, the components of ( x ,  - a,) are orthogonal to 
Y,- and therefore (2.14) can be written 

-a,  1 0 . * .  0 
-a2 0 1 - . .  0 

-a,-1 0 0 . . *  1 
-a,  0 0 . . *  0 

. . .  . .  . . .  1 .  

in terms of which we may write 
1 - 1  1 

Moreover, E{ x,, t j j k }  = FE{ x t j k }  for k = 0,1, - e ,  t - 
1, and j ,  = y, - h’i,,  because w, and U, are orthogonal to 
Y,-l which is contained in the past space of the stochastic 
system (1.1). Therefore (2.15) yields the Kalman filter 

3t+l = F2, + k , ( y ,  - h’ i , ) ;  30 = 0 (2.16) 

where the gain 
1 

rt 
k, = --E{Xt+lJJ (2.17) 

is expressed in a form useful for our purposes. From (2.17) 
we can derive the Riccati equation (1.3) and (1.4), but here 
we shall take a different route. 

This brings us to the fast algorithms. In view of (2.1), 
(2.10), and (2.12), the gain (2.17) may be written 

1 

r, 
k, = - d ( F ) g .  (2.18) 

This is the key observation that allows us to use the recur- 
sions (2.6). In fact, defining 

1 

rt 
kT := - cp,( F )  g (2.19) 

it follows from (2.6) and (2.8) that 

It remains to eliminate the Schur parameters { Y,}. However, 
inserting (2.2) into the defining relation (2.7), we obtain 

; h =  :] (2.22) 
0 

(2.23) 

where a is the column vector (a , ,  a2, - e ,  U,)’ and J is the 
obvious shift matrix. [Consequently, the Kalman filter can be 
characterized by the 2 n parameters (a ,  g ) ] .  Then, observing 
that Fk: = JkT - y,a, the change of variables 

4,:’ k, + a 

qT:= k: 

yields the following “stripped” version of (2.20): 

(2.24) 

where y, = (qT)l, the first component of 47. Therefore, in 
view of (2.8), the polynomials 

satisfy the same recursions 

as those of the Szego polynomials (2.6), except that the initial 
conditions are such that Q, and QT have constant degrees n 
and n - 1, respectively. From (2.27) it is not hard to see 
that the functions 

(2.28) 

y, = h’k: (2.21) 

and hence we have a nonlinear realization of the Schur 
sequence. The system (2.20) with (2.21) inserted in Place of 
Yt  is the fast algorithm (la9) first presented in [151. It 
requires only 2n equations to solve for the gain sequence 

equation. 
Next, following [16], we shall carry this reduction one step 

further. First, we shall strip the recursions (2.20) of its 
parameter dependence so that the parameters ( F ,  g , h) occur 

are invariant for t = 0, 1,2, - . The equations (2.28) pro- 
vide n first integrals for the system (2.25) and in [161 these 
integrals are used to obtain an algorithm consisting of only 
equations for determining the Kdman gain sequence k,. 
Such reduction will play an important role in the following 

{ k t }  instead Of the in(n + l) equations of the lIlatrix Riccati It is not hard to s e  (cf. [16]) that (l/rt)Q,( z )  is the 
stable characteristic polynomial of the matrix F - k,h’ in 
the ~ a l ~ ~  filter 

k,,, = (F - k,h’)2, + k,y, (2.29) 
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and that ( q ,  q*) tends to a limit (q-, 0) as t + 00, corre- 
sponding to the steady-state Kalman filter. Moreover 

It readily follows from the invariance (2.28) and the positiv- 
ity of the parameters { r o , r 1 , r 2 , r 3 ; - - }  that if @ + ( z )  
satisfies the Popov condition (2.4), then so do the rational 
fUnGtiOIlS 

(2.31) 

for all t = 0 ,  1,2 ,3 ,  - * S .  Therefore, since Q,(z )  is stable 
and the covariance structure of the stochastic system (1.1) is 
determined by the 2n  parameters ( a ,  g ) ,  each step in the 
recursion (2.25) defines another stochastic system with a:= 

It should be noted that the subset of the 2n-dimensional 
parameter space corresponding to @ + ( z )  being positive real, 
i.e., (1.1) being a bona fide (forward) stochastic system, is 
bounded and simply connected [4]. As an example we may 
consider the case n = 1. Then, setting z = e", the Popov 
condition (2.3)-(2.4) becomes (after multiplication by I z + 
al 2, 

1 + a2 + 2ag + 2 ( a  + g ) c o s @  > o f o r d  @ E  [0,2?r),  

i.e., 

qt - and g : =  4;. 

(1 - I a + g I)' > 8 2 .  (2.32a) 

Likewise, the stability condition may be written 

J a l  c 1 .  (2.32b) 

Using new coordinates 

(2.33) 
a = a + g  

(2.32) - (2.33) defines the positive real diamond-shaped re- 
gion in Fig. 1. 

Moreover, in the case n = 1, y, = q: is the Schur param- 
eter. Therefore, setting at:= q,, the fast algorithm (2.25) 
becomes 

Starting with a bona fide stochastic system, i.e., a pair 
(ao, yo) inside the diamond, the recursion (2.34) will gener- 
ate a sequence ( a t ,  y t ) ,  each point of which belongs to the 
diamond and hence corresponds to a stochastic system, con- 
verging to (a-, 0), which corresponds to the steady-state 
Kalman filter 

(2.35) 

The basic question to be addressed in this paper is what 

= -a,.%, + (a, - a ) y , .  

f: 

Fig. 1. 

happens if the fast filtering algorithm has initial conditions 
outside the positive real region. 

III. MAIN RESULTS CONCERNING THE DYNAMICS OF THE 

FAST ALGORITHM 
To be precise, we need some notations and definitions 

which we shall, however, give only for open subsets of RN 
rather that the more general case of topological spaces. Let 
U C RN be an open subset and consider a continuous map 

defining a discrete-time dynamical system via 

(3.1') 

The forward trajectory 

O ( X , )  = { x , ;  t = 1 , 2 , 3 ,  } 
is called the orbit of xo. Thus O ( x o )  is finite if and only if 
xo lies on a periodic orbit in which case we say that xo is a 
periodic point of period n ,  where n is the smallest nonnega- 
tive integer such that f " ( x , )  = xo. The dynamical system 
(3.1)' is said to be sensitive to initial data provided that for 
any xo E U, and, for all 6 > 0 and all neighborhoods V of 
xo there exists xb E V and n such that 

Remark 3.1: The existence of periodic points of arbitrar- 
ily high period and sensitivity to initial data are two of the 
principal manifestations of chaotic dynamics. Many authors 
(see, e.g., [7]) also require some kind of transitivity or 
irreducibility, in either a topological or a measure-theoretic 
sense. For example, the dynamical system (3.1') is said to be 
topologically transitive if for any two open subsets V , ,  V2 
C U there exists an n 2 0 such that f"( V l )  n V2 # 0. 
Thus, if (3.1') has a dense orbit, then (3.1') is topologically 
transitive. As it turns out, the fast algorithms for Kalman 
filtering, as well as the discrete-time Riccati equation, do 
exhibit periodic behavior of every period p ,  p 2 3 or p 2 2, 
respectively, and sensitivity to initial conditions. As we shall 
see, the dynamical system (2.25) is not, however, topologi- 
cally transitive, and for this reason, we have refrained from 
claiming that the filtering algorithm exhibits chaos, although 
there is still no uniform agreement on what actually consti- 
tutes chaotic dynamics. 

The fast algorithms for Kalman filtering fail to be topologi- 
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cally transitive because they possess symmetries and have 
conserved quantities, i.e., integrals of motion. For example, 
the dynamical system (2.25) is invariant under the transfor- 
mation 

(a  4*) + ( 4 ,  - 4*). (3.3) 

Moreover, comparing coefficients of (z'  + z P i )  in (2.28) we 
obtain n + 1 equations in 2 n  variables, which after dividing 
by the equation corresponding to i = 0 yields n invariant 
rational quantities 

h i ( q ,  q*) = constant. (3 *4) 

Theorem 3.2: The common level sets of the functions 
hi (q ,  q*), i = 1,2; -, n, are invariant under the dynamical 
system (2.25); (2.25) is also invariant under the transforma- 
tion (3.3). In particular, the dynamical system (2.25) is not 
topologically transitive. 

Proof: Consider the vector function h: W" + W" with 
h i ,  i = 1,2, - * e ,  n, as components. Choose any two open 
subsets U,,  VI intersecting image(h) disjointly. Then, U = 
h-l(U1),  V = h-I( V , )  are two disjoint open subsets of W2", 

0 
The invariants (3.4) can also be interpreted in terms of 

sothat f ' ( U )  n V =  0 forall ? E M .  

spectral factorization. In fact, defining the polynomials 

(2.28) may be written 

sign definiteness of the pseudopolynomial D( z ,  z -  ' )  defined 
in (3.28) and computed, for example, from (qo, 4:). In this 
case, Qm(z) is a spectral factor of r ,D(z ,  z - ' ) .  

2) The domain of attraction of the stable equilibria (q,, 0) 
contains the "positive real systems," i.e., those initial data 
(qo, 4:) for which D( z ,  z - l )  is positive and the polynomial 
ao(z) is a Schur polynomial. In this case, Q,(z) is a Schur 
polynomial for all t = 0 , 1 , 2 ; * * ,  and Q,(z) is a stable 
spectral factor of r ,D(z ,  z - l ) .  

3) The sign indefinite region consisting of those (qo, 4:) 
for which D ( z ,  z - I )  is not sign definite contains invariant 
submanifolds on which there are infinitely many periodic 
points of any period p ,  p 1 3, and on which the restricted 
dynamics is sensitive to initial data. 

Remark 3.5: This theorem, which we shall prove in 
Section V, gives a partial answer, in the case studied above, 
to the question posed in [l 11. The natural conjecture extend- 
ing 2), that the dimension of the stable manifold of an 
equilibrium (q-, 0) is equal to the number (counted with 
multiplicity) of roots of Qm(z) inside the unit disk, has just 
been proven in [5 ] .  Finally, simulations indicate that the 
invariant submanifold referred to in 3) is in fact an invariant 
open subset, and we expect to have more to say about this for 
n > 1 in a future paper. A procedure for spectral factoriza- 
tion based on principles akin to those in [15], [16], and hence 

0 
We now illustrate the use of the integral invariants derived 

in Theorem 3.2 by giving a complete description of the phase 
portrait of (3.25) in the case n = 1. Then, as already pointed 
out in Section 11, q: = y, and, with at :=  qt (3.25) takes the 
form 

to those used here, can be found in [9]. 

( Q t  Y1+' = - 1 - Yt  
-Y tQt  

or equivalently 1%+, = 

b,(z)  b , ( z - ' )  d , ( z ,  z - l )  
2 a , ( z )  2 a , ( z - ' )  a , ( z ) a t ( z - l )  +-- - (3.7) Moreover, (2.28) becomes 

(3.10) 

where d, (z ,  z - l )  = r; 'D(z ,  z - ' ) .  Now, if the pseudo- 
polynomial D ( z ,  z - ' )  is sign definite, i.e., D ( z ,  z - ' )  is 
either nonnegative or nonpositive for all z on the unit circle, 
then so is 

d , ( z ,  z - ' )  = a , ( z ) b , ( z - ' )  + a t ( z - ' ) b t ( z )  (3.8) 

for all t along the trajectory of the dynamical system (2.25). 
Then, modulo sign, (3.7) is a spectral density. In particular, 
the rational function 

(3.9) 

is positive real if and only if d, is positive, and a,(z) is 
stable, i.e., a Schur polynomial. Then, of course, b,(z) is 
also stable [6], [8]. 

Theorem 3.3: 
1) The equilibrium set of the dynamical system (2.25) 

consists of all points having the form (q,, 0). A necessary 
condition for convergence of ( qt ,  4:) to an equilibrium is 

from which the sign definite region can be determined. In 
fact 

D ( e i e ,  e- 'e)  = 1 + at - 7; + ~ ( Y , C O S ~  (3.12) 

which is nonnegative in regions I, 111, and IV in Fig. 2, 
nonpositive in region 11, and sign indefinite in the "white 
comdors" which we shall refer to as the sign indefinite 
corridors. Each of the sign definite regions has been divided 
into two, one marked in Fig. 2 with index + , the other with 
- . We shall see that Theorem 3.2 implies that an orbit 
which starts in a plus (minus) region must remain in the 
union of plus (minus) regions. 

If cyo # 0, the invariant (3.11) yields two equations which 
after elimination of rt yield 

2 
1 + CY; - 7; = -a, (3.13) 

where K is a constant. According to Theorem 3.2, an initial 

K 
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point (ao ,  yo) in region 111, (111-), ( a l ,  y l )  jumps to region 
11, (K), and in turn, any point ( a o ,  yo) in region 11, (11-) 
jumps to I+ (I-) with 1 al 1 > 1 a. 1 .  For any initial condi- 
tion ( a0, yo) in region I + (I -), (a , ,  y,) converges to ( a  + , 0) 
with 1 at I monotonically increasing to I a+ 1 .  

2) ( a t ,  y t )  escapes after finitely many iterations only if 
( ao, yo) lies in regions IV+ or IV-. There is a unique pair 
of points (a$),  +. y$)) which escape after i iterations [given 
explicitly in (5.13)] and the sequences (a$) ,  f 7:)) con- 
verge, monotone decreasing in I a;) 1 to ( a - ,  0). 

b) When K *  = 1, the invariant manifold (3.13) degener- 
ates to the two boundary lines, passing through ( K , 0), be- 

I 
Fig. 2. 

tween the sign definite and sign indefinite regions. There is 
one equilibrium (a+ ,  O):= ( K  , 0) and it is stable. Other initial 
conditions (ao ,  yo) give rise to an orbit which either con- 
verges to ( a  +, 0) in the manner described in point 1 )  above, 
or escapes in finite time. In the latter case the statement of 
point 2) holds except that a = a +. 

Remark 3.6: As we have just seen, each point ( a o ,  yo) in 
the diamond of Fig. 1 corresponds to a positive real function 

l z + b  

2 z + a  
u ( z )  = -- 

with a = a. - yo and b = a0 + yo, and vice versa. We 
have shown that each such point with a. # 0 lies on a 
hyperbola containing two equilibria, ( a +, 0) and ( a  -, 0) for 
1 

, 

Fig. 3 

the dynamical system (3.10). With initial condition ( ao, yo), 
(a , ,  y,) tends to ( a + ,  0) in forward time (Theorem 3.5) and 
to ( a - ,  0) in backward time (Section V). Since, rt = a o / a r ,  
an immediate consequence of (3.10) and (2.8), it follows 
therefore from (3.1 1) that 

condition (ao ,  yo) lying on the hyperbola (3.13) gives rise to 
an orbit lying on (3.13). Fig. 3 depicts these hyperbolas for 
K = 1/2 and K = 2. In general, hyperbolas for which K < 1 
lie in the sign definite regions, those for which K *  > 1 lie in 
the sign indefinite corridors, and when K * = 1, they degener- 
ate to form the boundary between the sign definite and sign 
indefinite regions. Theorem 3.2 also states that the system 
(3.10) is invariant under the transformation ( a ,  y) + ( a ,  - 
y). If a. = 0 and 1 yo I # 1 ,  corresponding to the case 
K = 0, (3.10) converges to (0,O) in just one iteration. This 
corresponds to the occurrence of invariant directions in the 
related Riccati equation, as explained in [16] and further 
developed in [23]. If I yo 1 = 1, there is finite escape. 

Theorem 3.2,1) asserts that sign definiteness is a necessary 
condition for convergence. In Section V, we shall show that 
it is sufficient. Among the results we prove are the following. 

Theorem 3.5: 
a) Suppose 0 < K' c 1. The hyperbola (3.13) contains 

two equilibria (a,,O), where a,= (1 F - ) / K .  

Here (a+,  0) is a stable equilibrium, ( a - ,  0) is an unstable 
equilibrium and all other initial data ( a o ,  yo) on this hyper- 
bola give rise to an orbit which either converge to ( a +, 0) or 
escape to infinity after finitely many iterations. 

1) In the first case, initial data lying in regions IV + (IV - ) 
give rise to trajectories for which I a ,  1 increases monotoni- 
cally until ( a t + l ,  yt+l)  jumps to region 111, VI-) .  For any 

= - ( z  f f 0  + a _ ) ( z - '  + a - )  
a-  

and consequently (3.7) implies that 

(Yo ( z  + a + ) ( z - '  + a + )  
u ( z )  + u ( l / z )  = - 

a+ 
(3.14a) 

( z  + a ) ( z - '  + a)  

(Yo ( z  + f f _ ) ( z - l  + a - )  
- _  - (3.14b) 

a -  

yielding the two stable minimal spectral factors, W+ and 
W - ,  respectively, of the spectral density (3.14). When a. = 
0, (a r ,  y t )  tends in one step (in forward time) to (0,O) but 
escapes in backward time, so that only one spectral factor is 
produced. This is in agreement with the fact that D ( z ,  z - ' )  
= 1 - yo2 is degree zero in this case. 

What is then the systems-theoretic meaning of the conver- 
gence from points in the other shaded regions in Fig. 2 or 
Fig. 3? The points (ao ,  yo) in regions I11 and IV [region I11 
correspond precisely to the functions for which u ( l / z )  is 
positive real [negative real]. In fact, the positive real function 
C( z ) :=  u(l/z) is represented by the point ( 6 ,  $) in the 
diamond where &:= a / a b  and +:= y / a b ,  located on the 

( z  + a ) ( z - '  + a)  
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same hyperbola. (Note that ab = ai - yo2 B 1). Again <z) 
satisfies (3.14), but now the spectral factors, E+ and W-,  
are antistable, corresponding to-backward stochastic realiza- 
tions [18], [19]. In particular, W+ is the transfer function of 
a backward steady-state Kalman filter, just as W ,  is that of a 
forward one. The negative regions I1 are just transitional for 
the dynamical system, being visited only once when at 
jumps over infinity. 0 

In Section V, we give explicit expressions for the points 
which escape in finite time, both for the cases of Theorem 
3.5 and wheh 1 < K~ I 03. In continuous-time filtering (cf. 
Remark 3.11 and Section V) it is of course the case that 
whenever the ‘‘positive real” condition is violated, finite 
escape time occurs. We recall from Section I1 that the Popov 
criterion implies that only initial data in the diamond-shaped 
region I- ,  I+  correspond to positive real systems, yet Theo- 
rem 3.5 implies that the initial data in the shaded region 
which do not escape in finite time have trajectories which 
actually converge. This is in sharp contrast to the con- 
tinuous-time case, a contrast which persists for the Riccati 
equation (see Section IV). Moreover, while convergence is 
unexpectedly admirable, nonpathological behavior in a non- 
classical setting, the “the white corridors” of Fig. 2 support 
much more exotic dynamic behavior. 

Theorem 3.7: Let K be such that 1 < K I 00. Then one 
of two alternatives hold: 

1) arctan =E Q a  in which case every initial condi- 
tion on (3.13) either escapes in finite time or is a periodic 
point of period p ,  where 

1 4 
-arctan JK1-1 = -a, 
2 P 

if K < - 1 and 

( 4 , ~ )  = I 

if K > 1 .  Moreover, if p is odd, there are precisely 2( p - 1) 
points which escape, and these escape two each at times 
1 ,  * e ,  p - 1, and, if p is even, there are ( p  - 2) points 
escaping two each at times 1,2,  * . e ,  p /2 - 1 .  (This includes 
the case K *  = 03 when all points have period four excepting 
two initial conditions which escape in one step.) 

and a are rationally independent, in 
which case any initial condition on (3.13) has a dense orbit or 
escapes in finite time. The set of points which escape is a 
countable dense subset of the hyperbola, having a dense 
complement. 

There are several interesting corollaries to Theorem 3.5 
and 3.7. The first asserts that in the sign indefinite corridor, 
the dynamics (3.10) can be highly regular. 

Corollary 3.8: In the sign indefinite corridors the dynami- 
cal system (3.10) has a dense set of periodic points. More- 
over (3.10) has infinitely many periodic points of any period 
p ,  p 2 3. More explicitly, for arctan CEQT there 
are two cases. If K < - 1 ,  then periodic orbits exist of every 
period p 2 4. For K > 1 ,  periodic orbits exist of every 
period p L 3, except p = 6. 

2) arctan 

Fig. 4. 

Corollary 3.9: In the sign indefinite corridors the dynami- 
cal system (3.10) has an uncountable dense set of points 
which escape in finite time and an uncountable dense set of 
points which generate an unbounded orbit. 

Corollaries 3.8 and 3.9 taken together assert that (3.10) 
exhibits highly unpredictable behavior in the sign indefinite 
corridors. 

Corollary 3.10: In the sign indefinite corridors the dy- 
namical system (3.10) exhibits sensitive dependence on initial 
data. 

Proof: For any initial condition (aoyo) ,  either ( a o ,  yo) 
escapes in finite time, generates a dense set of first coordi- 
nates a* ,  or is periodic. In the first two cases, any neighbor- 
hood V of ( ao, yo) contains a periodic point (ab, yb) so that 
for all 6 there exists an n such that 

If the third alternative holds, then in any neighborhood V of 
(ao, yo) there is a (ab, yb) generating dense set of first 
coordinates ai, so that for all 6 > 0 there exists an n such 

0 
Remark 3.11: In continuous time the fast algorithms for 

that the inequality above holds. 

Kalman filtering in one dimension take the form 

(3.15) 

which admits the integral invariant H ( a ,  y) = a’ - y2. Fig. 
4 depicts the integral curves of this system and the set I of 
initial data corresponding to a positive real system. It is an 
elementary (and well known) calculation that finite escape 
time occurs for any initial data lying outside of region I, in 
sharp contrast to the phase portrait in discrete time described 
by Theorems 3.5-3.7. In the next section, we illustrate these 
distinctions in terms of Kalman filtering and Riccati equa- 
tions. 0 

Remark 3.12: Our analysis of the fast filtering algorithm 
evolving on the hyperbola (3.13) is essentially equivalent to 
an analysis of a parameterized nonlinear system 
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in one dimension. The somewhat exotlc variation of the 
behavior of (3.16) with the parameter K is perhaps reminis- 
cent of the chaos exhibited by the dynamical system 

(3.17) 

modeled by a quadratic map on the interval [0, 11 into itself, 
especially after period doubling has subsided, i.e., for K > 
3.45 - * - , and before the onset of chaos. In this range, there 
are stable periodic points of arbitrarily high-order periods, 
and for certain parameter values there also exist dynamics 
with dense orbits as well as dynamics having a Cantor-like 
set as an attractor. The differences between the dynamical 
behavior of the parameter dependent systems (3.16) and 
(3.17) are reflected in two features. First, for those values of 
K for which (3.16) has periodic points, a finite number of 
points escape in finite time, and the rest are all periodic. 
Arbitrarily close to such a K there exists K ’  such that for 
(3.16) every orbit is dense (or escape in finite time). In 
contrast, there are values of K for which (3.17) has periodic 
orbits, which are stable and so persist under small perturba- 
tions of K .  In this sense (3.16) is always more sensitive to 
initial data. On the other hand, only two possibilities exist for 
(3.16), viz. either critically stable periodic points or all orbits 
dense, and it is not possible to have a more elaborate 
attractor. However, for K = 4 the system (3.17) is known [7] 
to exhibit all three kinds of behavior simultaneously, thereby 
being chaotic in the sense of [7] (see also Remark 3.1). 

cyt+, = K C Y ,  - K ( Y : ,  0 I K I 4 

IV. A DISCUSSION OF CONSEQUENCES FOR 
DISCRETE-TIME RICCATI EQUATIONS 

AND KALMAN FILTERING 
Periodic, quasiperiodic, as well as more classical conver- 

gent behavior for the “power method” models of quite 
general discrete-time Riccati equations, and consequently, for 
such Riccati equations themselves, has been known at an 
abstract geometric level for some time (see [2], [22]). One of 
the new consequences of our analysis of the fast algorithms 
for Kalman filtering is that on the one hand some fairly exotic 
behavior exists not only for general mathematical anomalies 
but even for Riccati equations arising in Kalman filtering. As 
we shall see, whereas in continuous time it is well known that 
Riccati equations always have finite escape time in the ab- 
sence of the appropriate positive real conditions, this is not 
the case in discrete time. Moreover, not only will there exist 
(for arbitrary dimensions) both periodic behavior and sensi- 
tivity to initial data when the positive real conditions are 
violated, but convergence to a classical limit may also occur. 
The system-theoretic interpretation of this unanticipated 
event, which does not have a continuous-time analog, is 
provided by an analysis of the corresponding fast filtering 
algorithms. In fact, writing the Riccati equation (1.4) in the 
form 

n,+, - n, = A(n,) (4.1) 
where A: R n x n  + R n x n  is defined as 

A(P) = FPF‘ - P 

+ ( g  - FPh)(l - h’Ph)-’(g - FPh)’ (4.2) 

the structure of the fast filtering algorithms is reflected in the 
fact that the initial condition no = 0 renders A(IIo) = gg’ 
nonnegative definite and low rank, a property which, as 
explained in Section 11, is preserved along the trajectory so 
that 

a(n,) = WTd’ (4.3) 
(cf. [15], [16]). Therefore, to study the fast algorithms for 
Kalman filtering is to study a particular part of the phase 
portrait of the Riccati equation. Nevertheless, as we shall see 
in this paper for the case n = 1, the phase portraits of the 
fast algorithms provide a conceptual framework for under- 
standing the complete picture, not only the part related to 
filtering. Here, we will confine our discussion to the one-di- 
mensional case, where a good deal of interesting phenomena 
already occurs and where we have a complete phase portrait. 

Consider the one-dimensional stochastic system 

x,,, = -ax, + U, { Yt = x, + w, (4.4) 

where {U,, w,} is white noise, and the system is in steady 
state so that { x,, y,} are jointly stationary processes. As 
before, we assume that E{ y f }  = 1. Then the linear least 
squares estimate k, of x ,  given the observations 
{ y o ,  yl, ... y,-,} is determined, for t = 0,1,2;*., by 
the Kalman filter 

it+l = -at, + k,(y, - 2,); 2o = 0. (4.5) 

Here, the gain sequence { k, }  is given by 

where yo:= E{ y1 yo}  and { n,} is the solution of the discrete 
Riccati equation 

Clearly, the Kalman filter depends only on the two parame- 
ters ( a ,  ro), but if they are to come from a stochastic system, 
only certain pairs ( a ,  yo) are allowed, namely, precisely 
those for which the point ( cyo, yo), with 

(Yo:= a + y o  (4.8) 
belongs to the open diamond-shaped region in Fig. 1 derived 
from the Popov criterion. It follows from well-known results 
in Kalman filtering theory that, for (ao, yo) in this region, 
the solution of the Riccati equation converges to a limit n, 
which is identical to p + ,  the minimum solution of the 
algebraic Riccati equation A ( p )  = 0. 

In terms of the fast filtering algorithm (3.10), the solution 
of the Riccati equation (4.7) is 

(4.9) 

and the Kalman filter 
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can be readily computed from (3.10). The Kalman filter can 
clearly be defined for any pair ( ao, yo), and understanding 
the dynamic behavior of the filtering algorithms for ( ao, yo) 
not generated by an underlying stochastic system is important 
for understanding problems created by inaccurate parameter 
estimates. 

It follows from Theorem 3.5 that the convergent region of 
the ( ao, yo)-plane is much larger than the subset (depicted in 
Fig. 1) for which the stochastic system interpretation holds. 
In fact, the subset { (ao, yo): 1 K 1 < 1) is the shaded region 
in Fig. 2 and consequently (excluding a subset of the (a, 7)- 
plane of measure zero for which there is finite escape time) 
the Kalman filter makes sense as long as its initial conditions 
lie in the shaded region, and it will converge to a steady-state 
Kalman filter which has a proper stochastic interpretation. In 
fact, in finite time, in a manner described in Theorem 3.5,  
( a t ,  y t )  will lie in diamond of Fig. 1 and will stay there. 
Hence, even if the original, “misaligned” parameters did not 
correspond to a stochastic system, in a finite number of steps 
the system will remarkably evolve to a system which has 
such an interpretation provided the initial data lies in the 
shaded region. However, if (ao, yo) lies in the white corri- 
dors of Fig. 2, the Kalman filter will behave erratically and 
there will be no convergence to a steady-state Kalman filter. 

These interesting properties of the fast filtering algorithm 
carries over to the Riccati equation (4.7) via (4.9). This is 
immediate if ro = 0 (as in Kalman filtering), but the follow- 
ing theorem is stated for an arbitrary initial condition ro. 
First, however, we note that the Riccati equation (4.7) may 
be written 

where cp is the polynomial 

cp(p) = p 2  - 2  1 - - p + y ;  ( 7) 
and K is the constant 

(4.11) 

(4.12) 

(4.13) 

appearing in the integral relation (3.13). 
Theorem 4. I :  Consider the Riccati equation correspond- 

ing to (ao, yo), and let K be defined by (4.13). Then, there is 
finite escape only if cp(ro) 1 0, and then only for ro in a 
subset of the real line of measure zero. For all other ro 

1) { r,} converges if and only if I K 1 I 1 .  The zeros 
p + ,  p -  of cp are equilibrium points, and r r  + p + ~  p -  
except when ro = p - .  

2) { r t }  is periodic if and only if 1 < I K 1 I 03 and 

n 
d 

arctan L7-T = -r 

for some n, d E E (Here we take arctan (03) = r /2). If n 
and d are coprime, the period is d. 

3) { r r }  is dense on the real line if and only if 1 K 1 > 1 
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and 

arctan JK2 - 1 c ~ r .  
Moreover, for each fixed ro, the subset of points (ao, yo) 
for which there is finite escape is of measure zero. Also, for 
each d = 2 , 3 , 4 ,  - * * there are infinitely many parameter 
pairs ( ao, yo) such that all trajectories of the Riccati equation 
are periodic of period d. 

Corollary 4.2: If, in the dynamical system (3. lo), (a,,, yo) 
is periodic with period p then the trajectories of the corre- 
sponding Riccati equation have period p if p is odd and 
period p / 2  if p is even. 

Corollary 4.3: If cp(ro) 2 0, the orbit {(at, y,)} of (Cy,, 
yo), where ao:= a o / ( l  - ro) and yo:= d m /  
(1 - ro), under the dynamical system 

- 

I *  - , - - 7: 

belongs to the integral curve (3.13), i.e., 

1 + - 7: = 2 a 1 / K  (4.15) 

and { r t }  is given by 

r, = 1 - a 0 / a t .  (4.16) 

If cp( ro) I 0, the orbit { ( Z t ,  ”I)} of (Cy,, yo) under the 
dynamical system 

at 
= 

(4.17) 

belongs to the integral curve 

1 + + 7: = 2a, /K (4.18) 

and { r r }  is given by (4.16). The second case only occurs if 

This corollary can be understood from the fact that if 
cp(?ro) 1 0 then cp(a,) 1 0 for all positive t so that (4.11) 
may be written 

T f + l  - “ t  = ‘a: (4.19) 

where r,:= 1 - r l ,  for some sequence { y,} which turns out 
to be identical to the one in the corollary. We can retain these 
formulas in the case when cp(ro) I 0 by merely exchanging 
{ y t }  formally by the sequence { iy,} on the imaginary axis. 
The integral curves of the Corollary 4.2 are illustrated in Fig. 
5 for I K 1 < 1. In this case, there are two sets of curves, 
corresponding to (4.15) and (4.18), respectively, whereas 
when \ K I > 1 only the white corridor hyperbolas occur. 

Remark 4.4: The dynamical system (4.17) has an impor- 
tant interpretation in stochastic realization theory, specifi- 
cally, in terms of the procedure described in [18, p. 3831. In 
fact, the class of stochastic systems (4.4) having a fixed 
prescribed pair ( ao, yo) of parameters in the diamond of Fig. 

I K I  I 1 .  
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Fig. 5 .  

1, and hence the same Kalman filter, can be parameterized by 
their covariances ro:= E{ xoxb} : they are precisely all a. 
on the closed interval [ p + ,  p-I. There is a two-dimensional 
normalized white noise {U,, with (E{ u,u’,} = Z6,& such that 

and where ro:= 1 - ro. Now, defining ((Yo, To) by 

the realization with covariance ak has white noise intensity 

[:I, = E[”* 1 - a ”1 0 
(4.22) 

where we have used index k to remind ourselves that this is 
not time. In particular b2 = 0 corresponds precisely to the 

0 
Remark 4.5: Since the Riccati equation (4.7) can be 

expressed in terms of iterating a simple Mobius transforma- 
tion 

equilibrium points p + and p - . 

(4.7‘) (4 - 7:)  rt + 7; 
1 - r, at+, = 

there are of course some very direct methods for verifying 
Theorem 4.1, which are especially simple in the one-dimen- 
sional case. By the fundamental theorem of projective geome- 
try (see e.g., [3]) any Mobius transformation has a realiza- 
tion in two dimensions as a linear transformation acting on 
lines through 0, very much the same as Riccati’s derivation 
of the Riccati differential equation. In discrete-time filtering 
and control, this state-costate representation of the Riccati 
differential equation was discovered by Vaughan [26] and we 
want to thank one of the referees for deriving Theorem 4.1, 
1) and 2) via Vaughan’s method, which is also known in 
numerical analysis as a “power method” (see, e.g., [2], 
[22]). Since our proofs of Theorem 3.5 and 3.7 also use this 
method and since it is in the methodology, rather than in the 
corollaries of the analysis, that the discrete-time and the 
continuous-time cases are similar, we derive those methods 
in a form already appreciated in the 19th Century, but using 
the more modem matrix notation. Suppose A is a 2 x 2 real 

matrix with entries ai,, i, j = 1,2,  and consider the differ- 
ential or difference equations 

(4.23a) 

(4.23b) 

Riccati noted that if the initial data [ and [ :] for 

(4.23a) were collinear, then the solutions [ 
and [;] 

remain collinear for all t ,  i.e., that linear differential equa- 
tions propagate lines as lines. Therefore, there must be a 
differential equation for the slope, m, = x , / y ,  which is 
computed as a “Riccati equation”: 

m, = a21 + (az2 - q l ) m  - a12m2.  

And Riccati noted that any such equation could be solved as 
the ratio of the components y ,  and x,  of a state evolving 
according to a linear differential equation. On the other hand, 
if A is invertible, then (4.23b) propagates lines to lines, so 
there must be a difference equation for the slope m,.  Indeed 

(4.24) 

Conversely, any Mobius transformation corresponds to a 
matrix A and therefore Mobius iterations correspond to 
matrix iterations A”,  acting on lines. Moreover, A and A ,  
define the same Mobius transformation over W or (G) if and 
only if A = p A for some nonzero p E W (or p E G). Note 
that while (4.24) is undefined for some m 

I - AI (4.25) 

is always defined. In other words, the linear model (4.25) 
also contains the line with infinite slope, viz. I = span 
with u1  = 0. This fact, coupled with linearity, makes this 
‘ ‘ state-costate’ ’ representation of a Mobius transformation as 
powerful as the state-costate representation of a Riccati 
equation. One can now quite easily prove Theorem 4.1, 1) 
and 2) by deriving a corresponding A ,  diagonalized either 
over R or G and then computing the iterates of a “conjugate” 
Mobius transform (although some care needs to be taken to 
see that (4.24) in the resulting division does not change the 
period or cause finite escape to infinity). As we shall see in 
Section V, Theorem 4.1, 3) and the more detailed discussion 
in Corollary 3.8 involve some rather important results from 

Remark 4.6: In Remark 4.5, we stressed the analogy 
between the analysis of continuous-time and discrete-time 
systems by state-costate methods. As Theorems 3.5, 3.7, 
and 4.1 show, however, it is here that the analogy stops. In 
Remark 3.11, we illustrated the well-known fact that for 
initial data where the positive real condition is volated, the 
solutions of the continuous-time Riccati equation always have 
finite escape time. In discrete-time, under the same condi- 
tions, some solutions (see Section V for an explicit parame- 
terization) can escape in finite time. However, for parameters 

I I 

number theory. 0 
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not satisfying the positive real conditions, solutions can also 
1) evolve in unbounded, complicated excursions; or 
2) exhibit periodic behavior; or 
3) converge to a classical limit. 
Why, then, is the discrete-time case different from the 

continuous-time case? One possible answer would be the 
conventional wisdom that discrete-time m-dimensional sys- 
tems behave more like continuous-time (m + 1)-dimensional 
systems. However, in continuous time, the finite escape 
behavior persists in higher dimensions. It is rather true for a 
different, but somewhat simple reason involving the analo- 
gous, but different, state-costate representations of continu- 
ous-time and discrete-time Riccati equations discussed in 
Remark 4.4. In discrete time, it is possible for the iterates 
A”I of a line 1 to jump over the “infinite” line, or vertical 
axis, say from right to left, without becoming infinite for 
some n ,  but for continuous time eAtl  cannot cross the 
infinite line without being infinite for some finite time, corre- 
sponding of course to finite escape time for the continuous- 
time Riccati equation. It is this difference that accounts for 
the rich dynamical behavior of discrete-time filtering algo- 
rithms, including the Riccati equation, for nonclassical initial 
data. 0 

Let us conclude with another important point. We have 
expressed the Kalman filter in terms of the invariant Riccati 
equation (4.7), whereas it is more common to start from a 
specific stochastic system (4.4) and use the Riccati equation 

in terms of the state error covariance 

(4.27) 

At the price of somewhat more complicated formulas, we 
could have carried out our analysis in this framework instead, 
to obtain equivalent results to those of Theorem 4.1. Indeed, 
the Riccati equations (4.7) and (4.26) are related through 

Pt =Po - rt = :$(r t )  (4.28) 

so that, if the dynamical systems (4.7) and (4.26) are denoted 
f and g ,  respectively, we have 

$ O f  = SO$, 

i.e., the dynamical systems are topologically conjugate [7]. 
In the state-costate formulation of Remark 4.5 this conjugacy 
is reflected in the fact that the corresponding A-matrices are 
similar modulo normalization. 

Finally, we should stress that one of the reasons why we 
prefer to work with the fast filtering algorithm and to analyze 
the dynamics of the Riccati equation in terms of it is that all 
the parameters enter only in the initial conditions and not in 
the recursions themselves, thereby directly exhibiting the 
underlying invariance. 

V. ANALYSIS OF DYNAMICS 
In this section, we give proofs of Theorems 3.3, 3.5, 3.7, 

4.1. and their corollaries. 

Proof of Theorem 3.3: 
1) If q: and hence Q T ( z ) ,  tends to zero as t -+ CO, then, 

by (2.28) 
Q,(z)Q,(z-’) = ~ ,D(z ,  z-’) 

and therefore D(z ,  z - ’ )  is sign definite, and Q,(z) is a 
spectral factor as stated. 
2) It was shown in [14] that if the initial data (qo, 4:) 

satisfy the positive real condition, i.e., they correspond to an 
underlying stochastic system so that the usual conditions for 
Kalman filtering are satisfied, then q: tends to zero as 
t -+ CO. Moreover, it is also shown in [16] that Q t ( z )  is 
stable for all t = 0,1,2,. . . , and that the same is true for 

3) It remains to show that the sign indefinite region con- 
tains infinitely many periodic points of any period p ,  p ? 3. 
To this end, note that if only the first components of qo and 
q: are nonzero, the system (2.25) reduces to the system 
(3.10), and consequently the statement on this invariant 
submanifold follows from Theorem 3.7. 0 

Recall that Theorem 3.5 is concerned with convergence of 
the fast algorithm (3.10) for initial data in the sign definite 
region of Fig. 2 (corresponding to hyperbolas (3.13) with 
0 < K *  < 1) and that Theorem 3.7 is concerned with peri- 
odic behavior and unbounded excursions for initial data in the 
“white corridors” of Fig. 2 (corresponding to hyperbolas 
(3.13) with 1 < K’ I CO). Let us first discard the case K’ = 
00. Here, the orbit lies on the hyperbola y2 - a’ = 1 on 
which the first of equations (3.10) takes the form 

- 1  
at+l = - ( a t )  

which is periodic with period 2. On the other hand, the 
second of equations (3.10) implies 

Yt+2 = - a t + 2 Y t + l  = at+zat+1yt = -Y t  

so that each point (ao,  yo) is periodic with period 4. 
Therefore, we can now limit our attention to K such that 

0 K’ < CO. Using (3.13) to eliminate y t  from the first of 
equations (3. lo), the dynamical system (3.10) projects under 
the map (a, y) -+ a to a dynamical system defined by a 
Mobius transformation 

Invoking either the fundamental theorem of projective geom- 
etry or the power method, as reviewed in Section IV, we can 
compute iterates of (5.1) via iteration of a linear transforma- 
tion unique up to a multiplicative constant, on the space of 
lines in W2.  We chose the constant so that this transformation 
is symplectic, i.e., we consider the dynamical system 

where of course at = (U, / u ~ ) ~ .  The characteristic roots 
X + ( K ) ,  X - ( K )  of the matrix 

obey the root-locus (or bifurcation) plot as depicted in Fig. 6. 
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Fig. 6. 

For 0 < K < 1 there are two roots X + ( K ) ,  X - ( K )  satisfy- 
ing X + ( K ) X - ( K )  = 1 with X+(K) > A - ( K ) .  The situation 
for 0 < - K  < 1 is similar with X-(K)  and X + ( K )  inter- 
charged. For 1 K I > 1 the roots & ( K )  lie on the unit circle, 
in fact 

x + ( K )  = e*;'' (5.2a) 

where 
I 

(5.2b) arctan dK2 - 1 i f K > 1  
a - a r c t a n c  i f K < - 1 .  

We are now prepared to prove Theorems 3.5 and 3.7, as well 
as Theorem 4.1. 

Proof of Theorem 3.5: Suppose 0 < K < 1, in which 
case A ( K )  has eigenvalues X+(K) with corresponding eigen- 
vectors 

It is easy to check that the slopes 

a+(.) = ~ / X + ( K )  = L(K)  and 

a-(.) = ~ / X - ( K )  = X+(K)  

of the lines l+:= span{u+} and 1-:= span{u-}, respec- 
tively, are the equilibria of (5.1). We shall see that a + ( K ) is 
asymptotically stable and a - ( K ) is unstable. 

For any U E W2, there are real numbers P + ,  6 -  such that 
U = p+u++ @-U-, and SO 

A ( K ) ' U  = P + x + U + +  P - x - U - .  

Since 

a-+ a- 
Fig. I. 

corresponding to a line I, such that A ( K ) ' + ' ~ ,  jumps across 
the u2 axis; then for i 2 1, a,+; tends monotonically increas- 
ing to CY+. Those initial data a(;) which jump to infinity at 
step i are determined uniquely by the expression a(;) = 
U;)/ u y )  where 

(5.3) 

In particular, any a(;) lies to the right of a- and an analysis 
similar to the one given above in forward time shows that 

,U) -+ - as i -*  m 

monotonically decreasing. 
Finally, we note that points a. lying to the right of a- 

correspond to a pair of points (ao, yo), (ao, - yo) lying on 
(3.13), and the evolution of (3.10) for such initial data on 
(3.13) is determined by analyzing (5.1). The same remark 
applies to those points lying to the left of a+. Points lying 
between a- and a+ while initial data for monotonically 
convergent trajectories of (5.1) do not correspond to points 
(ao, yo) on hyperbolas (3.13) with 0 K < 1. (These points 
correspond to the second case in Corollary 4.3. Also see 
Remark 4.4.) The case - 1 < K < 0 follows, mutatis mu- 
tandis. 

In view of (2.8), d , ( z ,  z - ' ) := r;'D(z, z-') and 
d f + l (  z ,  z - ' )  have different signs if and only if 1 y t  I > 1. 
Therefore a point in region III must jump to the negative 
region 11 in the next step and a point in region 11 to a positive 
region, which, by monotonicity, must be I. (Visiting region 
11 corresponds to the only time at which (4.9) becomes 
negative when T , + ~  just has jumped over 00 temporarily 
becoming smaller than A,). Also, a jump from IV to I in one 
step is impossible since this would imply that 1 y t  I < 1 for 
all t which, by Schur's condition (2.9), is equivalent to 
positive realness, i.e., to the initial condition being in I. By 
the same condition, once it arrives in I, the sequence {(a,, 
7,)) will stay there. 

In the case K' = 1, the hyperbola degenerates to a pair of 
boundary lines (between the sign definite and sign indefinite 
regions) through the unique equilibrium point (1,O) or , 

( - 1,O) depending on whether K = 1 or K = - 1. The ma- 
trix A(1) has an eigenvalue X = l of (algebraic) multiplicity 
2 but only one eigenvector U ,  = 111. Then any ueW2 can span{A(K)tu} = span{P+u++P-(X- 'X+)ru-~  

- 1 ' 1  we see that the line lo:= span{u} under iteration of A(K) 
converges to 1+, which, in terms of Slopes, implies that 
a, -* a+. Moreover, in U+, U- coordinates the Slope of 
A ( K ) ~ ~ ~  is 

be represented U = plul + &u2 where u2 is the principal 
vector (generalized eigenvector) such that ( A  - X l ) u ,  = u l ,  
i.e., AV,  = u1 + u 2 .  Then 

so that m, -* 0, as t + m monotonically. Therefore, the 
phase portrait of (5.1) is as in Fig. 7. 

monotonically until it jumps across infinity to the left of a + , 

and 

-, span { ul} , For any initial condition to the right of a-, a, increases I : =  span { A t u }  = span 
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i.e., a, -, 1 ,  monotonically as t -+ 00. In the same way, if 
0 

Proof of Theorem 4.1: Consider the Riccati equation 
(4.7) corresponding to an arbitrary pair (ao, yo) of parame- 
ters. Let { T, }  be the orbit of T ~ .  It is then straightforward to 
show that 

K = - 1,  a,  -P - 1 monotonically, when t + 03. 

is the orbit of 'Yo = a. /( 1 - ?r0) under the dynamical sys- 
tem (5.1) where K is defined by (4.13) in terms of (ao, yo). 
In fact, the dynamical systems (4.7) and (5.1) are topologi- 
cally conjugate. This is manifested by the relation 

1 1/a; - l / a o  

y ; / a o  (4 - Y:)/ao 

' = [io -f[2;' -;][io -A] (5.5) 

which says that the linear map A for the Mobius transforma- 
tion (4.79, the left member, is similar to the linear map A of 
(5.1). Correspondingly, the dynamics of (4.7) is identical to 
that of (5.1) described above. For I K < 1 the equilibrium 
points p +  and p -  correspond to a+ and a-, and now the 
interval between a+ and a- in Fig. 7 is part of the phase 
diagram. Initial points in this interval correspond to ro such 
that cp(?ro) I 0, and such point cannot escape. Outside of 
this interval, corresponding to cp(?ro)  1 0 there is finite 
escape for a set of points of measure zero. 

If 1 < K < 03, the eigenvalues A * ( K )  are complex with 
complex eigenvectors U + ( K ). If U is a real nonzero vector 
then U can be expressed as 

U = B + ( K ) U + ( K )  + P - ( K ) u - ( K )  
where @ + ( K )  = @ - ( K ) .  As before 

A ( K ) ' U  = ~ + ( K ) x + ( K ) u + ( K )  + ~ - ( K ) A ~ - ( K ) u - ( K )  

= @+(K)eireU+(K) + fl-(K)e-"e*U - ( % I .  
Since A(K) 'u  is real, the motion of the first component 

determines the evolution of lo:= span {U} in W2. 
According to Kronecker (see [13]), the subset 

So = {e'",: t e Z )  c S' 

is either finite, if 8, is rationally dependent on T ,  or dense if 
8 ,  is rationally independent from T .  We are, of course, 
taking a forward orbit, so that only terms such as e',',, 
t = 0 , 1 , 2 ,  - * occur in the u + ( K )  coefficient of A ( K ) , u .  
On the other hand, lo intersects the unit circle in e'', (and 
also in the antipodal point ei('U+*)) so that A ( K ) ' / ~  intersects 
the unit circle S' in 

se . eie, = { e i t e . + i e , ,  t d } .  

In particular, the orbit of the slope a, of A ( K ) ' ~ ~  is either 
periodic or dense, according as to whether as defined in 
(5.3) is a rational multiple of ?r or not. Furthermore, if 

8, = (n / d ) T ,  then recalling that e" and e@+*)  are antipo- 
dal points lying on the same line, we see that 

A(K)'/  = / 

for all I ,  and d is the smallest natural number with this 
property provided (n, d) = 1,  i.e., n and d are coprime. 
Moreover, any d 1 2 can occur. 

We note that when I K 1 > 1 ,  we always have cp(?r0) 1 0 
and cases 2) and 3) occur except for the measure zero set of 
finite escape points, which we now describe. In the case 
arctan -# Q T ,  the point which escapes at time i is 
defined by a(') = U!') where 

In particular, such points form a dense countable subset of 
the hyperbola. In case arctan = nr/d, where 
(n, d) = 1,  then a point escapes at time i if and only if 

, d - 1 .  U 
Proof of Theorem 3.7: We remark that in the case 

K~ > 1 ,  the hyperbola (3.13) is a 2-1 "covering" of the 
a-axis, the trajectory a, of (5.1) initialized at a. correspond- 
ing to two trajectories (a,, f y,) of (3.10) initialized at 
(ao, f yo) in accordance with Theorem 3.2. Thus, it con- 
ceivably could occur that on the hyperbola containing ( ao, f 
yo) the pair of trajectories (at, f y,) is dense while neither 
trajectory is dense. However, this does not happen, as we see 
by the change of coordinates 

i = 1; * 

U = CY - 7, b = a  + 7. 

In the new coordinates, the hyperbola takes the form depicted 
in Fig. 8 while a, itself evolves according to the Mobius 
iteration 

a, - 1 

a ,+ ,  = a , - 2 A + l  (5.7) 

where A = 1 / K . As before, this Mobius transformation cor- 
responds to a linear transformation A with matrix represen- 
tation 

and characteristic polynomial 

s2 - 2 s  + 2 + A(2s - 2) 

yielding the root-locus plot, as shown in Fig. 9, the right-half 
corresponding to positive A and the left to negative A. In 
particular, (5.5) has complex eigenvalues if and only if 
I AI < 1,  i.e., if and only if 1 K I > 1. Therefore, for I K 1 
> 1, the system (5.7) has either all periodic points or all 
dense trajectories. Moreover, since each point on such a 
hyperbola is in one-one correspondence to a point on the 
a-axis, to say all trajectories of (5.7) are dense on the real 
line is to say that all trajectories of ( a t ,  y,) are dense on the 
hyperbola containing the initial data, which is what we 
wished to prove. 

Another consequence of the 2-1 correspondence with the 
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Fig. 8. 

L= 

I 
Fig. 9. 

Fig. 10. 

hyperbola to the a-axis is that, while a, might be periodic 
with period d, (a,, 7,) could have period d or 2d. Since a, 
has the same period as (a,, y t ) ,  it therefore remains to 
investigate the relationship between the periods of a, and a,. 
To  this end, first note that 

A , = I - A ,  

i.e., the root locus of (5.7) is obtained from that of (5.1) by 
mirroring in the imaginary axis and then translating one step 
to the right. 

Fig. 10 depicts the parts of the root loci for which 1 K 1 > 
1, and points A and B have the same K .  Elementary 
geometry shows that the corresponding angles 8, and U ,  are 
related through the equation 

where 8, is given by (5.2b). Now, if the period of (a,, Y,), 
and hence of a,, is p ,  i.e., U ,  = ( q / p ) ? r  with (4, p )  = 1, 

then 
P - 2q e, = - T 

P 
and ( p  - 2q, p )  equals either 1 if p is odd, or 2 if p is 
even. Consequently, the period d of CY, is p if p is odd, and 
p / 2  if p is even. From Fig. 10, we see that U,  can take any 
value on the interval (0, ~ / 2 ) ,  and therefore all periods 
p 2 3 are possible. However, it is not hard to see that, for 
example, p = 3 can be achieved only for a positive K and 
p = 6 only for a negative K . Recalling that when K > 1, the 
hyperbola (3.13) is a 2-1 covering of the a-axis, the d - 1 
points defined by (5.6) correspond to 2 ( d  - 1) points lying 
on the hyperbola and escaping to infinity, two each at times 
t = l ; . . ,  d - 1 .  Since d = p  when p is odd and p = 2k 
when p is even, the corresponding statement of the theorem 
follows. U 

Proof of Corollary 3.8: In general, the possible peri- 
ods which can be realized by a trajectory initialized on (3.13) 
with K > 1 correspond to those natural numbers p for which 
there exists a relatively prime natural number q, 1 I q < p ,  
satisfying 

1 q  1 

4 P  2 
- I - T <  - T .  

For K < - 1 the possible periods p are characterized by the 
existence of such a natural number satisfying in lieu of (5.9) 

4 1  
P 4  

O I  -.I - T .  (5.10) 

It is clear that the second inequality is satisfied, by taking 
q = 1 for all p L 4. Conversely, for p = 1 , 2 , 3  no such q 
exists. Our analysis of the case K > 1 reposes on the follow- 
ing number-theoretic lemma. 

Lemma 5.1: For every integer p ,  p L 3,  and p + 6, 
there exists an integer q, 1 s q < p such that (5.6) holds 
and ( p ,  q)  = 1. Moreover, no such integer exists if p = 1 ,  
2, or 6. 

Proofi That no such integer exists for p = 1, 2, or 6 is 
obvious. For 3 I p I 5 and 7 I p 5 9 the assertion is 
clear. For p 2 10, consider the inequality 

(5.11) 

where for a rational number x ,  [ x ]  denotes the greatest 
integer less than or equal to x .  Setting p = 4r + s, 0 I s I 
3, we see that if q satisfies (5.1 l ) ,  then q satisfies (5.9). 
According to Bertrand's postulate [13], there exists a prime 
number p' for which q = p' satisfies (5.11). First, suppose 
p = 4r. Since p' > r 2 2, p' cannot be a prime factor of 
p ,  so that setting q = p' yields ( p ,  q )  = 1. Similarly, if 
p = 4r + 2, then to say p' divides p is to say p' divides 
2r + 1 which is impossible since p' 2 r + 1. Therefore, if 
q = p', then ( p ,  q )  = 1. Next, consider the case p = 4r + 
1. If p' divides p ,  we must have p = dp' with d = 2 or 
d = 3. Since p is odd, we must have p = 3p'. It is also 
clear that p' + 1 must satisfy (5.11), and, since p > 9, and 
hence r > 2, p' - 1 > r .  Therefore, both p' + 1 and P' - 
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1 satisfy (5.11). Since not both p’ + 1 and p’ - 1 are 
divisible by 3 and neither are divisible by p‘, (p, q )  = 1 for 
at least one choice, 4 = p‘ f 1. Finally, suppose p = 4 r  + 
3 .  Then, as above, to say ( p ,  p? # 1 is to say p = 3p‘ is a 
prime factorization. Again p’ + 1 satisfies (5.11) and p‘ - 1 
= r only if r = 0 and therefore p = 3 .  Since p L 10, we 
see from (5.11) that at least in our case, q = p’ -t 1, satisfies 
the conditions of the lemma. 0 

Proof of Corollary 4.2: If cp(?r,) 1 0, there is a se- 
quence {yt}, so far defined only upto sign, so that (4.19) 
holds. Then inserting (4.16), which is obtained from (5.7), 
into (4.19) we obtain the first of equations (4.14), where, for 
simplicity, we drop the bar over a. Now eliminating a t+]  
between this equation and (5.1) yields the integral curve 
(4.15). Finally, inserting 2 a t f l  / K  = 1 + CX,+~Q,,  obtained 
from (5.1), into (4.15) at t + 1 yields 

r:+1 = a:+’( 1 - ”) = 4 + l Y :  
at+ 1 

where, in the last equality, the first of equations (4.14) has 
been used. Then fixing the sign of {yt} so that yt+] = 
- ~ ~ + ~ y , ,  the second of equations (4.14) is established. The 
analysis for the case cp(?ro) I 0 is analogous only exchang- 
ing yt for iy,. Clearly, p( p )  will take negative values if and 
only if there are real roots, which occurs precisely when 

V. CONCLUSION 
In this paper, we initiated an analysis of the discrete-time 

Kalman filter as a nonlinear dynamical system, stressing the 
existence of both highly regular and unpredictable dynamical 
behavior. Our analysis is motivated by a desire to understand 
the asymptotic dependence of the Kalman filter on the param- 
eters determining it, since in many situations of interest, 
these parameters have to be estimated. For example, even in 
Kalman filtering of systems in statistical steady state, the 
filtering equations often rely on estimates of either covariance 
data or noise intensities. And since such estimates may or 
may not correspond to statistics generated by an underlying 
stochastic system, it is important to understand the conver- 
gence properties and the sensitivity to variation in parameters 
of the Kalman filter, for arbitrary parameters. As is well 
known, parameters corresponding to a stochastic system sat- 
isfy various positivity constraints reflecting either positive 
definiteness of the infinite covariance matrix or positive 
realness of the corresponding modeling filter. On the other 
hand, it has been known for some time that such positivity 
conditions are not necessary for convergence of the Kalman 
filter. In this paper, we identified a general necessary condi- 
tion for convergence of the Kalman filter with given initial 
data. In the case of a one-dimensional system, this is also 
sufficient but we have shown that, much more surprisingly, 
in the complement of this region of attraction, the Kalman 
filter is extremely sensitive to initial data. Indeed, there exists 
an uncountably infinite dense set of periodic points of each 
period p, p 1 2 ,  or 3 (depending on the algorithm), an 
uncountable dense set of points having unbounded trajectories 
and an uncountable dense set of initial data having finite 

I K I  5 1. 0 

escape time. In the one-dimensional case we are able, using 
an analysis of Mobius transforms via “power methods,” to 
give a complete phase portrait which is seemingly in sharp 
contrast to phase portraits of the continuous-time Riccati 
equation [20], [25], [27], suggesting that the discrete-time 
case, in any dimension, is far more complicated than the 
continuous-time case, even after the typical dimension reduc- 
tion. In fact, using an imbedding technique we show that 
these and several other dynamical properties persist for 
Kalman filtering in arbitrary dimensions. 
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