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ABSTRACT 

This  paper is a shortened  version  of  [ l] ,  i t s  
basic  purpose  being  to  provide  an  easily  accessible  in- 
t r o d u c t i o n   t o   t h e   r e s u l t s   o f   [ l ] ,  many of which are 
presented  here  without  proofs. However, we have t r i e d  
to  rearrange  the material of   [ l ] .   changing  the  logical  
o r d e r   i n  which various  topics  are  introduced, and  occa- 
s iona l ly  we regard   the   resu l t s  from a somewhat d i f f e ren t  
angle. This has  been  done to   increase  the  present  
paper 's   usefulness   as  a complement t o   [ l ] .  

The  work reported  here is aimed a t  providing a 
theory  of smoothing in   t he   con tex t   o f   s tochas t i c  reali- 
zation  theory.  This  approach  enables us to   ob ta in   s to -  
chas t i c   i n t e rp re t a t ions   o f  many important  smoothing 
formulas and to   expla in   the   re la t ionship  between  them. 
In  this  paper,  however, we shal l   only  consider  one  such 
formula,  namely  the  kyne-Fraser  two-filter  formula, 
which has a very   na tura l   in te rpre ta t ion   in   the   s tochas-  
t i c   r e a l i z a t i o n   s e t t i n g ;  we r e fe r   t he   r eade r   t o   [ l ]   f o r  
f u r t h e r   r e s u l t s .  As a by-product, we also  obtain  cer-  
t a i n   r e s u l t s  on the   s tochas t ic   rea l iza t ion  problem 
i t s e l f .  

1 .  INTRODUCTION 

Consider a l inear   s tochast ic   system 

(SI 1 dx = A(t )x ( t )d t  + B(t)dw ; x ( 0 )  = 5 (1 . la )  

dy = C( t )x ( t )d t  + D(t)dw ; y(0) = 0 ( l . l b )  

defined on the   i n t e rva l  0 6 t 6 T, where x i s  the  n-dim- 
ensional state  process, y is the  m-dimensional output 
process, w i s  a p-dimensional  process  with  orthogonal 
increments  such  that 

E{dw} = 0; E{dwdw') = Id t  (1 .2)  

(prime  denotes  transposition), 5 i s  a centered random 
vec tor   wi th   f in i te   covar iance  ll := E{SC') and uncorrelated 
with w, and A, B ,  C,  and D are   matr ices   of  bounded func- 
t ions  with  propert ies   to   be  fur ther   specif ied below. We 
shal l   consider  two problems related  to  such  systems: 

Problem 1. For an   a rb i t ra ry  t E [O.T], f ind   the   l inear  

output  record  {y(t)  ; 0 6 t 6 TI ,  i .e. ,  f i nd   t he  hide 
least-squares   es t imate   %(t)   of   the   s ta te   x( t )   g iven  the 

sense  conditional mean 

2( t )  = &{x(t)  IY(T) ; 0 i T 5 T I .  (1  -3) 

This is the  smothing pmblem, which has generated a 
ra ther   ex tens ive   l i t e ra ture   [ l -18 ,  481,  and i s  o f  con- 
s iderable   importance  in   appl icat ions.  
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Problem 2. Given the   s tochas t ic   p rocess   {y( t )  ; 
0 i t 2 TI, f ind  a l l   possible   systems  (1 .1)   ( in  some 
su i t ab le   c l a s s  o f  models S) having  this   process   as  i t s  
output  process.  This i s  the  Stochastic  realization pm- 
blem discussed  in  [20-331, and each  such model S is 
ca l l ed  a stochastic  realization of {y( t )  ; 0 6 t 5 T I .  
Note t h a t  we are  only  considering proper s tochas t ic   re -  
a l i za t ions   [20 ] ,   i . e . ,  models S whose outputs  not  merely 
have the  same covariance  properties  as  the  given  process 
(the  only  requirement  in  the earlier rea l iza t ion   theory  
[34-38]),   but  are  equal  to it a . s .  for  each t .  

As we sha l l   see   in   th i s   paper ,   these  two problem 
are   in t imate ly   connec ted   to   each   o ther .   In   fac t ,   a l l  
the  well-known s m t h i n g  formulas  found i n  [2-181  have 
na tu ra l   i n t e rp re t a t ions   i n   t he   s tochas t i c   r ea l i za t ion  
se t t i ng ;   s ee   [ l ]   f o r  a more complete  discussion  of  these 
r e s u l t s .  Here we shall   only  consider  the  so-called 
irkryne-Frcrser t vo - f i l t e r  fonmcla [5,6], on which top ic  a 
l a rge  number of  papers  have  been  written  [7-9,12-171. 
The  many attempts  to  motivate  this  formula  stochastically 
have, i n  our opinion,  been less than  convincing. We 
refer   the   reader   to  [48] f o r  a well-written  account o f  
these  matters.   In OUT r ea l i za t ion   s e t t i ng ,  however, 
t he  two f i l t e r s  have a na tura l   in te rpre ta t ion :   they   a re  
simply  the minimum- and maximum-variance r ea l i za t ions  
respec t ive ly .  Hence, t h e   l a t t e r  is not a "backward 
f i l ter"   as   suggested  in   the  l i terature--  i t  can 
be  reformulated as such),  but a "forward f i l t e r "   j u s t   a s  
its s t ructure   suggests .  

The concept  of bachnrd real imtion is an  essen- 
t i a l   t o o l   i n   t h i s   p a p e r .  A similar  approach was applied 
t o   t h e  smoothing  problem in   t he   ea r l i e r   pape r s  [14-171, 
but,   since  only !'wide sense" backward representations 
were  used, some subt le   points  were overlooked. The fun- 
damental   idea  of  this  paper,   to embed the  given  system 
(1.1)   into a class of   s tochas t ic   rea l iza t ions ,  was mo- 
t iva ted  by t h e   r e s u l t s   i n  [20-221.  Note t h a t   r e s t r i c t -  
ing  our   analysis   to  models  (1.1) fo r  which BD' = 0 (as 
i n  114-171). would render   the  natural   c lass  of  r ea l i za -  
t ions  incomplete,   since it would exclude  the minimum- 
and maximum-variance r ea l i za t ions .  

This  paper is e s sen t i a l ly  a shortened  conference 
vers ion   of   [ l ] ,   bu t   the   l as t   sec t ion   conta ins  some as- 
pects on the   s tochas t ic   rea l iza t ion  problem not  included 
i n   [ l ] .  Whenever a proof  has  been  omitted, i t  can  be 
found i n   [ l ]  . 

2. SOEE NOTATIONS 

Let H be the space  of a l l  centered  s tochast ic   var i -  
ables (on an  underlying  probabi l i ty   space)   with  f ini te  
second-order moments. Then H is a Hilbert   space  with 
inner  product ( c . 0 )  = E{F,q}. For an   a rb i t ra ry  k-dimen- 
s iona l   s tochas t i c   p rocess   {z ( t ) ;  0 2 t 6 TI with compo- 
nen t s   i n  H, define  Ht(z)  to  be  the  (closed)  subspace 
spanned by the  random v a r i a b l e s   { z l ( t ) ,   z Z ( t ) ,  . . . , 
% ( t ) } ,  and le t  H(z) be   the   c losed   l inear   hu l l   in  H of 

the  subspaces  {Ht(z); 0 6 t 6 TI ;  we s h a l l   w r i t e   t h i s   a s  
H(z) = V t E I O , T l  Ht(z) .   Similar ly   def ine  the past space 
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H;(z) : = V T E p t ]  H (2) and t he  fk ture space H i ( z )  := 
VTElt,Tl HT(z). Sometimes we s h a l l  be m r e   i n t e r e s t e d  

in   spaces  spanned by the  increments o f  z. Hence, we 
define  H(dz), H;(dz) and H:(dz) to   be   the   c losed   l inear  

hu l l s  i n  H of {z(T) - z(u); T, u E I}  where I is the  
in te rva l  [O,T],  [O,t]  and [ t , T ]  respectively.  

For each rl E H and subspace K c H l e t  E{q(K} be 
the  project ion  of   onto K, i . e . ,   t he  w i d e  sense con- 
diticnul. mean. Let u be a s tochast ic   vector   with com- 
ponents i n  H, and l e t  H(u) be  the  closed  linear  span i n  
H o f   the  component? o f  u. Then, f o r  any q E H, we 
sha l l   o f t en   wr i t e  r{ ql u } in   p lace   o f  E{q 1 H(u]},  and, 
f o r  any  subspace,,K c H, 6.I uI K) w i l l  denote  the  vector 
with components E{ui I K} . 

3. FORWARD AND BACKWARD STOCHASTIC  REALIZATIONS 

Assuming t h a t  R := DD’ has a bounded inverse on 
[O,T], it i s  well-known tha t   the   l inear   l eas t - squares  
estimate 

x,(t) = t {x ( t )  I H;(dy) 1 (3.1) 

o f   t he   s t a t e   p rocess  x o f  S is generated on [O,T] by 
the  KaZmrm-Bucy f i l t e r  

dx, = Ax,dt + B,R-ll2(dy - Cx,dt); 
(3.2a) 

x,(O) = 0 

where  R’l2(t) is the   symet r ic   square   roo t   o f   R( t ) ,  and 
the  gain  function B, is given by 

B, = (Q,c’ + B D * ) R - ~ / ~ ,  (3.2b) 

the  error   covariance  matr ix  

Q,(t)  E{[x(t) - x , ( t ) l [x ( t )  - x,(t)l-}  (3.2c) 

being  the  solut ion  of   the matrix Riccati  equation 

i - (Q,c* + BD’)R-~(Q,c* + BD’)’ + BB’ (3.2d) 

Q,(O) = il. 
Note t h a t   t h e   f i l t e r   ( 3 . 2 a ) ,  and  hence the  estimate x,, 
i s  completely  determined by the  matrices A, C ,  R and 
B,. Clear ly   there   a re  many models S having  the same 
Kalman-Bucy f i l t e r .  

In  the  sequel we shall   only  consider models S 
which a r e  minimal., i . e . ,  there i s  no o the r   r ea l i za t ion  
o f   { y ( t ) ;  0 5 t 5 T} with a s ta te   p rocess  x of   smaller  
dimension  n,  and anaZytic, i . e . ,   t he   coe f f i c i en t  ma- 
t r i c e s  A,  B ,  C,  D and R - 1  a r e   ana ly t i c  on [O,T]. Both 
these  assumptions  are  purely  technical and a r e   i n t r o -  

vertible;   they  could  probably be removed a t  the   p r i ce  
duced to   insure   tha t  a cer ta in   matr ix   funct ion i s  in-  

of  a less elegant  theory. Now, l e t   t h e   i n i t i a l   r e a l i -  

and define S t o  be t h e   c l a s s   o f   a l l   a n a l y t i c   r e a l i z a -  
zation S used i n  forming  (3.2)  be  minimal  and ana ly t ic ,  

t i ons   o f   {y ( t ) ;  0 5 t 5 TI having  (3.2)  as i t s  Kalman- 

minimal. Clearly A, C and R := DD’ a r e   t h e  same f o r  
Bucy f i l t e r .  Then a l l   r e a l i z a t i o n s   o f   c l a s s  S a r e  

a l l  S E S, while B ,  D and the  state  covariance f m t w n  

P( t )  := E{x(t)x(t)*}  (3.3) 

w i l l  d i f fe r   over   the   c lass  S. Of course,   d i f ferent  
S E S will have completely  different  stochastic  pro- 
cesses x and w.  

Furthermore,  from  (3.2b) and the   f ac t  that Q, = P - P*, 
where  P,(t) := E{x,(t)x,(t)’}, it fo l lows   tha t   a l so   the  
function 

G := PC’ + BD’ (3.4) 

is an invariant   over  S. In   fac t ,  

G = P,C’ + B,R . 1 / 2  (3.5) 

I t  i s  easy   to   see   tha t  P s a t i s f i e s   t h e  matrix 
d i f f e ren t i a l   equa t ion  

P = AP + PA’ + BB’ ; P(0) = n ,  (3.6) 

which has  the  solution 

P ( t )  = @(t,O)II@(t,O)’ 

’0 

where @ is the  transion  matrix  of  the  system z = Az o f  
d i f fe ren t ia l   equa t ions .  Hence, P(t)  > 0 f o r   a l l  t E [O,T] 
i f  and only i f  S belongs  to  the  subclass s+ = {SESIII>O}.  
[For symmetric  matrices P and Q, P 2 Q ( P  > Q) means t h a t  
P-Q i s  nonnega t ive   (~0s i t i ve )de f in i t e . l  I t  can  be shown 
[ l ]   t h a t  S+ is nonempty. 

Let s 6 s + .  Then x ( t )  := P(t)-’x(t)  i s  a well- 
def ined  s tochast ic   vector   process  on a l l  of [O,T],  and 
it can  be shown [ l ;  Lemma 2.31 t h a t  it s a t i s f i e s   t h e  
backard Markovian representation 

d i  = -A’:dt + i d i  ; E(T) = (3.8a) 

where i = P- B, w is a p-dimensional  orthogonal  increment 
process  of  type  (1.2)  defined by 

1 

d i  = dw - B’P-’xdt, (3.8b) 

and := P(T)-  x(T) i s  uncorrelated  with i .  Then 
H (dG) I H+(f )   fo r   a l l  t E [O,T]; t h i s  is what charac te r -  
i l e d   t h e  b h m r d  prope r ty   o f   (3 .8 ) .   b reove r ,   t he   s t a t e  
covariance  function  P{t) := E{X(t)f( t j ’}   sat isf ies  P = 

1 

P-1. 

Representation  (3.8) is a s t r i c t   s ense   ve r s ion   o f  
a s imilar   resul t   presented  in   [15,16,42] .  (The l a s t  
paper   contains   an  a l ternat ive  just i f icat ion  of   the formu- 
las  of  [15,16]  using  the  techniques  of  [12,13].) The 
version  given  in  these  papers i s  however in su f f i c i en t   fo r  
our  purposes  since it provides a representation up t o  

n i c a l i t i e s ,  the  proof  of  (3.8) above [ l ;  Lemma 2.31 is 
second-order propert ies   only.  Modulo some t r i v i a l  tech- 

t he  same as   the  one  presented  in   [20] .   ( In   this   context  
it should  be  mentioned  that a22 the   bas ic   ideas   o f  a r e -  
cent  paper  coauthored by Kailath [IEEE Trans.  IT-25(1979), 
p.121-1241 are  contained  in  [20,21],  and tha t ,   th ree  
months pr ior   to   the  submission of Kailath’s  paper and a t  
his  request,   [20,21] were personally handed over  to him 
by one of   the  authors . )  

Together  with  (3.4),   representation  (3.8)  yields 
a backurd  reaZizution of b ( t )  ; 0 5 t 5 T I ,  namely 

df = -A’Sdt + i d9  ; f(T) = 5 
dy = G’fdt + DdF 

(3.9) 

whose s ta te   covar iance   mat r ix   func t ion   sa t i s f ies  

(3.10) 

where ii := P(T)-l .  By t h i s  procedure each S E S+ gjves 
r i s e   t o  a backward r ea l i za t ion  S ;  t h c   c l a s s   o f   a l l  S 
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generated  in   this  way will be  denoted s+. 
l e x t  we proceed  to  enlarge  the  class 3,. Given 

any s E S,, (by symmetry with  the  forward  setting)  the 
l inear   l eas t   squares   es t imate  

k ( t )  = ; i%( t )  IH;(dy)} (3.11) 

i s  generated by the  bachard K a h a n - B w y  f i l t e r  

d?, = -A'R,dt + I,R-'12(dy - G'f*dt) ; 
(3.12) 

i,(T) = 0, 

where the  gain  function E, can  be  determined  via a ma- 

with  the  forward  sett ing,  we define S to   be   t he   c l a s s  
t r i x   R icca t i   equa t ion   [ l ] .  Now, i n  complete  analogy 

o f   a l l   a n a l y t i c  backward r ea l i za t ions   o f   {y ( t ) ;  

by ( 3 . 1 2 ) .   I t  can be  shown [ l ]   t h a t  S+ c 3, and hence 
0 5 t 5 T}  whose backward Kalman-Bucy-filter is given 

we have  obtaineg  the  required  extension. A l l  r ea l i za -  
t ions   o f   c lass  S a r e  minimal. 

between  models i n  S and S. For t h i s  we need to  en- 
large  these  c lasses  even fur ther .   This   leads  to  gen- 
eralized  stochastic  reazizatwns.  

Unfortunately,   there i s  no one-one  correspondence 

4. GENERALIZED  STOCHASTIC  REALIZATIONS 

In order  to  extend  the one-one  correspondence  be- 
:ween forward  and  backward r ea l i za I ions  beyond S+ and 
s+ we shall have to  Bnlarge S and S s l i g h t l y   i n   t h e  
following way. Let S be   the   c lass   o f  a l l  systems  (1.1) 
which f o r  any E > 0 i s  an ana ly t i c   r ea l i za t ion   o f  
b ( t ) ;  0 5 t 5 T - c} having  (3 .2a) ,   res t r ic ted  to   the 
i n t e r v a l   [ ~ , T - E ] ,   a s  i t s  Kalman-Bucy f i l t e r .   S imi l a r ly ,  
we define S t o   be   t he   c l a s s   o f   a l l  models (3.9) which 
fo r  any E > 0 i s  an a n a l y t i c   r e a l i z a t i o n   o f   { y ( t ) ;  
E 5 t 5 T) such tha t   (3 .12) ,   res t r ic ted   to   [€ ,TI ,  isAits 
backward Kalman-Bucy f i l t e r .  The elements  of 3 and 
will be ca l l ed  generalized  realizations and generalized 
bachrd   r ea l i z c r twns  gf {y(t);-O-i t 5 T)  respect ively.  
Clearly S c 9 and s c 3. 

Then to   each  real izat ion S E S thzre  corresponds 
a generalized backward r ea l i za t ion  s E 3. In   fact ,  it 
can  be shown tha t ,   s ince  S i s  minimal, (A,U) is com- 
pletely  control lable .   This   together   with  the  analyt i -  
c i t y   imp l i e s   t ha t  (A,B) is t o t a l l y  controllable  [40,41].  
Consequently  P(t)  has  an  analytic  inverse on any i n t e r -  
va l   [€ ,TI ,   for   the   l as t   t e rm  of   (3 .7)  i s  the  control la-  
b i l i t y  gramian. (Cf [ l ] ;  Lemma 2.2) .  Hence the  proce- 
dure  leading  to  the backward model (3.9)  can  always  be 
carr ied  out  on the   res t r ic ted   in te rva l   [E ,T] .   S imi la r ly  
there  corresponds a general izgd  real izat ion S E S t o  
any backward r ea l i za t ion  3 E S .  We col lect   these  obser-  
vations  in  the  following  theorem. 

THEOREM 4 .1 .  To each reazization 11.1) in S there coc- 
responds a generalized backward real izat ion 13.9) i n  3 
such tha t  P = P- l ,  = P - l B ,  f = P-lx and dii = dw - 
B'PIlxdt. Likmise  to each b a c b d  reaZization 13.91 
i n  S there is a generalized  reuzization 11.1) in S such 
that  P = p-1, B = P - l B ,  x = P-lj i  and dw = diJ + E'P-lXdt. 

5. THE  MINIMUM- AND MAXIMUM-  VARIANCE  REALIZATIONS 

I t  i s  well-known t h a t   t h e  innOvatwn  pmcess 
!w,(t); 0 5 t 5 T), whose increments  are  defined by 

dw, = R-l12(dy - Cx,dt),  (5.1) 

i s  a process  with  orthogonal  increments  satisfying 
(1.2) and H-(dw,) = H-(dy) f o r   a l l  t E [O,T] (see  e .g .  
[43]).  Thek (3.2a) akd (5.1)  yield 

dx, = Ax,dt + B,dw, ; x,(O) = 0 

dy = Cx,dt + R1'2dw,, 

which is a r e a l i z a t i o n   i n  S, f o r  B, i s  c lear ly   ana ly t ic .  

Likewise,  the backward Kalman-Bucy f i l t e r  (3.12) 
can  be  written 

(3,) ! df, = -A'E,dt + i*dG*; f , ( T )  = 0 

dy = G'?,dt + R dwtr 1 / 2  - (5.3). 

where {G*(t); 0 i t 5 T} is the  b u h d  innovation p m -  
cess 

dii, = R-l12(dy - G'?,dt),  (5.4) 

which has  ortho  onal  increments and sa t i s f i e s   (1 .2 )  and 
the  condi t ion Ht(&*) 0 = Hf(dy) f o r   a l l  t E [O,T]. (See 
[20,45] .) Clearly,  3, E S .  Now l e t  

(s*)[ 
dx' = Ax*dt + B*dw*; x*(O) = c*,  
dy = Cx*dt + R112dw* 

(5.5) 

be  the  forward  counterpart  of 5, as   def ined by Theorem 
4.1, and l e t  P* be the-corresponding  state  covariance 
function.  Since S+ C S+, Sf  ex i s t s   on ly   a s  a generalized 
r ea l i za t ion ,  and obviously  P*(t) + m a s  t + T. 

L E M A  5.1. Let P, and P* be  the  state  covariance fw- 

Then the  state  covariance  function P of an arbitrary 
t ions of S+ and S* respective13 and define Q := P* - P,. 

real izat ion S E S s a t i s i f i e s  

P*(t) 5 P(t)  5 P*(t)  (5.6) 

f o r  a21 t E [O,T) .  hreover ,  Q > 0. 

Consequently, we s h a l l   c a l l  S, t he  minirmon- and Sf 
the  masinnun-variance real izat ion.  By eliminating dw* i n  
(5.53, it is immediately  seen mat x* s a t i s f i e s   t h e  KaI- 
man-Bucy type  equation 

dx* = Ax*dt + B*R-ll2(dy - Cx*dt); x*(O) = E* (5.7a) 

Let S be  an a r b i t r a r y   r e a l i z a t i o n   o f   c l a s s  S. Then, de- 

and (3.6)   that  
f in ing  Q* := P* - P. it is not  hard  to  see from (3.4) 

B* I -(Q*c ' - BD I)R-l12  (5.7b) 

with Q* satisfying  the  matrix  Riccati   equation 

i d* = AQ* + Q*A' + ( Q * c ~  - BD ' )R-~(Q*c - BD') - BB I 
(5.7c) 

Q*(O) = II* - II, 
where illf = ij*(O)-'. Clearly  Q*(t) -+ m as t + T. The 
f i l t e r  (5.7) i s  precisely  the  mysterious "backward f i l -  
t e r"   o f   the  Mayne-Fraser two-fil ter  formula;  as we have 
seen  above, it is ac tua l ly  a forward rea l iza t ion .   S ince  
Q* = P* - P, we can in t e rp re t  Q* a s  an error   covariance 
function, much i n  analogy  with  the Kalman-Bucy f i l t e r .  
In   fac t ,  

Q*( t )  = E{[x(t) - x * ( t ) ]   [ ~ ( t )  - x*( t ) ]  '1 (5.8) 

f o r   a l l  t E [O,T) .  This i s  an immediate  consequence of 
the  following lemma, which we s h a l l  need again i n  the  
next   sect ion.  

L E m A  5.2. Let x be the state process and P the state 
c o d e  function of wzy r e a l i z a t i o n   i n  3. %n 

E{x(t)x,(t) '} = P*(t) ,   E{x(t)x*(t)  '1 = P(t)  (5.9) 
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and for  a l l  t E [O,T).  Then solving  (6.4) and (6.5) f o r  K, 

We s h a l l  now demonstrate  that   the two processes 
x. and x* toeether   contain a l l  the  relevant  information Q ( t )  = Q*( t )  + Q*(t)n .. 
on y needed in   es t imat ing   the   s ta te   p rocess  x of an a r -  
b i t r a r y   r e a l i z a t i o n  S E S. To t h i s  end f i r s t   n o t e   t h a t  
(3.1)  can  be wr i t t en  

THEOREM 6.1. Let x be the skate process of a real izat ion 
( t . 1 )  of class 2. Then the   smoth ing   es t imte  (6.1) is 
gzven by 

E{Ht(x) IH;(dy) 1 = Ht(x,),  (5'11) ;( t)  = [ I  - Q,(t)Q(t)- ' ]x,(t)  + Q,(t)Q(t)-'x'(t)  (6.7) 

and that,   since  obviously Ht(x*) = Ht(?.,), (3.11) y i e lds  and the  error  covariance fmction (6.2) by 
2{Ht(x) IHf(dy)} = Ht(x*) (5.12) 

f o r   a l l  t E [O.Tj. N o w  define  the  orthogonal comple- 
ments NI := H;(dy) e Ht(x,).and N t  := Hl(dy) e Ht(x*) 
respectlvely.  Then we obtaln  the  orthogonal decomposi- 
t i on  

H(dy) = N; e H E  e N i  (5.13) 

where HF is the  fmme space 

Ha = Ht(x,) V Ht(x*) t (5.14) 

(where A v B denotes  the  closed  l inear  hull   in H of A 
and B.) (Cf.  [22,24,26].) 

L E m A  5.3. (cf,  [27]) Let x be  the  state pmcess of a 
rea l i za t ion   i n  S. Then, for  t E [O,T), 

Ht(x) c H F  [H(dy)l' 

ohere [H(dy)]' is the  orthogonal complement of H(dy) 
i n  H. 

P r o o f .  Clearly H (x) I N;. To see   t h i s   no te   t ha t   t he  
components o f   x ( t f  - x,(t)  are  orthogonal  to  H;(dy) 3 

N; and t h a t   t h e  components of   xt( t )   belong  to  Ht(x,) I 
N i .  In  the same way  we  show that   $(x)  I N;. 0 

6. THE  SMOOTHING  PROBLEM 

Consider an a r b i t r a r y   r e a l i z a t i o n   ( 1   . l )   i n   t h e  
c l a s s  S. The basic problem before us is to  determine 
the  smothing  es t imate  

;( t)  = E"Ix(t) lH(dy) 1 (6.1) 

for each t E [O,T) and t o   i n t e r p r e t  it i n  terms  of  sto- 
chas t ic   rea l iza t ions .   Le t  Z denote  the  corresponding 
est imat ion  error   covariance,   i .e . ,  

C(t) = E{[x(t) - ; ( t ) ] [x ( t )  - ; ( t ) ]  '1. (6.2) 

In view o f  Lemma 5.3,  ;(t) E Ha, and consequently 
the re   a r e  two matrix  functions K, a n i  K* such  that  

;( t)  = K,(t)x,(t) + K*(t)x*(t) .   (6.3) 

The components of   the   es t imat ion   e r ror   x ( t )  - a c t )   a r e  
c lear ly   or thogonal   to  H(dy),  and  hence, i n   p a r t i c u l a r ,  

E{x(t)x,(t) '1 = E{;[t)x,(t) '1 and E{x(t)x*(t) '1 = 
t o   t he  components o f  x, ( t )  and x*(t)  . merefore ,  

E{;(t)x?(t) ' 1 .  By  Lemma 5 .2 ,   t he   f i r s t   o f   t hese   r e l a -  
t ions   y ie lds  P, = K,P, + K'P, and consequently 

K,(t) + K'(t) = I (6  -4) 

f o r   a l l  t E (O,T), because  P,(t) i s  nonsingular on t h i s  
i n t e rva l .  The second  re la t ion   y ie lds  

P ( t )  = K,(t)P,(t) + K*(t)P*(t)  (6.5) 

E(t) = Q,(t) - Q,(t)Q(t)-lQ,(t)   (6.8) 

f o r  aZ1 t E [O ,T) .  

P r o o f .  Relation  (6.7) was derived  above  for t E (0 ,T);  
f o r  t = 0, (6.7)  follows from (7.6)  below. To prove 
(6.8)  note  that  

X - x^ = ( I  - Q,Q- ) ( X  - X*) + Q,Q (X - X*).  (6.9) 1 -1 

By  Lemma 5.2 t he  two terms  of  (6.9)  are  orthogonal and 
the re fo re ,   obse rv ing   (3 .2~)  and (5.81, 

z = (1  - Q,Q-')Q,u - Q-~Q,)  + Q,Q-~Q*Q-'Q,. 

which, i n  view of   (6 .6) ,   y ie lds   (6 .8) .  0 

7 .  THE MAYNE-FRASER  SMOOTHING FORMULA 

We s h a l l  now r e s t r i c t   o u r   a t t e n t i o n   t o   r e a l i z a t i o n s  
f o r  which both Q, and Q* a r e   i n v e r t i b l e   f o r   a r b i t r a r y  

p o s s i b l e   f o r   a l l  S E S such  that   P,(t)  < P( t )  < P*( t )   for  
t E [O,T). Since Q, = P - P, and Q* = P* - P, t h i s  i s  

a l l  t on t h i s   i n t e r v a l .  We s h a l l   c a l l   t h e   c l a s s   o f  a l l  
such S t he  in ter ior  o f  S and denote it i n t  S. I t  can  be 
shown t h a t   i n t S  is indeed nonempty [ l ;  Lema  3.61. 

THEOREM 7.1  . Let S E i n t  S, l e t  x be the  state process 
of S, and l e t  x^ be the corresponding smoothing e s t i m t e  
(6.1).  Then, for each t E [O,T) 

x^(t) = z(t)  [Q,(t)- 'x,(t) + Q*( t ) - lx* ( t ) ] ,   ( 7 .1 )  

where x, and x* are  given by (3.2) and (5.7) respectively 
and the smothing e m r  covariance C by 

C(t)-' = Q,(t)-' + Q*(t)-l.   (7.2) 

P r o o f .  Since S E i n t  S, Q, and Q* a r e   i n v e r t i b l e .  By 
writ ing  (6.8) as C = Q,Q-'(Q - Q,) and using  (6.6),  it 
is seen   tha t  

z = Q,Q-~Q*.  (7.3) 

Inverting this and  again u5_i.ng (6.6)  -+elds  (7.2).  F rom 
(7.31 we a l s o   s e e   t h a t  Q,Q = C(Q*) . Then I - Q,Q-l = 
E[E- - (Q*)-'] = ZQ9;'. Hence (7.1)  follows  from  (6.7) .O 

Relations  (7.1) and (7.2)  together  with  (3.2) and 
(5.7) i s  the  Ekryne-Fmser two-f i l ter  f o m l a  [5',6], 
which has   received  considerable   a t tent ion  in   the  l i tera-  
t u r e  [7-9,13-171.  Although this   a lgori thm is easy  to  
derive  formally  [9,12,13], i t s  p r o b a b i l i s t i c   j u s t i f i c a -  
t ion  has  caused  considerable  difficulty,   partly due t o  
the   fac t   tha t   Q*( t )  -+ - as  t -+ T. The system  (5.7)  has 
usual ly   been  interpreted  as  a backward f i l t e r ,  and i n  
[14,17] it is presented as the  l imit   of   such a f i l t e r  as 

However, i n   ou r   s tochas t i c   r ea l i za t ion   s e t t i ng   (5 .7 )   has  
a cer ta in   covariance  matr ix   funct ion  tends  to   inf ini ty .  

a ve ry   na tu ra l   i n t e rp re t a t ion :   I t  i s  simply  the uaxirmm- 
variance forward r ea l i za t ion  S*. By us ing   the   ident i ty  
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x*( t )  = P*(t)- l%(t)   (7 .4)  

we can  instead write the  smoothing  formula  (7.1) i n  
terms  of two  Kalman-Bucy f i l t e r s ,  one ( 3 . 2 )  evolving 
forward  and  the  other (3 .12)  evolving backward i n  time. 
(Note that  then  (7.1) is defined on the  whole in t e rva l  

which papers  the backward estimate 
[O,T].) This fact w a s  pointed  out  in  [14,15,17],   in 

g ( t )  = i{x(t)l   Hi(dy)j   (7.5) 

was used in   p lace   o f  R,, a choice  that  may a t  f irst  
s igh t  seem mre na tura l .  The reader  should however note 
tha t  

% ( t )  = P(t)P*(t)-lx*(t)   (7.6) 

is not   invariant   over  S and is therefore  less su i t ab le  
for  our  purposes. I t  is not   hard   to   see   tha t  

(Q*)-' = [(Q*)-' + P-']P(P*)-'  (7.7) 

and consequently  (7.1) may also  be  wri t ten 

which is the  formula  presented  in  [14,15,17].  In  the 
ear ly   papers   [7 ,8] ,   re la t ion  (7 .1)  w a s  introduced  via 
a formula  [47]  for  optimal  weighting  of two estimates 
with  orthogonal  errors.  No j u s t i f i c a t i o n  o f  t h i s  or- 
thogonality was given i n   [ 8 ] ,  and the  argument i n  [7] is 
incomplete due t o  problems  with  the end point   condi t ion.  
(Cf.  [48].) However, the   s tochas t ic   rea l iza t ion   theory  
provides a na tura l   jus t i f ica t ion   of   th i s   p rocedure .   In-  
deed,  (5.10) is the  required  orthogonally  condition. 

8. INTERNAL AND EXTERNAL  REALIZATIONS 

Since R := DD' is assumed t o  be fu l l   rank ,   the  
dimension  of w is always greater  than or equal   to   the  
dimension  of  y,   i .e. ,  m 5 p. We s h a l l  now consider  re- 
a l i z a t i o n s   f o r  which m = p.  ?hen D i s  inve r t ib l e ,  and 
w can  be  eliminated from (1 .1)   to   y ie ld   the  Kalman-Bucy 
type equation 

dx = Axdt + BD-l(dy - Cxdt);  x(0) = 5. (8.1) 

I f ,   i n   a d d i t i o n ,  we assume t h a t  5 E H(dy), it is imme- 
d i a t e l y   c l e a r   t h a t  

H(x) c H(dY)* (8.2) 

We s h a l l   c a l l  any  generalized  realization  of  fy(t);  

t i o n ;   a l l   o t h e r  S E S will be named eztemzal [ZO]. Ob- 
0 5 t 5 T) f o r  which,(8.2)  holds  an i n t e r n 2  r ea l i za -  

v ious ly .   the   in te rna l   rea l iza t ions   a re   p rec ise ly   those  
f o r  which the  smothing problem is t r i v i a l ,   t h e   e s t i -  
mate being  exact .   In   par t icular ,  S, and S* a r e   i n t e r -  
nal. 

Let so be   the   c lass   o f  a l l  S E 3 such  that  p = m 
and 5 E H(dK). Then we have  just  shown t h a t   a l l   r e a l i -  
za t ions   i n  So a r e   i n t e r n a l .  The following  theorem,  the 
proof  of which is g iven   i n   [ I ] ,   s t a t e s  that, under some 
mild regularity  conditions,   the  converse is a l so   t rue .  

THEOREM 8.1. A realization s E 2 such that has full 
rank is i n t e r n 1  i f  and only i f  S E so. 

A E1 
any  real izat ion S of   c lass  S can  be  written 

In view of Theorem 6.1 ,   the   s ta te   p rocess  x of 

x ( t )  = [I - II(t)]x,(t) + n( t )x*( t )  + Z(t ) ,  (8.3) 

where il := 9,Q-l and .? := x - x .̂ The smoothing e r ro r  2 

is ident ical ly   zero i f  and only i f  S i s  in t e rna l .  To ob- 
t a i n  a complete  characterization  of  the  external reali- 
za t ions   in  s+, we shall   provide a r ep resen ta t ion   fo r  j ;  
a lso .  To t h i s  end, note   that ,   g iven a r e a l i z a t i o n   ( l - l ) ,  
there  exists an  orthogonal p x p-matrix  V(t)  for  each 
t E [O,T] such  that  

where B is n x m and B 2  is n x (p - m ) ,  and tha t  1 

(8.4a) 

(8.4b) 

defines a pair  of  orthogonal  increment  processes u and  v, 
of  dimensions m and p - m respectively.  Obviously  (8.4b) 
s a t i s f i e s   ( 1 . 2 ) .  

THEOREM 8.2. Let x be the  state  process of a reuliza- 
t w n  S E St and l e t  B2 and v be defined by (8.4). Then 
the smothzng e m r  j ;  is giuen by 

(8.5a) 

Together  with (8.5), (8.3) cons t i tu tes  a generali-  
za t ion   of   the   s ta t ionary   in te rna l   s ta te   representa t ion  
i n  Theorem 5.5 of [ Z O ] .  For externa l   rea l iza t ions ,  how- 
ever, il is not a project ion.   In   fact ,  II i s  a projection 
i f  and only i f  S i in t e rna l .  To see  this   observe  that  
n2 = II, i . e . ,  Q,Q-fQ, = Q,, i f  and only i f  Z = 0 
(Theorem 6.1).  

For in te rna l   rea l iza t ions  we have the  following 
s t ronge r   r e su l t ,  which i l l u s t r a t e s   t h e   i w o r t a n t   r o l e  
played by the  feedback  matrix r, def ined   in  Theorem 8 . 2 .  
I t  i s  a general izat ion  of  a r e s u l t  found i n  [22; pp.75- 
791. 

THEOREM 8.3. Let Y be  the t r a w i t w n  j b c t i o n  of r*, 
z.e., 

a =Y(t,s) = r , ( t ) w t , s ) ;  Y ( S , S )  = I ( 8  * 7) 

Then x,is a s ta t e  process of an internal  realization of 
class S i f  and on& i f  there i s  a family h$; t E [O,T) 
of subspaces of Rn, satisfying  the  condition 

Y(t,s)Ms c Mt for a21 s 5 t, ( 8 . 8 )  

such that,  for  each t E [O,T), 

x ( t )  = [I  - il(t)]x,(t) + iT(t)x*(t).  (8.9) 

where n( t )  i s  a projection onto & along Q(t)$, Q(t) 
being the  covariance m t r i x  of x*( t )  - x,(t) . Then il 
is giaen  by 

n = Q,Q-' (8.10) 

where Q, i s  defined by 1 3 . 2 ~ ) .  

Proof. We sha l l   use   the  same idea  of  proof as i n  [22].  
(only  i f ) :  Let x be,the s ta te   p rocess   o f   an   in te rna l   re -  
a l iza t ion   of   c lass  S.  Then, by Theorem 6.1,  x s a t i s f i e s  
(8.9) with il given by (8.10). We j u s t  proved  that  II i s  
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a projection  (onto some subspace $), and t h e   f a c t   t h a t  
n ( t )Q( t )  i s  symmetric  implies  that  II(t)  projects  along 
Q(tk.r'. I t  j u s t  remains t o  show that   the   family {Mt; 
t E [b,T)}  of  subspaces  satisfies (8.8), or ,  which is 
equivalent,  

n ( t ) u ( t , s ) n ( s )  = y ( t , s ) n ( s )   f o r   a l l  t I s .  (8.11) 

To t h i s  end, f i r s t   n o t e   t h a t   ( 8 . 9 )  can  be  written 

2, = I I Z  (8.12) 

where z, := x - x, and z := x* - x,.  From t h e   d i f f e r -  
entia!  equations  for Z, and z it isAimmediately  seen 
tha t   E{z( t ) lz (s )}  = y ( t , s ) z ( s )  and E{z,(t)lz,(s)] = 
Y(t , s )z , ( s ) .   Pro jec t ing   the   f i r s t   o f   these   re la t ions  
over %(z*) and premultiplying by n ( t ) ,  one obtains 

^E{z*(t)lz,(s)l = n(t)Y(t ,s)n(s lz(s) ,   (8 .13)  

f o r ,   i n  view of  (8.12),  Hs(z,) c Hs(z)  and, by Le- 5.2 
8nd the  usual  projection  formula  [ l ;  Lemma 2.11,  
Ejz(s)l  z,(s)} = Q,(s)Q(s)-lz(s).  Then comparing  (8.13) 
with  the  second  of  the  formulas  in  the  text above  (8.13), 
(8.11)  follows by noting  (8.12) and the   fac t   tha t   Q(s)  = 
E{z(s)z(s) '} > 0 (Lemma 5 .1) .   ( i f ) :   Le t   {n( t ) ;  
t E [O,T]) be a family  of  projections  satisfying  the 
condi t ions  of   the  theorem.  Since Q := E{z( t ) z ( t ) ' }  and 
Q, := E{z,(t)z,(t) ' ) ,  it is immediately  seen  that II i s  

nQ, for ,  s ince   n ( t )   p ro j ec t s  along Q ( t ) e ,  
given by (8.10).   In  fact ,  by (8.12), Q, = IIQII' = I12Q = 

QII' = XQ.  (8.14) 

b r e o v e r ,   s i n c e  

Ht(z,) c Ht(z) I H;(dy) (8.15) 

[see  (8.12)],  (3.1)  holds. Hence, it only  remains  to 
prove  that  x i s  ac tua l ly   t he   s t a t e   p rocess   o f  a r e a l i -  
zation S with  the  prescribed  values  of A, C and R ;  then 
B, will have the   r igh t   va lue   a l so ,   and ,   in  view o f  
(8.9),  S must be in t e rna l .  To t h i s  end, f i r s t   n o t e  
t h a t ,   i n  view of  (5.2) and ( 5 . 5 ) ,  z s a t i s f i e s   t h e   d i f -  
ferent ia l   equat ion 

dz = r,zdt - QC'R-l12dw*; z(0) = E * .  (8.16) 

We need to  prove  that  

i {z ( t ) lH i (z* ) )  = Y(t,s)z,(s)   for t 2 s.  (8.17) 

But  (8.17) is equivalent  to  E{z(t)z,(T) ') = 
Y(t,s)E{z,(s)z,(T) '} f o r   a l l  T 5 s ,  and, by (8.12) and 
(8.16),   this i s  the  same as  

Y(t,?)Q(T)n(T) ' = Y ( t , s ) n ( s ) Y ( s , T ) Q ( T ) n ( T )  ', (8.18) 

which is an  immediate  consequence of  (8.11) and (8.14). 
Then, premultiplying  (8.17) by n ( t )  and using  (8.11) 
and (8.12), we have 

E{z,(t)I~;(z*)} = y( t , s )z , ( s )   for  t 2 S .  (8.19) 

Now, in se r t ing  

dw, = R-l"Czdt + dw* (8.20)  

i n to   t he   s t a t e   equa t ion   o f  S, we see   t ha t  

+ jSm(t.r)B,(T)R'1'2(T)C(T)*(T,s)dTz*(s), t (8.21) 

where we have  used  (8.17) to   ob ta in   the   l as t   t e rm.  
Adding (8.19) and (8.21)  yields 

s{x(t)lHi(z,)} = @(t,s)E{x(s) lHi(z , )}   for  t 2 s, (8.22) 

f o r   t h e   l a s t  term of  (8.21)  can be wr i t ten  
[ $ ( t , s )  - y(t ,s)]z,(s)   [39; p.1171. b r e o v e r ,  

E{x(t)]H;(dy)} = @(t,s)?{x(s)lH;(dy)}  for t 5 s .  (8.23) 

To see   th i s ,   rep lace  x by x* + z, and remember t h a t  
Ht(z*) c Ht(z) I H;(dy). Now, (8.22)  and  (8.23)  together 
y i e ld  

E{x(t)lHi} = $ ( t , s ) x ( s )   f o r  t 2 s, (8.24) 

where H I  := $(dy) v $(z,) . xt   def ine a process u 
with  increments du = dw, - R-l%r,dt,  which  can  be  seen 
t o  be  an orthogonal  increment  process  of  type  (1.2)  such 
t h a t  H(du) c 5 .  I t  is no t   ha rd   t o   ee   t ha t   q (du )  IHE. 
In   f ac t ,   i n  view of  (8.20),  du = R-172C(z - z,)dt + dw*, 
and,  since Hf(z,) c H;(z) I Hl(dw*) [see  (8.16)],  (8.17) 
and (8.19)  imply  that H;(du) I q(z,) ;  also,  because  of 
(8.15), H;(du) I Hf(dy)  holds t r i v i a l l y .  But 

dy = Cxdt + R112du, (8.25) 

and therefore  

(8.26) 

follows from (8.24) and t h e   f a c t   t h a t  H+(du) I H;. Now, 
since  H;(dy) v HS(x) c H i ,  (8.24)  and  (i.26)  imply  that 
(x ' ,y ')  is a Markov process,  and consequently it has a 
representation  (1.1).  Relations  (8.24) - (8.26)  insure 
t h a t  A, C and R have  the  required  values. 0 

Fina l ly ,   to   fur ther   s t ress   the   impor tance   o f   the  
feedback  matrix r*, l e t  us  point  out  that  (8.3)  can  be 
wr i t ten  

x ( t )  = x,(t) + Q,(t)Q(t)- 'z(t)  + Q,(t)rl(t)  (8.27) 

where x* s a t i s f i e s  

dx, = r,x,dt + B,R-l/'dy;  x,(O) = 0, (8.28) 

and z and 7 are   given by (8.16) and (8.5b). 
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