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ABSTRACT

This paper is a shortened version of [1], its
basic purpose being to provide an easily accessible in-
troduction to the results of [1], many of which are
presented here without proofs. However, we have tried
to rearrange the material of [1], changing the logical
order in which various topics are introduced, and occa-
sionally we regard the results from a somewhat different
angle. This has been done to increase the present
paper's usefulness as a complement to [1].

The work reported here is aimed at providing a
theory of smoothing in the context of stochastic reali-
zation theory. This approach enables us to obtain sto-
chastic interpretations of many important smoothing
formulas and to explain the relationship between them.
In this paper, however, we shall only consider one such
formula, namely the Mayne-Fraser two-filter formula,
which has a very natural interpretation in the stochas-
tic realization setting; we refer the reader to [1] for
further results. As a by-product, we also obtain cer-
tain results on the stochastic realization problem
itself.

1. INTRODUCTION

Consider a linear stochastic system

]
"

dx = A(t)x(t)dt + B(t)dw ; x(0) £ (1.1a)

(1.1b)

(s)

dy = C(t)x(t)dt + D(t)dw ; y(0) = 0
defined on the interval 0 < t < T, where x is the n-dim-
ensional state process, y is the m-dimensional output
process, w is a p-dimensional process with orthogonal
increments such that

E{dw} = 0; E{dwdw”} = Idt (1.2)
(prime denotes transposition), £ is a centered random
vector with finite covariance Il :=E{££”} and uncorrelated
with w, and A, B, C, and D are matrices of bounded func-
tions with properties to be further specified below. We
shall consider two problems related to such systems:

Problem 1. For an arbitrary t ¢ [0,T], find the linear
least-squares estimate %(t) of the state x(t) given the
output record {y(t) ; 0 < t < T}, i.e., find the wide
gense conditional mean

R(t) = Elx(t)Iy(1) ; 0 s 1 < T}, (1.3
This is the smoothing problem, which has generated a
rather extensive literature [1-18, 48], and is of con-
siderable importance in applications.
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Problem 2. Given the stochastic process {y(t) ;

0<t=s T}, find all possible systems (1.1) (in some
suitable class of models S) having this process as its
output process. This is the stochastic realization pro-
blem discussed in [20-33], and each such model S is
called a stochagtic realisation of {y(t) ; 0 < t < T}.
Note that we are only considering proper stochastic re-
alizations [20], i.e., models S whose outputs not merely
have the same covariance properties as the given process
(the only requirement in the earlier realization theory
[34-38]), but are equal to it a.s. for each t.

As we shall see in this paper, these two problems
are intimately connected to each other. In fact, all
the well-known smoothing formulas found in [2-18] have
natural interpretations in the stochastic realization
setting; see [1] for a more complete discussion of these
results. Here we shall only consider the so-called
Mayne-Fraser two-filter formula [5,6], on which topic a
large number of papers have been written [7-9,12-17].
The many attempts to motivate this formula stochastically
have, in our opinion, been less than convincing. We
refer the reader to [48] for a well-written account of
these matters. In our realization setting, however,
the two filters have a natural interpretation: they are
simply the minimum- and maximum-variance realizations
respectively. Hence, the latter is not a "backward
filter" as suggested in the literature_ (although it can
be reformulated as such), but a '"forward filter" just as
its structure suggests.

The concept of backward realization is an essen-
tial tool in this paper. A similar approach was applied
to the smoothing problem in the earlier papers [14-17],
but, since only 'wide sense' backward representations
were used, some subtle points were overlooked. The fun-
damental idea of this paper, to embed the given system
(1.1) into a class of stochastic realizations, was mo-
tivated by the results in [20-22]. Note that restrict-
ing our analysis to models (1.1) for which BD” = 0 (as
in [14-17]), would render the natural class of realiza-
tions incomplete, since it would exclude the minimum-
and maximum-variance realizations.

This paper is essentially a shortened conference
version of [1], but the last section contains some as-
pects on the stochastic realization problem not included
in [1]. Whenever a proof has been omitted, it can be
found in [1].

2. SOME_NOTATIONS

Let H be the space of all centered stochastic vari-
ables (on an underlying probability space) with finite
second-order moments. Then H is a Hilbert space with
inner product (£,n) = E{Zn}. For an arbitrary k-dimen-
sional stochastic process {z(t); 0 < t < T} with compo-
nents in H, define Ht(z) to be the (closed) subspace

spanned by the random variables {zl(t), zz(t), cees

zk(t)}, and let H(z) be the closed linear hull in H of
the subspaces {Ht(z); 0 <
H(z) =\vte[0,T] Ht(z). Similarly define the past space

t < T}; we shall write this as
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- +
Ht(z) 1= V%e[o,t] Hr(z) and the future space Ht(z) 1=
st[t,T] HT(z). Sometimes we shall be more interested
in spaces spanned by the increments of z. Hence, we
define H(dz), H;(dz) and H;(dz) to be the closed linear

hulls in H of {z(7) - z(0); T, 0 € 1} where I is the
interval [0,T], [0,t] and [t,T] respectively.

For each n ¢ H and subspace K ¢ H let E{n{K} be
the projection of n onto K, i.e., the wide sense con-
diticnal mean. Let u be a stochastic vector with com-
ponents in H, and let H(u) be the closed linear span in
H of the components of u. Then, for any n € H, we
shall often write L{n|u}in place of E{n | H(u)}, and,
for any subspace K c H, E{ ul K} will denote the vector
with components E{uiIK}.

3. FORWARD AND BACKWARD STOCHASTIC REALIZATIONS

Assuming that R := DD” has a bounded inverse on
[0,T], it is well-known that the linear least-squares
estimate
A -
x,(t) = E{X(t)lﬂt(dY)} (3.1)

of the state process x of S is generated on [0,T] by
the Xalman-Bucy filter

dx, = Ax,dt + B*R-l/z(dy - Cx,dt);

(3.2a)
x,(0) = 0
where Rl/z(t) is the symmetric square root of R(t), and
the gain function B, is given by
B, = (Q,C" + BDIRY/2, (3.2b)
the error covariance matrix
Q.(t) = E{[x(t) - x, (t)][x(t) - x, ()17}  (3.2¢)

being the solution of the matrix Riccati equation
[Q, = AQ, + Q,A°

- (g,C" + BDIRTI(Q,C” + BDY)” + BB”  (3.2d)

Q. (0) = T.

Note that the filter (3.2a), and hence the estimate x,,
is completely determined by the matrices A, C, R and
Bx. Clearly there are many models S having the same
Kalman-Bucy filter.

In the sequel we shall only consider models S
which are minimal, i.e., there is no other realization
of {y(t); 0 < t < T} with a state process x of smaller
dimension n, and analytie, i.e., the coefficient ma-
trices A, B, C, D and R-1 are analytic on [0,T]. Both
these assumptions are purely technical and are intro-
duced to insure that a certain matrix function is in-
vertible; they could probably be removed at the price
of a less elegant theory. Now, let the initial reali-
zation S used in forming (3.2) be minimal and analytic,
and define S to be the class of all analytic realiza-
tions of {y(t); 0 < t < T} having (3.2) as its Kalman-
Bucy filter. Then all realizations of class S are
minimal. Clearly A, C and R := DD” are the same for
all S € S, while B, D and the state covariance function

P(t) = E{x(&)x(t}"} (3.3)
will differ over the class S. Of course, different
S ¢ S will have completely different stochastic pro-
cesses x and W.
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Furthermore, from (3.2b) and the fact that Qux = P - Pa,
where P, (t) := E{x,(t)x,(t)°}, it follows that also the

function

G := PC” + BD” (3.4)
is an invariant over §. In fact,

G =p,c’ + B,RY2 (3.5)

It is easy to see that P satisfies the matrix
differential equation

P = AP + PA” + BB” ; P(0) =1, (3.6)
which has the solution
P(t) = ¢(t,0)me(t,0)"
(3.7)

t
+ J 3(t,T)B(T)B(T) "9 (t,T) "dT
0

where ¢ is the transion matrix of the system z = Az of
differential equations. Hence, P(t) > 0 for all t ¢ [0,T]
if and only if S belongs to the subclass S, = {Se¢S|I>0}.
[For symmetric matrices P and Q, P 2 Q (P > Q) means that
P-Q is nonnegative (positive)definite.] It can be shown
(1] that S_ is nonempty.

Let S ¢ S,. Then X(t) := P(t) 'x(t) is a well-
defined stochastic vector process on all of [0,T], and
it can be shown [1; Lemma 2.3] that it satisfies the
backward Markovian representation

dx = -A"xdt + Bdw ; X(T) = (3.8a)
where B = P-IB, w is a p-dimensional orthogonal increment
process of type (1.2) defined by

aw = dw - B°P lxdt, (3.8b)
and E = P(T)—lx(T) is uncorrelated with w. Then

H(d#) o HI(X) for all t ¢ [0,T]; this is what character-
izZed the backward property of (3.8). Moreover, the state
covariance function P(t) := E{X(t)R(t)"} satisfies P =
pP-i,

Representation (3.8) is a strict sense version of
a similar result presented in [15,16,42]. (The last
paper contains an alternative justification of the formu-
las of [15,16] using the techniques of [12,13].) The
version given in these papers is however insufficient for
our purposes since it provides a representation up to
second-order properties only. Modulo some trivial tech-
nicalities, the proof of (3.8) above [1; Lemma 2.3] is
the same as the one presented in [20]. (In this context
it should be mentioned that gil the basic ideas of a re-
cent paper coauthored by Kailath [IEEE Trans. IT-25(1979),
p.121-124] are contained in [20,21}, and that, three
months prior to the submission of Kailath's paper and at
his request, [20,21] were personally handed over to him
by one of the authors.)

Together with (3.4), representation (3.8) yields
a packward realization of {y(t) ; 0 <t < T}, namely

_ [d% = -A"%dt + BdW ; X(T) = £
© ) (3.9)
dy = G'Xdt + Ddw

whose state covariance matrix function P satisfies

P=-AP - PA - BB"; P(T) = 1], (3.10)

where T := P(T)_l. By this procedure each S ¢ 5+ gives
rise to a backward realization S; the class of all S



generated in this way will be denoted §+.

_ Next we proceed to enlarge the class §+. Given
any S ¢ S, (by symmetry with the forward setting) the
linear least squares estimate

k(1) = E{X(t) H (dy)} (3.11)
is generated by the backward Xalman-Bucy filter
a%, = -A%,dt + B,R"%(dy - 6°x,dt) ;
(3.12)

i*(T) =0,

where the gain function B, can be determined via a ma-
trix Riccati equation [1]. Now, in complete analogy
with the forward setting, we define S to be the class
of all analytic backward realizations of {y(t);

0 £t < T} whose backward Kalman-Bucy filter is given
by (3.12). It can be shown [1] that §, < 8, and hence
we have obtained the required extension. All realiza-
tions of class S are minimal.

Unfortunately, there is no one-one correspondence
between models in S and S. For this we need to en-
large these classes even further. This leads to gen-
eralized stochastic realizations.

4. GENERALIZED STOCHASTIC REALIZATIONS

In order to extend the one-one correspondence be-
tween forward and backward realizations beyond S+ and
S+ we shall have to gnlarge S and S slightly in the
following way. Let S be the class of all systems (1.1)
which for any € > 0 is an analytic realization of
{y(t); 0t =T - ¢} having (3.2a), restricted to the
interval [0,T-g], as its Kalman-Bucy filter. Similarly,
we define § to be the class of all models (3.9) which
for any ¢ > 0 is an analytic realization of {y(t);
€ <t < T} such that (3.12), restricted to [e,T], is,its
backward Kalman-Bucy filter. The elements of § and §
will be called generalized realizations and generalized
backward realizations gf {y(t); 07 t < T} respectively.
Clearly S< 8 and § < 3.

Then to each realization § ¢ S there corresponds
a generalized backward realization § € §. In fact, it
can be shown that, since S is minimal, (A,B) is com-
pletely controllable. This together with the analyti-
city implies that (A,B) is totally controllable [40,41].
Consequently P(t) has an analytic inverse on any inter-
val [g,T], for the last term of (3.7) is the controlla-
bility gramian. (Cf [1]; Lemma 2.2). Hence the proce-
dure leading to the backward model (3.9) can always be
carried out on the restricted interval [g,T]. Similarly
there corresponds a generalized realization S ¢ S to
any backward realization S ¢ S. We collect these obser-
vations in the following theorem.

THEOREM 4.1. To each realization (1.1) in S8 there cor-
responds a_generalized backward realization (3.9) in §
such that P = P-1, B = p~1B, X = P-lx and dw = dw -
B°P-lxdt. Likewise to each backward realization (3.9)
in S there is a generalized reglization (1.1) in S such

that P = B-1, B = P-18, x = P-lx and dw = dm + B-P-lzdt.

5. THE MINIMUM- AND MAXIMUM- VARIANCE REALIZATIONS

It is well-known that the innovation process
w,(t); 0< t < T}, whose increments are defined by

dw, = R 2y - cx,dt), (5.1)
is a process with orthogonal increments satisfying

(1.2) and H](dw,) = H_ (dy) for all te [0,T] (see e.g.
[43]). Thef (3.2a) afid (5.1) yield
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dx, = Ax,dt + B,dw, ; x,(0) =0

(s.) Y

dy = Cx,dt + R

(5.2
zdw*,

which is a realization in S, for B, is clearly analytic.

Likewise, the backward Kalman-Bucy filter (3.12)
can be written

dx, = -A'%,dt + B,dW,; X,(T) = 0

(3,)
"lay = crz.dt + rRY Zai,, (5.3).
where {w,(t); 0 < t s T} is the backward inmovation pro-
cess

aw, = R Y%y - crz,41), (5.4)

which has orthogonal increments and satisfies (1.2) and

the condition Ht(dﬁ*l = ﬂ;(dy) for all t ¢ [0,T]. (See
[20,45].) Clearly, Sy e¢S. Now let
dx* = Ax*dt + B*dw*; x*(0) = £*,
(s*) 1/2 (5.5)
dy = Cx*dt + R “dw*

be the forward counterpart of S, as defined by Theorem
4.1, and let P* be the corresponding state covariance
function. Since Si ¢ §+, S* exists only as a generalized
realization, and obviously P*(t) = as t » T.

LEMMA 5.1. Let P, and P* be the state covariance func-
tions of S« and S* respectively and define Q := P* - P,.
Then the state covariance function P of an arbitrary
realization S e S satisifies

P.(t) < P(t) s P*(t) (5.6)

for all t € [0,T). Moreover, Q > 0.

Consequently, we shall call S, the minimun- and S*
the maximum-variance realization. By eliminating dw* in
(5.5), it is immediately seen fhat x* satisfies the Kal-
man~-Bucy type equation
Axrdt + B*R " 2(dy - cxrdt); x*(0) = £*

dx* (5.7a)
Let S be an arbitrary realization of class S. Then, de-
fining Q* := P* - P, it is not hard to see from (3.4)
and (3.6) that

-1/2

B* = -(Q*C' - BD")R (5.7b)

with Q* satisfying the matrix Riccati equation

d* = AQ* + Q*A’ + (Q*C’ - BD)R}(Q*C’ - BD")’ - BB’
(5.7¢)
Q*(0) = * - I,

where II* ﬁ*(o)'l. Clearly Q*(t) »= as t » T. The
filter (5.7) is precisely the mysterious 'backward fil-
ter'" of the Mayne-Fraser two-filter formula; as we have
seen above, it is actually a forward realization. Since
Q* P* - P, we can interpret Q* as an error covariance
function, much in analogy with the Kalman-Bucy filter.
In fact,

Q*(t) = E{[x(t) - x*()][x(t) - x*(t)]"'}

for all t ¢ [0,T). This is an immediate consequence of
the following lemma, which we shall need again in the
next section.

(5.8)

LEMMA 5.2. Let x be the state process and P the state
covariance function of any realization in §, Then

E{x()x,(t) '} = Pu(t), E{x()x*(t) '} = P(t) (5.9)



and

0 (5.10)

E{[x(t) ~ x ()][x*(t) - x(t}]'}
on any interval on which these quantities are defined.

We shall now demonstrate that the two processes
x, and x* together contain all the relevant information
on y needed in estimating the state process x of an ar-
bitrary realization S € S. To this end first note that
(3.1) can be written

E{Ht(x)lH;(dy)} = H (x,), (5.11)

and that, since obviously Ht(x*) = Ht(i*)’ (3.11) yields

- . .
E{H (x) H (dy)} = H (x*) (5.12)
for all t ¢ [0,T).

Now define the orthogonal comple-
ments Ng := HZ(dy) & H (x,) and Np

:= Hy(dy} e H,(x*)

respectively. Then we obtain the orthogonal decomposi-
tion
= - g *
H(dy) Nt 9 Ht ] Nt (5.13)
where HS is the frame space
0= *
Ht Ht(x*) v Ht(x ) (5.14)

(where A v B denotes the closed linear hull in H of A
and B.) (Cf. [22,24,26].)

LEMMA 5.3. (cf, [27]) Let x be the state process of a
realiaation in S. Then, for t ¢ [0,T),

H(x) < Hf @ [H(dy)]*

where [H(dy)]l is the orthogonal complement of H(dy)
in H.

Proof. Clearly H.(x) L N;. To see this note that the
components of x(t} ~ x,(t) are orthogonal to H{(dy) >
N{ and that the components of x,(t) belong to He(x,) &
Ni. In the same way we show that H,(x) 1 N{. 0

6. THE SMOOTHING PROBLEM

Consider an arbitrary realization (1.1) in the
class S. The basic problem before us is to determine
the smoothing estimate

X(t) = E{x(t) |H(dy)} (6.1)
it in terms of sto-
the corresponding

for each t ¢ [0,T) and to interpret
chastic realizations. Let I denote
estimation error covariance, i.e.,

x(t)]'}. (6.2)

In view of Lemma 5.3, X(t) ¢ Hi{

there are two matrix functions K, an

£(t) = E{[x(t) - X(©)][x(t) -

and consequently
K* such that
R(t) = K (£)x,(t) + K*(t)x*(t). (6.3)
The components of the estimation error x(t) - X(t) are
clearly orthogonal to H(dy), and hence, in particular,
to the components gf X, (t) and x*(t). Therefore,
E{x(t)x,(t)'} = E{x(t)x,(t) '} and E{x(t)x*(t)'} =
E{x(t)x*(t)'}. By Lemma 5.2, the first of these rela-
tions yields P, = K, P, + K*P_ and consequently

K (t) + K*(t) = I 6.4)
for all t ¢ (0,T), because P,(t) is nonsingular on this
interval. The second relation yields

P(t) = K,(t)P,(t) + K*(t)P*(t) (6.5)
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for all t € [0,T). Then solving (6.4) and (6.5) for K,
and K* we obtain K, = Q*Q'1 and K* = Q*Q'l, where as be-
foreQ, =P -P,, Q* =P* - Pand Q = P* - P_. Note
that Q(t) is nonsingular for all t ¢ [0,T) (Lemma 5.1)
and that

Q(t) = Q. (t) + Q*(t).

THEQREM 6.1.
(1.1 of class
given by

x(t) = [I - Q*(t)Q(t)-I]X,(t) + Q,(t)Q(t)-IX*(t) (6.7)

(6.6)

Let x be the state process of a realization
Then the emoothing estimate (6.1) is

and the error covariance funmction (6.2) by

£(t) = Q, (1) - Q(1)Q(t) 1Q, (1) (6.8)

For all t ¢ [0,T).
Proof. Relation (6.7) was derived above for t ¢ (0,T);

for t = 0, (6.7) follows from (7.6) below. To prove
(6.8) note that

x-£=0-00h&x-x) + -1, (6.9)

By Lemma 5.2 the two terms of (6.9) are orthogonal and
therefore, observing (3.2¢c) and (5.8),

£= (1 - hea - el + e tere e,

which, in view of (6.6), yields (6.8). O

7. THE MAYNE-FRASER SMOOTHING FORMULA

We shall now restrict our attention to realizations
for which both Q, and Q* are invertible for arbitrary
t e {0,T). Since Q, =P - P, and Q* = P* - P, this is
possible for all S € S such that P (t) < P(t) < P*(t) for
all t on this interval. We shall call the class of all
such S the interior of S and denote it int S. It can be
shown that int$ is indeed nonempty [1; Lemma 3.6].

THEQREM 7.1. ILet S ¢ int S, let x be the state process
of S, and let X be the corresponding emoothing estimate
(6.1). Then, for each t ¢ [0,T)

x(t) = Z(t)[Q*(t)-lx*(t) + Q*(t)-lx*(t)], (7.1)
where x, and x* are given by (3.2) and (5.7) respectively
and the smoothing error covariance L by

it = ot el (7.2)
Proof. Since $ € int 8, Q, and Q* are invertible. By
writing (6.8) as L = Q*Q‘l(Q - Q,) and using (6.6), it
is seen that

= Qe

Inverting this and again using (6.6)_¥ie1ds (7.2). From
(7.3) we also see that Q,Q 1 = £(@*)"!. Then 1 - Q1=
£iz-l - (@*)-1] = m;!. Hence (7.1) follows from (6.7).0

Relations (7.1) and (7.2) together with (3.2) and
(5.7) is the Mayne-Fraser two-filter formula [5,6],
which has received considerable attention in the litera-
ture [7-9,13-17). Although this algorithm is easy to
derive formally [9,12,13], its probabilistic justifica-
tion has caused considerable difficulty, partly due to
the fact that Q*(t) ~ »as t - T. The system (5.7) has
usually been interpreted as a backward filter, and in
[14,17] it is presented as the limit of such a filter as
a certain covariance matrix function tends to infinity.
However, in our stochastic realization setting (5.7) has
a very natural interpretation: It is simply the maximum-
variance forward realization S*. By using the identity

(7.3)



= -1
x*(t) = P (t) "%, (t) (7.4)
we can instead write the smoothing formula (7.1) in
terms of two Kalman-Bucy filters, one (3.2) evolving
forward and the other (3.12) evolving backward in time.
(Note that then (7.1) is defined on the whole interval
[0,T].) This fact was pointed out in [14,15,17], in
which papers the backward estimate

~ A +

x,(t) = E{x(t)IH (dy)} (7.5)
was used in place of X,, a choice that may at first
sight seem more natural. The reader should however note
that

X (1) = P()P*(t)~1x*(t) (7.6)

is not invariant over S and is therefore less suitable
for our purposes. It is not hard to see that

@ = et s p e (7.7
and consequently (7.1) may also be written
&(t) = ()0, (1) Ix, ()
» @0+ PR (0}, 7.8)
which is the formula presented in [14,15,17]. In the

early papers [7,8], relation (7.1) was introduced via

a formula [47] for optimal weighting of two estimates
with orthogonal errors. No justification of this or-
thogonality was given in [8], and the argument in [7] is
incomplete due to problems with the end point condition.
(C£. [48].) However, the stochastic realization theory
provides a natural justification of this procedure. In-
deed, (5.10) is the required orthogonally condition.

8. INTERNAL AND EXTERNAL REALIZATIONS

Since R := DD' is assumed to be full rank, the
dimension of w is always greater than or equal to the
dimension of y, i.e., m < p. We shall now consider re-
alizations for which m = p. Then D is invertible, and
w can be eliminated from (1.1) to yield the Kalman-Bucy
type equation

dx = Axdt + BD  (dy - Cxdt); x(0) = E. (8.1)
If, in addition, we assume that £ ¢ H(dy), it is imme-
diately clear that

H(x) < H(dy). (8.2)
We shall call any generalized realization of {y(t);

0 <t < T} for which _(8.2) holds an intermal realiza-
tion; all other S ¢ § will be named external [20]. Ob-
viously, the internal realizations are precisely those
for which the smoothing problem is trivial, the esti-
mate being exact. In particular, S, and S* are inter-
nal.

Let §; be the class of all S ¢ § such that p = m
and £ ¢ H(dy). Then we have just shown that all reali-
zations in S, are internal. The following theorem, the
proof of which is given in [1], states that, under some
mild regularity conditions, the converse is also true.

THEOREM 8.1. 4 realization S ¢ § such that [g] has full
rank 18 internal if and only if S ¢ §°.

In view of Theorem 6.1, the state process x of
any realization S of class $§ can be written
x(t) = [T - I(t)]x,(t) + Mtyx*(t) + X(t), (8.3)

where T := Q,Q°! and % := x - £. The smoothing error X

is identically zero if and only if S is intermal. To ob-
tain a complete characterization of the external reali-
zations in §,, we shall provide a representation for X
also. To this end, note that, given a realization (1.1),
there exists an orthogonal p x p-matrix V(t) for each

t € [0,T] such that

E(t) Bl(t) Bz(t) - 8.42)
= v(t), .4a
D(t RY2(t) 0
where B1 is n x m and B2 is n x (p - m), and that
du
=V dw (8.4b)
dv

defines a pair of orthogonal increment processes u and v,
of dimensions m and p - m respectively. Obviously (8.4b)
satisfies (1.2).

THEOREM 8.2. Let x be the state procese of a realiza-
tion S ¢ S, and let By and v be defined by (8.4). Then
the smoothing error X ie given by
X(t) = Q. (t)n(t) (8.5a)
-1
dn = -T/ndt + Q, B, dz; n(T) = ng (8.5b)
where T, = A - B,R"1/2c, ny - GHT (M) - x,(T)] and
z t8 a (p - m) - dimensional orthogonal increment process

of type (1.2) such that H(dr) 1 H(dy). Moreover,
nr L H(dZ), Z.e., (8.5a) i8 a backward Markovian repre-
sentation (3.8a), and the increments of [ are given by
dg = av - BJQ; (x - x,)dt. (8.6)
Together with (8.5), (8.3) constitutes a generali-
zation of the stationary internal state representation
in Theorem 5.5 of [20]. For external realizations, how-
ever, Il is not a projection. In fact, Il is a projection
if and only if S ii internal. To see this observe that
M™=1, i.e., QQ1Q, = Q,, ifand only if £ =0
(Theorem 6.1).

For internal realizations we have the following
stronger result, which illustrates the important role
played by the feedback matrix I', defined in Theorem 8.2.
It is a generalization of a result found in [22; pp.75-
793.

THEOREM 8.3.
1.e.,

2H(t,5) = L(D¥E,5); ¥s,s) = 1

Let Y be the transition funetion of T,

(8.7)

Then x,18 a state process of an internal realization of
clase S if and only if there is a family M.; t € [0,T)}
of subspaces of R, satisfying the condition

\i’(t,s)MS c Mt for all s < t, (8.8)
such that, foreacht ¢ [0,T),
x(t) = [I - M{t)]x,(t) *+ T(t)x*(t), (8.9)

where I(t) is a projection onto My along Q(t)Hé; Q(t)

being the covariance matrix of x*(t) - x,(t). Then I

g given by
1=0Q"

where Q, ts defined by (3.2c).

(8.10)

Proof. We shall use the same idea of proof as in [22].
(only if): Let x be,the state process of an internal re-
alization of class S. Then, by Theorem 6.1, x satisfies
(8.9) with Il given by (8.10). We just proved that I is
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a projection (onto some subspace M), and the fact that
H(t)Q(t) is symmetric implies that II(t) projects along
Q(tMi. It just remains to show that the family {M;
te [6 T)} of subspaces satisfies (8.8), or, which is
equivalent,

T (t,s)n(s) = y(t,s)N(s) for all t = s. (8.11)

To this end, first note that (8.9) can be written

z, =1z (8.12)
where z, := x - x, and z := x* - x,. From the differ-
ential equatlons for z, and z it is 1mmed1ate1y seen
that E{z(t)]z(s)} = ¥(t,s)z(s) and E{z,(t)lz (s)} =
¥(t,s)z,(s). Projecting the first of these relations
over Hs(z*) and premultiplying by [I(t), one obtains

E{2,(t)]2,(s)}

for, in view of (8.12), Hg(z,) < Hg(z) and, by Lemma 5.2
and the usual projection formula [1; Lemma 2.1],
E{z(s)lz (s)} = Q.(s)Q(s)"1z(s). Then comparing (8.13)
with the second of the formulas in the text above (8.13),
(8.11) follows by noting (8.12) and the fact that Q(s) =
E{z(s)z(s)'} > O (Lemma 5.1). (if): Let {I(t);

t ¢ [0,T]} be a family of projections satisfying the
conditions of the theorem. Since Q := E{z(t)z(t)'} and

= T(L)¥ (t,s)(s)z(s), (8.13)

Q, := E{z,(t)z,(t)'}, it is 1mmed1ate1y seen that H is
given by (8 10) In fact, by (8.12), Q* mn' = néq =
NQ, for, since II(t) projects along Q(t)

Qn' = IQ. (8.14)
Moreover, since

H (z,) < H () 1 H;(dy) (8.15)

{see (8.12)], (3.1) holds. Hence, it only remains to
prove that x is actually the state process of a reali-
zation S with the prescribed values of A, C and R; then
B, will have the right value also, and, in view of
(8.9), S must be internal. To this end, first note
that, in view of (5.2) and (5.5), z satisfies the dif-
ferential equation

dz = T,zdt - QC'R™ Y %aw*; 2(0) = £*. (8.16)
We need to prove that
E{z(t)lﬂ;(z,)} = y(t,s)z,(s) for t 2s.  (8.17)

But (8.17) is equivalent to E{z(t)z,(1)'} =
¥(t,s)E{z,(s)z,(1) '} for all T < s, and, by (8.12) and
(8.16), this is the same as

(8.18)

Y(t, TIQTIN(T) ' = ¥(t,s)N(s)¥(s,TIQTIN(D) ',

which is an immediate consequence of (8.11) and (8.14).

Then, premultiplying (8.17) by II(t) and using (8.11)
and (8.12), we have

Blz, () IH (2,0} = ¥(t,s)z,(s) for t 2s.  (8.19)
Now, inserting

dw, = R %Czat + aw (8.20)

into the state equation of S, we see that
Elx, (£ 1H_(2,)} = o(t,)E{x,(s) IH](z,)}
. It®(t,T)B*(T)R-I/Z(T)C(T)W(T,s)de*(s), (8.21)
s

where we have used (8.17) to obtain the last term.
Adding (8.19) and (8.21) yields

B{x(t)IH (20} = o(t,$)B{x(s)IH (2,0} for t 2 s, (8.22)
for the last term of (8.21) can be written
[o(t,s) - ¥(t,s)]z,(s) [39; p.117]. Moreover,
B{x(£)IH ()} = 6(t,s)B{x(s)IHJ(dy)} for t = s. (8.23)
To see this, replace x by x, + z, and remember that
He(z,) < He(2z) 1 Hg(dy). Now, (8.22) and (8.23) together
yield

ﬁ{x(t)lH;} = ¢(t,s)x(s) for t = s (8.24)
where Hy := Hj(dy) v Hg(z,). ysxt define a process u
with increments du = dw, - rR-1/<c, «.dt, which can be seen
to be an orthogonal 1ncrement process of type (1 2) such
that H(du) <« H; It is not hard to ?ee that Ht(du) LHZ.
In fact, in view of (8.20), C(z - z,)dt + dw*,
and, since Hg(z,) < Ht(z) L H*(dw*) [see (8. 16)], (8.17)
and (8.19) imply that Hf(du) { Hi(z,); also, because of

(8.15), H*(du) 1 HZ (dy) holds trivially. But

dy = cxdt + R 2y, (8.25)
and therefore

E{Y(t)lﬂ_} = [JtC(T)¢(r,S)dT]x(S) (8.26)
follows from (8.24) and the fact that Hf(du) 1 H Now,

since Hs(dy) v H (x) ¢ H , {8.24) and (§ 26) 1mp1y that
(x',y")'"is a Markov process, and consequently it has a
representation (1.1). Relations (8.24) - (8.26) insure
that A, C and R have the required values. d

Finally, to further stress the importance of the
feedback matrix I',, let us point out that (8.3) can be
written

x(t) = x,(t) + Q()Q() "2(t) + Q,(In(t) (8.27)
where x, satisfies
dx, = Tx,dt + B,R Y %ay; x,(0) = (8.28)

and z and n are given by (8.16) and (8.5b).
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