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A Stochastic  Realization  Approach 
to the Smoothing Problem 

Abstract--'Ihe pmpose of this paper is to develop a theory of smoothing 
for linite dimensional linear stochastic systems in the context of storhastic 
realization theory. "le basic idea is to embed the given stochastic system 
ina~ofs iml larsystemsal lhavlagthesameootputprocesfandthe  
same Kalman-Bucy filter. 'Ibis class bas a lafflce shucture with a smallest 
and a largest element; these two elements completely determine the 
smoothing estimates. approach enables rn to obtain stochastic inter- 
pretations of many important smoothing formulas and to explain the 
relattomhip between them. 

I. INTRODUCTION 

L ET { x ( t ) ;  O < t < T }  and { y ( t ) ;   O < t < T }  be  two 
stochastic vector  processes, of dimensions n and m, 

respectively,  defined as the solution of the linear system of 
stochastic differential equations 

( S ) [  
du=A( t )x ( t )d t+B( t )dw;   x (O)= t  (1.la) 
aty=C(t )x( t )d t+D(t )hv;  y(O)=O (I.lb) 

where w is a  vector  process, of dimension p >m, with 
orthogonal increments such that 

E { d w } = O ;  E{hvdw' }=Id t  (1-2) 

@rime denotes transposition), E is  a  centered random 
vector  with finite covariance II: = E { [ c }  and uncorre- 
lated with w, R(t):  = D(t)D(t)' is  positive definite on 
[0, TI, and A ,  By C, D, and R - ' are matrices of analytic 
functions defined on [0, TI. The model S is usually  called 
a linear stochastic .system; y is its output process, w is its 
input process, and x its state  process. We  shall  assume that 
the representation S is minimal in the sense that there  is 
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no other model of the form (1.1)  with  the  process y as its 
output and with  a state process x of smaller  dimension 
than n. Clearly,  the  matrix function P(t ) :  = E{x( t )x( t ) ' }  
satisfies the differential equation 

P = A P + P A ' + B B ' ;  P(O)=H (1 -3) 

on [0, TI. We shall  call P the state covariance function of S.  
The following problem is of considerable importance in 

the systems  sciences. For  an  arbitrary t E[O,'T], find the 
linear least-squares estimate a(t) of the state vector x( t )  
given the output { y(7); 0 QT < T } ,  i.e., the wide-sense 
conditional expectation 

2 ( t ) = k { x ( t ) l y ( 7 ) ;  0 < 7 < T }  ( 1.4) 

in the  terminology of Doob El]. This is  the smoothing 
probiem, and it has generated a rather extensive literature 
[2]-[17].  (See the survey paper [18] for further references.) 
Here we shall study th is  problem from  a  new  angle 
employing concepts and techniques from the stochastic 
realization theory developed in [20]-[22] and more recently 
in [23]-[33]. The basic idea consists in embedding the 
model (1.1) into a  class 5 of  models S all having the same 
process y as its output and all having the same 
Kalman-Bucy filter. Such  a representation is called a 
stochastic realization of y .  (Note that we only consider 
proper realizations [20], i.e., models S whose outputs not 
merely  have the same covariance properties, the only 
requirement in the earlier realization theory [34]-[38], but 
are equal for  each t as.)  It can be seen that, slightly 
extended, the class S has a lattice structure with  a  smal- 
lest ( S , )  and a  largest (S*)  element, the partial ordering 
being induced by the "size"  of the covariance matrix P ( t )  
in the sense that P, >P2 if P, - P2 is positive  definite. This 
approach will enable us to obtain stochastic interpreta- 
tions of many important smoothing formulas and lay the 
groundwork  for  a theoy of smoothing which so far has 
been  lacking. 
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Our interest in the smoothing problem  was  caused by 
the Mayne-Fraser two-filter formula [5], [6], on which 
topic a  large number of papers have been written [7]-[9], 
[ 121-[17]. In some of these papers the authors have en- 
countered difficulties in motivating this formula, and the 
many attempts to justify it stochastically  have, in our 
opinion, been  less than convincing.’ In our stochastic 
realization  setting the two filters  have a natural interpreta- 
tion: they are simply the minimum and maximum  vari- 
ance realizations S ,  and S*, respectively.  Hence, the latter 
is not a  “backward  filter” as suggested  in the literature 
(although it can be reformulated as such), but a  “forward 
filter” just as its structure suggests. 

At first sight some of the technical  assumptions  above 
may  seem rather stringent, namely the minimality  condi- 
tion and the analyticity of the coefficient  matrices.  These 
conditions are introduced to ensure that, for each S E S , 
the state covariance matrix P( t )  is invertible for each 
t E(0, T) .  It is quite probable that these assumptions can 
be  relaxed? but our objective here is to convey some basic 
ideas, and we do not want to obscure matters by introduc- 
ing extra difficulties of a purely technical nature. On the 
other hand, the  model  (1.1)  is  more  general than the one 
usually encountered in the smoothing literature in that 
Bdw and Ddw may  be correlated. There is  a reason for 
this,  too. To limit our analysis to models S for which 
BD = 0 would render the class S incomplete. 

The contents of the paper are  as follows.  Section I1 is 
devoted to some preliminary results.  We present a strict 
sense  version of some  results on backward Markovian 
representations developed, for much the same purposes, in 
[15],  [16]. The idea of proof  is borrowed from [20]. In 
Section I11  we define the stochastic realization setting 
mentioned above, and in Section IV  we apply it  to derive 
and interpret various smoothing procedures. 

11. PRELIMINARIES 

Let H be the space of all centered stochastic variables 
(on an underlying probability space) with finite second- 
order moments. Then H is  a Hilbert space with inner 
product (&v) = E {b}. For an arbitrary k-dimensional 
stochastic process { z( t ) ;  0 < t Q T }  with components in H ,  
define H,(z) to be the (closed) subspace spanned by the 
random variables {z1( t ) , z2( t ) ;  * - , zk( t )} ,  and let H(z )  be 
the closed  linear  hull in H of the subspaces {H,(z ) ;  
O<t Q T } ;  we shall  write this as H ( Z ) = V ~ ~ [ ~ , - , H , ( Z ) .  
Similarly  define the part space H,-(z):  = VTE[o, t lHT(z)  and 
the future space H,+(z): = v, ,[ , , . ,H,(z).  Sometimes we 
shall be  more interested in spaces spanned by the incre- 
ments of t. Hence, we define H(dz),  H,-(dz), and H,+(dz) 
to be the closed linear hulls in H of { Z ( T )  - z(a);  7,  a E I }  
where I is the interval [0, TI, [0, t ] ,  and [ t ,  TI,  respectively. 

For each E H and subspace K c H let k { q I K }  be the 

projection of 77 onto K,  i.e., the wide-sense conditional  mean 
[l]. Let u be  a stochastic vector with components in H ,  
and let H(u) be the closed linear span in H of the 
components of u. Then, f2r any ~ E H ,  we shall often 
write k{vlu} in place of E{q1H(u)} ,  and, for any sub- 
space K c H ,  ,??{ u l K }  will denote the vector  with compo- 
nents k { u i l K } .  We  shall need the following  lemma, the 
proof of which can be found in most standard texts on 
estimation theory. 

Lemma 2.1: Let u and v be two stochastic  vectors  with 
components in H and assume  that E { w f }  is positive &j?- 
nite. Then 

k { u ~ v } = E { u u ’ } ( E { w ’ } ) - ’ u .  (2.1) 

The state process x ‘defined  by  (1. la) is a wide-sense 
Markov  process [ 11,  i.e., 

To see  this,  merely note that x ( t )  can be written 

x( t )=@(t , s )x(s )+SrQl( ty7)B(T)dw S (2.3) 

and  that H s f ( d w ) l H o ( x ) ~ H s - ( d w ) ~  H,-(x). (The sym- 
bol I denotes “orthogonal to.”) Here, of course, Ql is the 
transition matrix defined by 

a@ 
- ( t , s )=A( t )Ql( t , s ) ;  at @(s,s)=I. (2.4) 

In deriving the main results of this paper we shall need 
to reverse the direction of time in (1.1). The Markov 
property is independent of the choice of time direction 
and therefore we also  have 

k { x ( s ) I H , + ( x ) } = l ? { x ( s ) l x ( t ) }  fort >s. (2.5) 

(In the present setting this can  be seen by  observing  that, 
in view of (2.3), H f + ( x ) 8 H , ( x ) c H , + ( d w ) L x ( s ) . )  The 
differential equation (l.la), however, is not symmetric 
with  respect to time; the two terms in the right  member of 
(2.3) are orthogonal if and only if t >s. Hence, we need to 
define a  backward  version of (1.la). This requires the 
inversion of the covariance matrix P(t),  which  is the topic 
of the following  lemma. Here and  in the sequel Q > O  
( Q  > 0) means that the symmetric matrix Q is positive 
(nonnegative)  definite. 

Lemma 2.2: Let  P be  the state  covariance  function of 
the  linear stochastic system S defined  in Section I .  litren, for 
any e > 0, P - ’ exists and is analytic on  the interval [ E ,  r]. If 
ll> 0, the same  holds for the  compIete interval [0, TI. 

Proof: Integrating (1.2)  yields 

P( t )  = @( t ,  O)II@( t ,  0)’ 

+ ~ r ~ ( t y 7 ) B ( ~ ) B ( ~ ) ’ ~ ( t , ~ ) ’ ~ ~  (2.6) 

‘Some of these shortcomings  have been pointed out in a recent thesis 
which is positive definite if I I > O ;  hence, since A and B 

by Wall [&I, brought to OUT attention after the submission of this paper. are analytic an [o, TI, SO is ?‘ - ’. NOW assume that n $0. 
’For example,  the  Moore-Penrase  pseudo-inverse can be used, Since S is minimal, ( A , B )  must be completely controlla- 
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ble. In fact, were this not the case, the input-output map 
of S could  be reduced [39], contradicting minimality. 
Since  in addition A and B are analytic, ( A , B )  is totally 
controllable [40],  [41]. Therefore, since  the second term  in 
(2.6) is the controllability gramian, P(t)>O on any inter- 
val [E, TI. The analyticity of P -’ then foUows in the same 
way as above. 0 

As we shall  see  below, it is more  convenient to express 
the backward representation in terms of the  process 

X ( t ) =   P ( t ) - ‘ x ( t )  (2.7) 

rather than x .  In view  of Lemma 2.2, X(t) is  well defined 
with components in H on any interval [e, TI. Let P denote 
its covariance function, i.e., 

p( t )  = E { X (  t)X(  t)‘} .  (2.8) 

We are now in  a position to formulate a backward version 
of the state equation (1.la). 

Lemma 2.3: Let x be the state process of  the  linear 
stochastic system S.  Then, for any e > 0, the process X 
defined by (2.7) satisfies the backward model 

dZ= - A (t)‘X(  t)   dt  + E( t )  &; X( T )  = (2.9) 

on [e, TI, where 5-  P(T)-’x(T) ,  E= P - ’ B ,  and w is a 
p-dimensional Orthogonal  increment process satisbing (1.2) 
and the  condition Hf-(d$J-Ht+(F) for all t .   lXe incre- 
ments of W are given by 

dW=dw-  B(t)’P(t)-’x( t )dt ,  (2.10) 

and the covariance function (2.8) by F= P - ‘; it satisfies the 
Lyapunov equation 

P = - A ‘ F - F A - B B ’ ;  P (T)=Ti ,  (2.11) 

where a= P(T)- ’ .  If II > 0, (2.9)-(2.11) are defined on the 
whole interval [0, TI. 

Lemma 2.3 is  a strict sense  version of a  similar  result 
presented in [15],  [16]. As explained in [42], an alternative 
justification of the wide-sense  results [ 151, [ 161 can be 
obtained by  means of the earlier work [12],  [13]. The 
version  given in all these papers is,  however,  insufficient 
for our purposes since it provides  a deterministic rather 
than a probabilistic result.  Moreover, we have  chosen to 
write the backward equation in  terms of X rather than x 
as in [ 151, [16]. (However,  see the “adjoint” formulation in 
[16].) The reason for this will become  evident in Section 
111. Our choice will yield  a backward Kalman-Bucy  filter 
which is invariant over the class S , the one in [ 151, [ 161 
will not. 

The proof of Lemma 2.3 follows  exactly  the same lines 
as in [20]. It is  based on the observation that, for s < t ,  the 
orthogonal decomposition 

X ( S ) = e { x ( s ) l H , + ( x ) } + [ X ( s ) - e { X ( s ) l H , + ( x ) } ]  
(2.12) 

can be  written  in the form 

X ( s ) = @ ( t , s ) ’ X ( t ) + J S @ ( 7 , s ) ’ B ( 7 ) ~  (2.13) 
t 

which  is the integral form of (2.9). 
Proof of Lemma 2.3: In view of Lemma 2.2, the state 

covariance function P is invertible on the stated interval. 
Clearly, P= P - I .  Then, since P= - PPP, (2.11) follows 
from (I  .3). Then Lemma 2.1 together with (2.5) and (2.7) 
yields 

-.- 

B{X(S)lH,+(X)}   =@(t ,s)’F(t)  (2.14) 

for it follows from (2.3) that E {x(s)x( t ) ‘ }  = P(s)@(t,s)’ for 
s < t .  Consequently, the process u(t):  =@(t,O)’X(t) is  a 
wide-sense backward martingale with  respect to H,+(x),  
1.e., 

l?{u(s ) lH,+(x)}=u( t )  forsg t ,  (2.15) 

and hence it has orthogonal increments. We shall now 
show that u can be normalized as follows: 

U ( S ) - u ( t ) = l S ~ ( 7 , 0 ) ‘ B ( 7 ) ~  (2.16) 
t 

where W is  defined  by (2.10). To this end differentiate 
u(t)=cP(t,O)‘F(t)x(t) and use (l.la), (2.4), and (2.11) to 
obtain du=  @(t, O)’&dw - B’Fxdt). It remains to show 
that W is an orthogonal increment process  satisfying (1.2). 
This follows  from  a tedious but straightforward calcula- 
tion of the incremental covariance function. (If B were 
full rank, we could conclude this directly from the 
martingale property (2.15); this could be achieved  by 
working  with the complete  system S instead.) The desired 
representation is then obtained by noting that 

X ( S ) = @ ( O , S ) ’ [ U ( t ) + U ( S ) - u ( t ) ] ,  

into which we insert (2.16) to obtain (2.13). Obviously, 
H,+(F)IH,-(&iG, for, by construction, the two terms in 
(2.13) are orthogonal for all t .  0 

111. FORWARD AND BACKWARD STOCHASTIC 
REALIZATIONS 

Let { y ( t ) ;  0 < t < T }  be  an rn-dimensional vector pro- 
cess defined as the output of the linear stochastic system S 
introduced in Section  I.  Any  system of type (1.1) [with 
6 E H ,  w satisfying (1.2) and .$I H(dw)] having the given 
process y as its output is called a realization of y. In 
particular, by assumption, S is minimal, i.e., there is no 
other realization of y with a state process of smaller 
dimensi~n,~ and analytic, i.e., its parameter matrices A ,  B ,  
C, D,  and R -’ are analytic on [0, TI. Clearly, the compo- 
nents of x( t )  andy(t) belong to H for all t E[O, TI, and the 
same holds  for the increments of w. 

It is  well-known that the least-squares estimate 

’It is not hard to see that the concept of minimnlity used here is 
equivalent to assuming both that i )  the  input-output map of (l.1a) is 
minimal and that ii) the family of state spaces (H,(x); I E[O, T ]  is 
minimal in the  sense of the  geometric  state  space theory outlined in AT. 
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of the state process x of S is generated on [0, TI by the 
Kalman-Bucy filter 

dx,=Ax,dt+ B,R-’ /2(&-  Cx,dt);  x,(O)=O 

(3.2a) 

where R ‘I2(t)  is the symmetric square root of R(t)= 
D(t)D(t)’, and the gain function B ,  is  given  by 

B , = ( Q * C + B D ’ ) R - ~ / ~ ,  (3.2b) 

the error covariance matrix 

being the solution of the matrix Riccati equation 

I Q * = A Q * + Q , A ‘ - ( Q * C ~ + B D ‘ ) R - ’  

.(Q*c’+BD’)’+BB‘ (3.2d) 

Q*(o) = II- 

As we shall  see  shortly there are other realizations 
which  have  the same Kalman-Bucy  filter  (3.2a).  Hence, 
we define S to be the class of all analytic realizations S of 
y whose  Kalman-Bucy filter, determined as in (3.2), has 
the same coefficient functions A ,  Cy R, and B ,  as in 
(32a).  Then (since we only consider proper [20]  realiza- 
tions) the estimates x ,  are also the same. (The error 
covariance Q,, however, will of course vary  over S .) 
Clearly, all realizations in S are minimal.  Moreover,  it is 
well-known that the innovation process { w*(t ) ;  0 < t < T } ,  
whose increments are defined by 

dw,= R -‘/‘(a - Cx,dt), (3.3) 

is a  process  with orthogonal increments satisfying (1.2) 
and Et,-(&*)= H,-(&) for all ~ E [ O ,  TI (see, e.g.,  [43D. 
Then (3.2a) and (3.3)  yield 

Since B,  is analytic on [0, TI, this is  a realization in S 
whose state covariance matrix P,(t): = E{x,( t )x , ( t ) ’}  
satisfies 

P,=AP,+P*A‘+B,B;;  P,(O)=O. (3.5) 

(This can also be seen  by subtracting (1.3) from (3.2d), 
noting that Q* = P -  P,.) Now define the n X m matrix 
function 

G = P , c ’ + B , R ’ / ~ ,  (3.6) 

which is clearly analytic on [0, TI. 

realization S E S , 
Lemma 3.1: Let G be defined by (3.6). Then for any 
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P(t )C( t ) ’+B( t )D( t ) ’=  G ( t )  (3.7) 

for all t E [ 0, TI. 
Proof: This follows from (3.2b) and the fact  that 

Consequently, A ,  Cy G, and R are invariants for the 
class S -in fact, the covariance function of y is  de- 
termined by these  four  matrix  functions [37], 
[a]-whereas B ,   D ,  P, w, and x will  vary  with different 
realizations S. Actually,  even  the  dimension p of the 
process w will vary.  However,  since R is f u l l  rank, we  will 
always  have p > m. 

The Kalman-Bucy filter realization S ,  belongs to a 
class of realizations for which p is  minimal, i.e., p =  m. 
Define So to be the subclass of all S E S such that p = m 
and x(0)  E H(&). (Note that, sincey(0) = 0, H(&) = H ( y ) .  
We shall  use the former notation as we are really  only 
interested in the increments of y ,  the assumption y(0)  = 0 
being one of convenience.)  Let 

Q*= P- P,. 0 

(So){ 
dx, = Ax,dt + Bodwo; xo(0) = 5, 
dy = Cx,dt + D,dw, (3.8) 

be a  realization in So with state covariance function Po. 
Then Do is invertible and therefore 

dx,=Ax,dt+ BOD[’(& - CX,dt); xO(O)=&. 

Now let (1.1) be an arbitrary realization in $5 

Qo= P- Po. 

Then Lemma 3.1 yields 

B , = ( Q , c ~ + B D ~ ) ( D ~ ) - ’  

where Q, satisfies the matrix Riccati equation 

(3.9a) 

and define 

(3.9b) 

(3.9c) 

Q , , = A Q ~ + Q , , A ’ - ( Q ~ c ’ + B D ’ ) R - ~  
.(QoC’+ BD’)’+ BB’ (3.9d) 

Qo(0) = II - no. 
To see  this just insert (3.9~) into the equation (1.3) corre- 
sponding to Po and subtract from (1.3). Formally, (3.9) 
looks  precisely  like the Kalman-Bucy  filtering equations 
(3.2). In fact, the differential equations are the  same,  only 
the initial conditions differ.  However, note that, unlike 
Q*, Q, is  in general indefinite due to the definition of 
Q,(O). In view of the fact that 5, E H(&), (3.9a)  implies 
that H(x , )cH(dy ) .  We  shall  call  a  realization S E S  
satisfying the condition H ( x )  c H(dy) internal; if H ( x )  Q 
H(&) we shall  say that S is externaZ [20]. Hence we have 
shown that all S E So are internal. In Section IV we shall 
see that, if ( i) is  full rank, So is  precisely the class of all 
internal realizations.  We shall also  see that So is a parti- 
ally ordered set  with  a  smallest  element and  that it can be 
slightly  extended to also contain a  largest  element. 

Our next  task  is to establish  a backward counterpart 9 
to each realization S E S . We shall  begin  by restricting 
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our attention to the subclass S + of all realizations S E S 
for which n >  0. 

Lemma 3.2: The class 5, is nonempty. 
Prooj It is  shown in [ 4 4 ]  that, since y is generated by 

the model (l.l), for some E >O the covariance function of 
y can  be continuously extended to the interval [0, T + E ]  
while retaining its nonnegativity property and its 
"lumped" character. It is not hard  to modify the proof of 
[a, Appendix 111 to show that a similar extension, which 
also preserves analyticity, can be  made to the interval 
[ - e, TI for some e > 0. Hence,  by the main  result of [MI, 
there is an (analytic) realization S, of y on [ - E ,  TI with 
state-dimension n.  Since its restriction to [0, TI belongs to 
5, it is  minimal. Therefore, ( A ,   B )  corresponding to S, is 
totally controllable [40], and consequently P(0) > 0 by the 
argument of Lemma  2.2.  Hence, the restriction of S, to 
[0, TI belongs to S + . 0 

Let S ES,. Then, by  Lemma  2.3, X= P -'x is defined 
on all of [0, TI and satisfies  (2.9) there. Inserting (2.10) 
into  (1.lb) yields & =(CP+ DB')Xdt + DdE, so in view 
of Lemma 3.1  we have obtained a backward  model for y 
on [0, TI, namely, 

(911 dX= - A'Fdt + Sdii; X( T ) = $  
&=G'Fdt+DdF 

(3.10) 

where ,$= P ( T ) - ' x ( T ) I H ( h Z  and E= P - ' B .  Its state 
covariance function P= P -' satisfies  (2.1  1).  We  shall  call 
any model of type (3.10)  with y as its output, $E H ,  W 
satisfying  (1.2) and 5 1  H(d@ a backward realization of y. 
In view  of Lemma  2.2, S is also analytic (i.e., A ,  B, G ,   D ,  
and R - I  are analytic). Note  that S and s have the same 
state space, i.e., 

H,(X) = H,(x ) ,  (3.1  1) 

for each t E[O, TI. 

that 
By symmetry  with the forward setting we can  now  see 

~ * ( t ) = & ( t ) l H , + ( d y ) }  (3.12) 

is generated by the backward  Kalman-Bucyfilter 

dX,=-A'X,d t+B,R- ' /2(dy-G'X,d t ) ;  

X*( T )  = 0 (3.13a) 

where E* = - (& G - BD')R -'I2, and the error covari- 
ance e+( t ) :  = E { [ F ( t ) -  ~ * ( t ) l [ ~ ( t )  - ~ * ( t ) ] ' )  satisfies 

and  that the backward  innmation  process { W*(t);  0 < t < 
T } ,  given  by 

dW, = R -'I2 (4 - G'X,dt), (3.14) 

has orthogonal increments and satisfies  (1.2) and 
H,+(fi ,)  = H,+(dy) for all t E[O, TI (see [20], [45D. Hence 
the covariance function p*(t): = E { F*(t)X*(t)'} satisfies 

- -  
P * = - A ~ P , - P , A - B , B ; ;  P,(T)=o. (3.15) 

The  following  lemma ensures the invariance of the back- 
ward filter (3.13a). 

Lemma 3.3: The gain function is uniquely determined 
by the four  (invariant)  matrix  functions A ,  C,  G, and R ,  i.e., 
B, is  invariant for S . 

Proofi Since Q* = F- F,, it follows  from  Lemma  3. I 
that i * = ( C ' - p * G ) R  which inserted into (3.15) 
yields an equation for P* which  only  depends  on A ,  C, G, 
and R. Hence, the same holds for E*. 0 

Now define s to be the class of all analytic backward 
realizations 5 having  Q.13a)  as  its  backward 
Kalman-Bucy filter, and let S+ be the subclass consisting 
of those SE $ for which TI > 0. In  the same way as  in the 
forward setting it is  seen that the realization 

F*) [  
dF,=-A'F,dt+S*diiT,; X,(T)=O 

@ = G'l ,d t  + R 1/2&, 

(3.16) 

belongs to 5. The state covariance function F* of 9, is 
given  by  (3.15). By Lemma  3.3 the class s is uniquely 
defined in terms of the invariants A ,  C,  G, and R,  and 
therefore the  backward counterpart S of any S E S, 
belongs to 5. In particular, since P ( T )  is finite and 
positive definite, TE 5 ,  . Obviously, there is a complete 
symmetry  between the forward and the backward  set- 
tings; all  results of this section have  backward  versions 
obtained by  merely starting from a minimal  backward 
realization instead. Consequently, all realizations in 5 are 
minimal. (Indeed, were this not  the case, we could, by 
reversing  the  procedure above, construct a forward  reali- 
zation of dimension less than n,  contradicting our original 
minimality  assumption.)  Moreover, it is not  hard to see 
that the two subclasses S+ and 5 ,  are in one-to-one 
correspondence. 

In order to  extend the one-to-one correspondence  be- 
tween  forward and backward realizations beyond S+ and s+ we shall have to enlarge the classes S and s slightly 
in the following  way.  Let S be the class of all analytic 
realizations (1.1)  of y defined on [0, T -  e ]  for any Q > O  
and having  (3.2a)Afor its Kalman-Bucy filter on  each  such 
interval, an4 let Solbe the corresponding extension of So. 
The classes $ and 5, are defined analogously with  respect 
to (3.13a) and all intervals [€ ,TI .  We  shall call the ele- 
ments of and $ generalized realizations. Clearly, S c $ 
and 5 c 5 .  Then the forward-backward construction 
above  can  be  redone in the light of Lemma 2.3 to yield the 
following theorem, which also summarizes  some of the 
pertinent facts on  this topic. 

Theorem 3.1: TO each realization (1.1) in 5 there,cone- 
sponh Q generalized  backward realization (3.10) in 5 
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that P =  P-' ,  E= P - ~ B ,  X =  P-'x, and fi=dw- 
B ' P  -'x dt. Likewise to each backward realization (3.10) in s there is a generalized realization (1.1) in s such that 

For each  such pair (S, g )  of forward and backward (gener- 
alized) realizations, relation (3.11) holdr for each t for which 
both S and 3 are defined. 

Since P*( T )  = 0, the backward  filter  realization 9, has a 
forward counterpart only  in  this  generalized  sense, and it 
has  the  form 

P=p- ' ,   B=P- 'R ,  x=P-'z, and &=f i+B'P- 'Zdt .  

Q*=AQ*+Q*A'+(Q*c'-BD')R-' 
-(Q*C'-  BD')'-BB' (3.20d) 

Q*(O)=II*-n 

where 11* = F*(O)-'. Clearly, Q*(t)+ 00 as t+ T. The defi- 
nition (3.20b)  enables  us to interpret Q* as an error 
covariance  function,  much in analogy  with  the 
Kalman-Bucy filter. In fact, 

Q * ( t ) = E { [ x ( t ) - ~ * ( t ) ] [ ~ ( t ) - ~ * ( t ) ] ' )  (3.21) 

for all t E [0, T ) .  This is an immediate consequence of the 
IS*) I dx*=  Ax*dt + B*dw*; x*(o)= F*(o)-'x*(o) following  lemma,  which we shall also need in Section IV. 
\ -  I 

dy = Cx*dt + R '/'dw* Lemma 3.5: Let x be the state process  and P the state 
(3.17) covariance function of any realization in S . Then 

with state covariance function P* = PC satisfying 

i* = AP* + P*A' + B*B*';  P*(o) = P*(o)-' 
(3.22) 

dx* = Ax*dt + B*R - '1' ( d y  - Cx*dt); x*(O)=[*, 
(3.20~) where r* is the feedback matrix 

where [* = F*(O)-%*(O), and B* can be determined from 
any other realization S E S through  (3.9c),  (3.9d), setting 
B* = Bo and I?,= rI*. The corresponding solution Q, of 
the matrix  Riccati equation (3.9d)  is, in view  of  (3.9b), 
Q,= P -  P*, which  is  nonpositive definite (Lemma 3.4). 
For the  smoothing  problem it will be more  convenient to 
express B* in terms of a nonnegative  definite solution of 
(3.9d) instead, and therefore we define Q*: = - Q,, i.e., 

(3.24) 

(3.25) 

of the  Kalman-Bucy  filter  (3.2). The Lyapunov  type 
equation (3.24) can be integrated to  yield an expression of 
the same  general form as (2.6). From this it is  seen that 
Q*(O) > 0 implies that Q*(t) > 0 for all t E[O, TI. It remains 
to show that Q*(t)>O for all t E[O, T) .  To this end first 
note that the corresponding backward  realization  be- 
longs  to g + ; this is  clear from the  discussion  leading to 

Q*=P*-P (3.20b)  Theorem 3.1. Then we can repeat the argument above to 
see that g*(t)> 0 for all t E[O, TI. But Q* = P(F- P*)P* 

in terms of which (3.9~)~ (3.9d) yields = P@*P*. Since P > O  and P* > O  on [0, T), Q*(t) > O  for 

B*=  -(Q*c'- B D ~ ) R  -1/2 (3.20~) all t E [0, T). 
Corollary 3.6.1: Let Q = P* - P,. Then Q(t)  > 0 for all 

with Q* satisfying the matrix Riccati equation t E [O, T) .  
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Corollary 3.6.2: Let S E S+ . Then Q*(t) > 0 for all  t E 

We shall now demonstrate that the two  processes x* 
and x* together contain all the relevant information on y 
needed  in estimating the state process x of an arbitrary 
realization S E S . To this  end  first note that (3.1)  can  be 
written 

[O, TI. 

~{H, (x ) lH , - (dY) }=H, (x * ) ,  (3.26) 

and  that (3.1  1) and (3.12)  yield 

k{H,(x)IH,+(dY)}=Hr(x*)  (3.27) 

for all t E[O, T ) .  Now define the orthogonal complements 
N,- :  = H,-(dy)BH,(x,)  and N,+:  = H,+(dy)BH,(x*), re- 
spectively.  Then  we obtain the orthogonal decomposition 

H(&) = N,- a3 H p  N,+ (3.28) 

where HP is the frame space 

~ p = ~ r ( x * ) V ~ t ( x * )  (3.29) 

(where A V B  denotes the closed linear hull in H of A and 
B )  (cf. [22],  [24],  1261). 

Lemma 3.7. (cf: [27]): L e t  x be  the state  process of a 
realization in S . Then, for t E[O, T) ,  

H, (x )  c HP@ [ H ( d y ) ]  

where [H(dy)]l is the  orthogonal  complement of H ( Q )  in 
H .  

Proof: Clearly, H , ( x ) l  N , - .  To see this note that the 
components of x( t ) -   x*( t )  are orthogonal to H,-(dy)> 
Nr- and that the components of x*(t)  belong to 
H , ( x * ) l N , - .  In the same way  we  show that H , ( x ) l N , + .  

0 

IV. THE SMOOTHING PROBLEM 

Consider an arbitrary realization (1.1) in the class S . 
The basic  problem before us is to determine the smooth- 
ing estimate 

W=-%(t)lH(dy)} (4.1) 

for each t E [0, T )  and to interpret it in terms of stochastic 
realizations. Let I: denote the corresponding estimation 
error covariance, i.e., 

z ( t ) = E { [ x ( t ) - f ( t ) ] [ x ( t ) - i ( t ) ] ' } .  (4.2) 

Of course, this  problem is interesting only if the realiza- 
tion S is external. However,  by not restricting our analysis 
to external realizations, as a by-product we shall obtain 
some interesting results on internal models  also. 

In view of Lemma  3.7, i ( t )  E H p ,  and consequently 
there are two matrix functions K ,  and K* such that 

i ( t ) = K * ( t ) x * ( t ) + K * ( t ) x * ( t ) .  (4.3) 

The  components of the estimation error x( t )  - f ( t )  are 
clearly orthogonal to H(dy) and hence in particular to  the 
components of x* ( t )  and x*(t). Therefore, E{x(t)x*(t)'} 
= E { f ( t ) x * ( t ) ' }  and E { x ( t ) x * ( t ) ' } = E { i ( t ) x * ( t ) ' } .  By 
Lemma 3.5, the first of these relations yields P, = K,P,  + 
K* P, and consequently, 

K*( t )+K*( t )=Z  (4.4) 

for all f E(0, T )  because P, ( t )  is nonsingular on this 
interval. The  second relation yields 

P ( t ) = K * ( t ) P * ( t ) + K * ( t ) P * ( t )  (4.5) 

for all t E[O, T) .  Then  solving (4.4) and (4.5) for K* and 
K* we obtain K ,  = Q*Q -' and K*= Q*Q -', where as 
before Q* = P- P,, Q* = P* - P, and Q =  P* - P,. Note 
that Q(t)  is nonsingular for all t E[O, T )  (Corollary 3.6.1) 
and  that 

Q < t ) =  Q*(t)  + Q*(t>. (4-6) 

Theorem 4.1: Let x be  the state  process of a realization 
(1.1) of class s . Then  the  smoothing estimate (4.1) is given 
bY 

a ( t ) =  [ 1- Q * ( t ) Q ( t ) - ' ] x * ( t ) +  Q d t ) € ? ( t ) - ' x * ( t )  

(4.7) 

and the  error  covariance function (4.2) by 

z(t>= Q*(t ) -  Q d t ) Q ( t ) - ' Q * ( t )  (4.8) 

for all t E [0, T ) .  
Proof: Relation (4.7)  was derived above for t ~ ( 0 ,  T ) ;  

for t =O (4.7)  follows  from  (4.19)  below. To prove (4.8) 
note that 

x - ; = ( ~ - ~ * ~ - l ) ( x - ~ * ) + ~ * ~ - l ( x - ~ * ) .  (4.9) 

By Lemma 3.5 the two terms of (4.9) are orthogonal and 
therefore, observing (3.2~)  and (3.21), 

~ = ( Z - Q * Q - ~ ) Q * ( Z - Q - * Q * ) + Q * Q - ' Q * Q - ' Q + ,  

which, in view  of  (4.6) yields  (4.8). 0 
Relation (4.5) should be  compared  with the decomposi- 

tion in [46, Theorem 61. Note,  however, that K,(t)  and 
K*(t) are projections if and only if the realization S is 
internal. To see this observe that (K*)* = K*, Le., 
Q*Q-'Q*=Q*,  if and only if Z=O (Theorem 4.1). 

Theorem 4.1 is a generalization of results given in 
[20]-[22].  Following the procedure in [22]  we obtain an 
alternative derivation by observing that x , ( f )  and 

z ( t ) = x * ( t ) - x * ( t )  (4.10) 

are  orthogonal  (to see this,  note that x*( t )  = 
i?{x*(t)lH,-(dy)}) and applying Lemma  2.1. In  fact, since 
i ( t ) =  i { x ( t ) l H y }  (Lemma  3.7) and Hp= H,(x,)@H,(z),  

a ( t ) = k { x ( t ) l x * ( t ) }   + k { x ( t ) l z ( f ) } .  (4.11) 
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Then using  Lemmas 2.1 and 3.5 and the fact that 

Q ( t ) = - W t ) z ( t ) ' )  (4.12) 

we obtain 

(4.13) 

which is precisely  (4.7). 
If, for the moment, we restrict our attention to realiza- 

tions in the interior of S we obtain the following  well- 
known  result. 

Corollary 4.1: Let S E int S , let  x be the state  process of 
S, and  let 2 be  the  corresponding  smoothing estimate (4.1)- 
Then, for each  t E[O, T )  

n( t )=Z( t ) [   Q*( t ) - 'x* ( t )+   Q*( t ) - 'x* ( t ) ] ,  (4.14) 

where  x*  and x* are  given by (3.2) and (3.20), respectidy, 
and  the  smoothing  error covariance Z by 

Z( t ) - '=   Q*( t ) - '+   Q*( t ) - ' .  (4.15) 

Proof: Since S Eint S , Q* and Q* are invertible. By 
writing (4.8) as Z = Q* Q -'(e - Q*) and using  (4.6), it is 
seen that 

x= Q*Q -Q*. (4.16) 

Inverting this and again using  (4.6)  yields (4.15). From 
(4.16)  we also see that Q*Q-'=Z(Q*)-'. Then I -  
Q*Q-'=Z[Z-'-(Q*)-']=ZQ;'. Hence,  (4.14)  follows 
from (4.7). 0 

Relations (4.14) and (4.15) together with  (3.2) and (3.20) 
is the Mayne-Fraser two-filter formula [5], [6], which has 
received considerable attention in the literature [7]-[9], 
[13]-[17]. Although this algorithm is easy to derive  form- 
ally [9], its probabilistic justification has caused  consider- 
able difficulty, partly due  to the fact that Q*(f)+m as 
t+T. The system  (3.20) has usually been interpreted as a 
backward filter, and in [ 141-[  171 it is presented as the limit 
of such a  filter as a certain covariance matrix function 
tends to infinity.  However, in our stochastic realization 
setting (3.20)  has  a  very natural interpretation: it is simply 
the maximum-variance forwurd realization S*. By using 
the identity 

x*( t )=F*( t ) - ' z* ( t )  (4.17) 

.we can instead write the smoothing formula (4.14) in 
terms of two  Kalman-Bucy  filters, one (3.2)  evolving 
forward and the other (3.13)  evolving backward in time. 
(Note that then  (4.14)  is defined on the whole  interval 
[0, TI.) This fact was pointed out in [ 141,  [15],  [17], in 
which papers the  backward estimate 

$(t)=&(t)lHt+(dy)) (4.18) 

was  used  in place of X*, a  choice that may at first sight 
seem  more natural. The reader should, however, note that 

nb( t )=P( t )P*( t ) - lx* ( t )  (4.19) 

is not invariant over S and is therefore less suitable for 
our purposes. It is not  hard to see that 

( Q * ) - ' = [ ( & * ) - ' + P - ' ] P ( P * ) - '  (4.20) 

and consequently (4.14) may also be written 

J( t )=Z( t ) [   Q*( t ) - 'x* ( t>  

+ [ Q * ( t ) - ' + P ( t ) - ' ] i b ( t ) ] ,  (4.21) 

which is the formula presented in [14],  [15],  [17]. The 
partitioned smoothing formula [12],  [13] also can  be seen 
to be equivalent to (4.14), and  it can be used to derive  all 
the equations of the Mayne-Fraser procedure. In the 
early papers [7],  [8], relation (4.14)  was introduced via  a 
formula [47] for optimal weighting of two estimates with 
orthogonal errors. No justification of this orthogonality 
was  given  in  [8], and the argument in [7] is incomplete due 
to problems  with the endpoint condition. (A more satis- 
factory treatment has recently been presented in [48].) 
However, the stochastic realization theory  provides  a na- 
tural justification of this procedure. Indeed, (3.23)  is the 
required orthogonality condition. 

The smoothing formulas (4.7) and (4.14) are both based 
on the nonorthogonal decomposition (3.29),  whereas 
(3.13) corresponds to the orthogonal decomposition 

w =  f 4 ( x * ) @ f 4 ( z )  (4.22) 
(where, in either  case,  Lemma 3.7 justifies the restriction 
to the finite dimensional frame space e). We  shall  now 
take  a  closer  look at representations of the latter type. It 
follows from (3.4) and (3.17) that z as defined  by (4.10) is 
the solution of 

dz = r*z dt - QC'R -'/'dw*; z(0) = x*(O) (4.23) 

where r* is the feedback matrix (3.25) of the 
Kalman-Bucy  filter (3.2). To see  this, note that the input 
process w* of the maximum variance realization S* is 
related to the innovation process w* through the relation 

dw,=R-' / 'Czdt+dw* (4.24) 

and  that B* - B ,  = - QC'R -'I2. We shall need the back- 
ward counterpart of  (4.23). Observing that Q is the covari- 
ance function of z ,  Lemma 2.3 yields the following equa- 
tion for t= Q - ' z :  

d~=-r ' , rd t -C'R- ' '2dw,;  ?(T)=O (4.25) 

for, in view of (4.24), w ,  is the backward counterpart of 
w* with  respect to (4.23). Note that t- is defined on the 
whole  interval [0, TI. The covariance matrix e= Q - ' of t 
satisfies 

The estimate 2 is then obtained from (4.13). 
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Theorem 4.2: Let x be the state process  of an arbitray such that 
realization  in S . Then the smoothing estimate %(t) satisfies 

%(t)=x*(t)+  Q*(t)Z(t)  (4.27) 

for all t E[O, TI, where x* is given by (3.2) and Z by (4.25) 
and (3.3). The process 2 is related to  x* and x* through the 
relation 

F( t )=&t)[x*( t ) -x*( t ) ]  fortE[O,T). (4.28) 

Relation (4.27)  is the smoothing formula of Bryson and 
Frazier [2]. (Also see  [3],  [4] and, in particular, [9].) What 
is new here is its interpretation (4.28) in  terms of the 
minimum and maximum variance realizations S ,  and S*. 
Theorem 4.2 can also be regarded as a generalization of a 
result  presented in [21], and the basic techniques used 
there provide an alternative approach to deriving the 
above result. 

Corollary 4.2: The smoothing estimate (4.27) satisfies the 
stochastic dsfferential equation 

&=A%dt+B(I-   D'R- 'D)B' fdt  
+ BD'R -'(& - C2dt) (4.29) 

with initial condition %( T)=  x,(T).  If S E s+, Z can be 
replaced  by Q; '(2 - x,) in (4.29). 

Proof: Inserting (3.2a),  (3.2d), and (4.25) into 

& = dx, + e*&+ Q*Zdt 

and using  (3.2b)  yields  (4.29). If S E s,, QC' exists 
(Corollary 3.6.2), and (4.27) can be solved  for 5. 0 

We shall now study two different special  cases of  (4.29). 
First, let BD'=O; this is a standard assumption in the 
smoothing literature. Then 2 is differentiable, and (4.29) 
reduces to 

_-  di - A 2  + B B ' 5  a( T )  = x,( T) .  (4.30) 
dt 

For realizations S E S+ (4.30)  reduces to the smoothing 
formula of Rauch, Tung, and Striebel[3] 

- =A% + BB'Q - '(2 - X*);  %( T)= X,( T ) .  da 
dt 

(4.3  1) 

Secondly,  assume that D is square. Then D is full rank 
and D R - ID = I .  Hence, 

di=A%dt+BD- ' (&-C2dt ) ;  2 ( T ) = x * ( T )  

(4.32) 

which  defines  a  realization  in So. Note that the original 
realization S need not be internal; it may have an initial 
condition x(0) I?(&). 

The problem of smoothing can be regarded as that of 
finding the "internal part" of the state process.  Given  a 
realization S E S + , we shall  next  look at the structure of 
the "external part,"  i.e., the smoothing error 1: = x - 2. To 
this end, first note that, given  a  realization (1. l), there 
exists an orthogonal p xp-matrix V( t )  for each t E[O, TI 

where B,  is n X m and B, is n X ( p  - m). Next  let 

[:I=,, (4.33b) 

define  a pair of orthogonal increment processes u and u, 
of dimensions m and p - m,  respectively.  Obviously 
(4.33b)  satisfies (1.2). 

Theorem 4.3: Let x be the state process of a realization 
S E S, and  let B, and u be defined by (4.33). Then the 
smoothing  error 2 is gicen by 

2(t)= Q*(t)q( t )  (4.34a) 

dq= -r;qdt+  Q;'B2dS; q(T)=qT (4.34b) 

where qT=Q; ' (T)[x(T) -x*(T)]  and 5 is a (p -m) -  
dimensional  orthogonal  increment  process of type (1.2)  such 
that H(d{ ) IH(&) .  Equation (4.34b) is a backward 
Markovian representation in the sense that q T l  H(d{)  and 
the increments of { are given by 

d{=dv-B;Q,'(x-x,)dt. (4.35) 
Proof: Define z* : = x - x*. Replacing Bdw and D dw 

in (1.1)  by B,du+ B,du and R 'j2du, respectively, and 
noting that the innovation process w* in (3.4) is given  by 

dw,=d~+R- ' /~Cz ,d t  (4.36) 

and that B , -   B e =  - Q*C'R - ' I 2  (Lemma  3.1), it is just a 
matter of simple calculations to see that z* satisfies 

d ~ * = F * ~ , d t - Q , C ' R - ' / ~ d u + B ~ d v ;  z * ( O ) = ( .  

Since S E S,, e*(,-' exists for all t E[O, T I  (corollary 
3.6.2).  By Lemma  2.3 and (4.36), I* = Q; 'z* satisfies the 
backward Markovian representation 

dZ*=-r;t*dt-C'R-'/*dw,+Q,'B,d{; 

F*( T )  = q= (4.37) 

where S is given by (4.35).  Since H(d{) IH(dw,)  (by 
construction) and H(dw,)= H(&), H ( d S ) l H ( & )  as re- 
quired. Now, in view  of (4.27), 2=z*-  Q*Z, i.e.,  (4.34a) 
holds  with q: = Z, - F. Then (4.34b)  follows from (4.25) 
and (4.37). 0 

As a  corollary we s e e  that the state process of any 
realization S E S + can be decomposed into three orthogo- 
nal terms 

each of which is the output of a stochastic system  whose 
dynamical behavior is determined by the function I'*. 
This is seen  from  (4.25),  (4.34) and the fact that (3.2a) can 
be written 
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Short Papers 

Multiobjective Trajectory Optimization for Electric 
Trains 

SAROSH N. TALUKDAR, MEMBER, IEEE, ~m ROBERT L. KO0 

Abmcr--This paper  develops a method for  generating Parelo efficient 
trajectories that provide  optimal tradeoffs between two conflicting attribu- 
tes-the  total  energy consumed and the total time  taken to complete each 
trajectory. Straightforward  formulations of the multiobjective  optimization 
problem in these attributes are difficult to solve because of certain 
nonlinearities in train models  and certain constraints on train trajectories. 
A discrete reformulation is developed to circumvent these difficulties  and 
produce  computationally  feasible algorithms. The results  from the algo- 
rithms  can be used to develop operating  strategies  for  existing system and 
to compare hardware alternatives in planning  new  systems. An illustration 
is included. 

INTRODUCTION 

In competing with other travel  modes, the operators of intercity and 
rapid transit electric trains find  themselves  under  pressure  to  conserve 
both  the total energy, W, and the total travel  time, T, required for each 
journey. These  are  conflicting  objectives.  Reductions  in  energy  must 
usually  be  paid  for  with  increases  in  travel  time and vice versa.  Such 
situations demand  compromises and tradeoffs.  The  best  tradeoffs  occur 

Manuscript received December 20, 1978: revised June 19. 1979. Paper recommended by 
A. Manitius, Chairman of the Optimal Systems Committee. This work was supported in 
part by the Department of Transportation under Contract DOT-OS-64219. 

The authors are with  the Department of Electrical Engineering. Carnegie Institute of 
Technology, Carnegie-Mellon University, Pittsburgh. PA 15213. 

along  the  Pareto  efficient  (noninferior) surface of the feasible region in 
attribute space [l], [2]. The determination of this surface constitutes a 
multiobjective  optimization  problem. 

Prior work  in the area (e.g.,  [3]-[71) has either tended to neglect 
objective  conflicts and important systems  nonlinearities or has produced 
site  specific  solutions. In the  succeeding  material we  will develop a 
general  multiobjective  methodology for generating  trajectories that are 
Pareto  efficient in the attributes, W and T. 

PROBLEM DESCRETION 

A representative  trajectory of a train on an intercity journey is shown 
in  Fig. 1. The  frequent  speed  changes  between stations are required to 
accommodate  speed  limits  which  vary  with the quality of the  track and 
its  curvature.  In  general,  the constraints imposed by  speed limits may be 
stated in the  form 

o<c <u-(x) (1) 

where 

E is the train's  velocity 
X is its distance from the beginning of its journey 
u,,(x) is the  speed  limit at the point x .  

Propulsion  systems for electric trains contain motor  drives to develop 
and deliver  tractive  force  to  the track and conditioners to control the 
flow of power to the  motors and thereby,  their  tractive output. A variety 
of conditioner-motor combinations are feasible [SI. Some  allow  power 
flows  only  in one direction; others permit two way  flows (during braking 
the  motor  acts as a generator and power is pumped  back into the 
network-a phenomenon  called  regeneration). 
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