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A NOTE ON THE JACOBIAN CONJECTURE

CHRISTOPHER I. BYRNES AND ANDERS LINDQUIST

(Communicated by Paul Goerss)

Abstract. In this paper we consider the Jacobian conjecture for a map f of
complex affine spaces of dimension n. It is well known that if f is proper,
then the conjecture will hold. Using topological arguments, specifically Smith
theory, we show that the conjecture holds if and only if f is proper onto its
image.

1. Introduction

Consider the field C and a polynomial mapping f : Cn → Cn such that the
Jacobian, det Jac(f), is a nonzero constant. Formulated by O. H. Keller in 1939
[8], the Jacobian conjecture is that f must have a polynomial inverse. It will be
convenient, however, to express existence of an inverse in more modern terms, which
we briefly review. In order to keep domains, ranges and images straight, we express
any polynomial map g : Cn → Cn as a map

(1) g : X → Y,

where X and Y are complex affine n-spaces. We call such a map regular. Note that
each of its components is a polynomial map from X to C. We denote the ring of
all such maps by C[X] and refer to its elements as regular.

In particular, any regular map (1) induces a homomorphism of rings

g∗ : C[Y ] → C[X],

where g∗h = h ◦ g. To say that g has a regular inverse is therefore to say that
g∗C[Y ] = C[X], and we will call such a map biregular. We denote by C(X) and
C(Y ) the fields of rational functions on X and Y , respectively. A weaker property
than biregularity is the property that g be birational, i.e. that g∗C(Y ) = C(X).

We refer to the excellent survey by Bass, Connell and Wright [2] for more his-
torical and technical details. In particular, they list eight conditions, including the
conclusion of the Jacobian conjecture, which for algebraically closed fields in char-
acteristic zero are equivalent. Our interest is in four of these for the field C and for
the map f :

(i) f is biregular,
(ii) f is birational,
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(iii) f is injective,
(iv) f is proper.
To say that a continuous map g : X1 → X2 is proper is to say g−1(K) is compact

in X1 for each compact subset K ⊂ X2. Our main result, Theorem 1, shows that
relaxing the last condition still gives a necessary and sufficient condition for the
Jacobian conjecture to hold.

2. The main result

Theorem 1. Suppose that f : X → Y is a regular map having a constant nonzero
Jacobian. Then f is biregular if and only if f : X → f(X) is proper.

Proof. If f is biregular, then f is a homeomorphism onto Y = f(X) and is therefore
proper onto f(X).

Conversely, since det Jac(f) is a nonzero constant, from the inverse function
theorem it follows that f(X) is open in Y in the classical topology. In particular,
both X and f(X) are smooth, connected, oriented manifolds of real dimension 2n.
For reasons that will become clear quite soon, we want to distinguish between the
map f between complex affine spaces and the map

(2) fR : X → f(X)

of real manifolds. Since (2) is proper and since each y ∈ f(X) is a regular value,
the set f−1(y) is always finite for each y. Moreover, this map has a well-defined
degree [4, pp. 40–41 and p. 47], deg(fR), which satisfies

(3) deg(fR) =
∑

x∈f−1(y)

sign det Jacx(fR)

for every regular value y ∈ f(X), which in our setting is for every y ∈ f(X).
We will begin our proof by showing that (2) defines a covering space. We first

note that X and f(X) are connected, locally path-connected spaces, to which the
theory of covering spaces [6] does apply. While we make no assumptions about
G = π1(f(X)), the fundamental group of f(X), the space X is an affine Euclidean
space and is therefore simply connected. It will turn out that G is finite and acts
freely on X; i.e., gx = x for some x ∈ X implies g = e, where e is the identity
element in G.

Lemma 1. The map (2) exhibits X as a universal covering space for f(X), for
which

(4) d = #f−1(y) = deg(fR)

is finite. In particular, G has order d and acts continuously and freely on X as the
group of covering transformations.

Proof. We first compute deg(fR) using (3). To this end, note that if T : C
n → C

n

is C-linear, then T induces an R-linear map

TR : R
2n → R

2n,

which satisfies det TR = |detT |2. Applying this observation to T = Jacx(f), we see
that

(5) deg(fR) =
∑

x∈f−1(y)

sign |det Jacx(f)|2 = #f−1(y)
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for each y ∈ f(X). We denote the common integer value in this equation by d.
From this it is easy to deduce that (2) exhibits X as a covering space for f(X).

For each y ∈ f(X), we have f−1(y) = {x1, ..., xd}, and, for each i = 1, ..., d, there
exist open neighborhoods Ui of xi and Vi of y such that U1, . . . , Ud are pairwise
disjoint and f : Ui → Vi is a diffeomorphism for each i. Setting V =

⋂d
i=1 Vi, choose

open subsets Wi ⊂ Ui such that f : Wi → V is a diffeomorphism and consider the
open set U = f−1(V ). It is clear that

⋃d
i=1 Wi ⊂ U , while the reverse inclusion

follows from the constancy of the cardinality of the fiber f−1(y).
Therefore, (2) defines a covering space and, since X is simply connected, we have

a universal covering space
fR : X → f(X).

In particular, it follows from [6, Theorem 5.8] that G is canonically isomorphic to
the group of covering transformations, that for each y ∈ f(X) there is a natural
bijection between G and the fiber f−1

R
(y) [6, Corollary 5.6], and therefore that G

acts freely on each fiber. This concludes the proof of the lemma. �

Lemma 2. The map f is injective.

Proof. To say that d > 1 is to say that there exists a prime number p dividing d.
By Cauchy’s theorem [7, p. 74], G contains an element of order p, which generates
a cyclic subgroup. This leads to fixed point free action of Zp on R2n, contrary to
one of the corollaries of Smith theory. More explicitly, the continuous action of
Zp extends to a continuous action on S2n, leaving the north pole fixed. The main
theorem of Smith theory for spheres [10] is that the fixed point set F in S2n is a
homology �-sphere, with coefficients in Zp, with � = −1, 0, 1, . . . , 2n. Here, � = −1
denotes the empty set, a situation that cannot occur in the present setting, since
the north pole is fixed. In particular, for � ≥ 0, f has at least two fixed points, and
at least one of these must lie in X, which contradicts the assumption that we have
a fixed point free Zp action on X. Therefore d = 1. �

Lemma 3. The map f is a diffeomorphism of X onto Y .

Proof. By the theorem of Bialynicki-Birula and Rosenlicht [3], an injective polyno-
mial map of affine spaces of the same dimension is surjective, so that f is a bijection
of X with Y . By the inverse function theorem, f−1 is differentiable, so that f is a
diffeomorphism. �

Lemma 4. The map f : X → Y is birational.

Proof. Since f : X → Y is a regular surjection, f∗ maps C(Y ) injectively to C(X),
and so C(X) may be regarded as a vector space over the field f∗

C(Y ). Since
dim(X) = dim(Y ), this vector space is finite dimensional, and, according to [9,
p. 46], we have

(6) #f−1(y) = dimf∗C(Y ) C(X)

for y ∈ Y a regular value for f . On the other hand, all points y ∈ Y are regular
values, and, by Lemma 2, the left-hand side of (6) equals 1. Therefore, f∗C(Y ) =
C(X). �

Lemma 5. The map f : X → Y is biregular.
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Proof. We have shown that the map f is a regular bijection, between the smooth
affine varieties X and Y . Therefore, by Zariski’s main theorem [9, p. 48], f is
biregular. �

This concludes the proof of the theorem. �

3. Concluding remarks

In this paper, we have introduced to the original form of the Jacobian conjecture
an auxiliary hypothesis, which is both necessary and sufficient for the conclusion
of the conjecture to hold. It is therefore logically equivalent to the conditions (i)
–(iv) enumerated in Section 1, although it is formally weaker than condition (iv)
and seems to be easier to check in principle. It is also interesting to note that
our method of proof incorporated two beautiful tools—Smith theory [10] and the
theorem of Bialynicki-Birula and Rosenlicht [3]—which have not been used, to the
best of our knowledge, in the prior literature on this conjecture.

In fact, using the arguments in our proof, we can give a new proof of the equiv-
alence of (i)–(iv). Of course, (i) trivially implies (iv). Continuing in this cycle, (iv)
certainly implies that f : X → f(X) is proper. From this, (iii) follows using Lem-
mas 1 and 2. That (iii) implies (ii) is the content of Lemmas 3 and 4. Finally, that
(ii) implies (i) requires a proof (using a well-known argument) that the birational
map f is a bijection. To say that f is injective is to say that f−1(y) has at most
one point for each y ∈ Y , so we may assume that y ∈ f(X). For a Zariski open
W ⊂ f(X), we have

#f−1(y) = dimf∗C(Y ) C(X) = 1

for each y ∈ W , since f is birational. For y0 ∈ f(X) � W , suppose f−1(y0) =
{x1, . . . , xr}. There exist open, pairwise disjoint neighborhoods Ui of xi and open
neighborhoods of Vi of y0, for i = 1, . . . , r, such that f : Ui → Vi is a diffeomorphism
for each i. Set V =

⋂r
i=1 Vi. If yj ∈ W is a sequence converging to y0, then

ultimately yj ∈ W ∩ V for infinitely many j and therefore r ≤ #f−1(yj) = 1.
Thus, f is injective. By the theorem of Bialynicki-Birula and Rosenlicht, f is
surjective, and (i) then follows from Zariski’s main theorem.

Remark 1 (Connection with Galois theory). The paper [2] lists several other con-
ditions which are equivalent to (i)–(iv), including the assumption that C(X) is a
normal extension of f∗C(Y ). This extension is therefore a Galois extension with
a finite group G acting linearly on C(X) with fixed subfield f∗

C(Y ). Indeed the
order of G is given by

(7) #G = dimf∗C(Y ) C(X).

On the other hand, we assumed that the map f : X → f(X) is proper and showed
that it defines a universal covering space, which is therefore a normal covering with
covering group G having order #G.

This is not coincidental. Indeed, the proof in [5] that normality and the Jacobian
hypothesis imply the Jacobian conjecture is in fact based on a realization of G as
the group G of covering transformations (see [1] for an earlier treatment of the case
n = 2). This, however, is where our proof and that in [5] diverge. Campbell proves
his theorem by arguing that the base space of the covering is simply connected, as
the complement in the simply connected space Cn of an analytic set of codimension
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at least two. Our proof is quite different and follows instead from properties of the
total space of the covering, viz. contractibility and its consequences in Smith theory.

Remark 2 (The real case). Our proof yields positive results for the real Jacobian
conjecture as well. More explicitly, suppose f : R

n → R
n is a polynomial map

with det Jac(f) everywhere positive. Then, Lemmas 1 and 2 apply, mutatis mu-
tandis. Indeed, the first use of algebraic geometry arises in the proof of Lemma 3
through the application of the theorem of Bialynicki-Birula and Rosenlicht—which
was stated and proved in [3] for real polynomial maps.

In particular, by combining Lemmas 1–3, we obtain a version of Theorem 1 over
R, viz., a real polynomial map f : Rn → Rn having a nowhere zero Jacobian is
a diffeomorphism onto Rn if, and only if, f : Rn → f(Rn) is proper. This is a
sharp result, as the example f(x) = x3 + x shows, in that the inverse need not
be a polynomial. In this direction, algebraic geometry over C is used heavily in
the proofs of Lemmas 4 and 5 and the weak Jacobian conjecture asks whether, in
addition, their combined conclusion would hold (over R) whenever the necessary
condition, det Jac(f) = c �= 0, is satisfied.
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