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Geometry of the Kimura-Georgiou parametrization of modelling filters

CHRISTOPHER I. BYRNESt and ANDERS LINDQUIST:!:

We discuss questions concerning the geometry of the Kimura-Georgiou para
metrization of the set .oj +(n) of degree n positive real transfer functions with the first
n coefficients in the Laurent expansion about infinity prescribed. For example, one
interesting question which has been raised is whether this set is star-shaped about
the maximum entropy solution. This, of course, would be implied by convexity and
would imply that .oj+(n) is diffeomorphic to euclidean n-space, All three of these
geometric properties would be of interest, for example, when using geometric or
optimization techniques to construct an n-dimensional modelling filter with vari
ations about the maximum entropy filter. Our first main result, which also lends
support to conjectures concerning convexity and star-shapedness, is that .<1 +(n) is in
fact diffeomorphic to euclidean n-space, Our proof makes use of certain results from
differential topology. There are of course several intimate relations between positive
reality and stability properties of both real and complex polynomials. On this basis
we observe that the convexity of the parametrization implies the convexity of the set
of real Schur polynomials of degree n and is implied by the convexity of the set of
complex Schur polynomials of degree n. From this it immediately follows that
.0/+(n) is not convex for n;;. 3 and that.<1 +( I) is convex and hence star-shaped. The
case n = 2 is especially interesting since the real Schur region is convex whereas the
complex is not. Another of our main results is to refine the above observations to
settle this question in general, showing that for n ;;.3 there is an open set of Schur
parameters for whicho/+ (n) fails to be star-shaped about the maximum entropy filter.

J. Introduction
A parametrization of all n-dimensional modelling filters (or, equivalently, all II

dimensional shaping filters) with a given partial sequence

( I )

of correlation coefficients for a stationary stochastic process {y,} is a long sought-after
goal with important applications in signal processing and in speech processing. It is
well known (Grenander and Szego 1958) that to the sequence Co, ... , C. one can assign
a sequence Yo, ... , Y.-l of Schur parameters satisfying

Iyol < 1
if and only if the Toeplitz matrices

Co c 1 Ci

C, Co c,
T,= i = 0, 1,2, ... , n

Ci Cj-l Co

(2)

(3)
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2302 C. 1. Bymes and A. Lindquist

are positive definite. By extending the sequence Yo, ... , Y._, with parameters satisfying
(2), Schur obtained a parametrization of all positive real, analytic functions viz)
satisfying

00

viz) = co/2+ L CjZ', Cj = c, i = 0, ... , n
i= 1

(4)

(5)

While (4) is an elegant mathematical solution of the Curutheodory extension
problem, in practice modelling filters v(z) should be realizable by finite dimensional
linear systems and it seems quite difficult to characterize rationality of viz) in terms
of the Schur parameters. In addition, the problem statement asks more, viz. that
deg viz) :;;; n.

In another direction, as we recall in more detail in § 2, the sequence Yo, ... , Y._I
determines two bases for the vector space of polynomials of degree less than or equal
to 11: the Szego polynomials of the first kind, denoted by

<P., <P.-" ... , <Po == I

and of the second kind, denoted by

r/!.,r/!.-I, ..·,r/!O==Z
Kimura (1983) and Georgiou (1983) showed independently that any n-dimensional
modelling filter viz) has a representation

viz) = Co • r/!.(z) +1X,r/!._,(z) + + IX.

2 <P.(z) + IX, <P.- liz) + + IX.

where lXI' 1X2' ... , IX. are real numbers.
Thus, in contrast to the Schur parametrization, for (IX" ... , IX.) E IR· the represent

ation (5) guarantees that viz) will be rational of degree less than or equal to 11.

However, it remains to be checked that a given (lXI' ... , IX.) satisfies the positive reality
conditions. As emphasized by Kimura, an important open problem is therefore to
obtain a parametrization of those values of IX = (IX" ... , IX.) in (5) for which viz) is
positive real and stable (Kimura 1986, see also Georgiou 1987). Even qualitative
information, such as convexity of the set of positive real functions in the
Kimura-Georgiou parametrization, would be useful and is suggested by low
dimensional analysis and by a large number of simulations in higher dimensions. In
this context, Kimura asked whether some Kharitonov-like property would hold with
respect to this parametrization. Explicitly, one observes first that the choice

IX I = ... = IX. = 0

corresponds to the maximum entropy solution, with modelling filter

vo(z) = Co • r/!.(z)
2 <P.(z)

which is, of course, always positive real.
If viz) defined by (5)) is positive real, the question is whether the interval

Co r/!.(z) + i.(IXIr/!._I(z) + ... + IX.) 0 . I
v;.(z) = - '. :;;; I.:;;;

2 <P.(z) +I.(IXI<P._I(Z) + ... +IX.)

(6)

(7)

consists entirely of positive real functions. Thus, in the Kimura-Georgiou parametriz
ation, the rational n-dimensional solutions to this covariance extension problem
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Geometry of Kimura-Georgiou purametrization 2303

would be star-shaped about the maximal entropy solution. This property would follow
from convexity, which seems extremely plausible on the basis of extensive numerical
simulation by several groups of researchers. This is further supported by our proof
(given in § 3) that the rational degree /I solutions to the covariance extension problem
admit a parametrization as euclidean space. Part of the importance of establishing
either convexity, star-shapedness or the existence of euclidean parametrizations would
be in facilitating the construction, using geometric or optimization techniques, of
variations from the maximum entropy solution. Such variations would of course have
shaping filters with a richer zero structure.

Turning to linear properties, we use the fact that the set of positive real functions,
and its geometry, is related both to the set of real Schur polynomials and to the set of
complex Schur polynomials in such a way that the star-shapedness of the degree /I

positive real functions, in the Kimura-Georgiou parametrization, implies star
shapedness of the degree /I real monic Schur polynomials and is implied by the star
shapedness of the degree /I complex monic Schur polynomials. Thus, for /I = I,
convexity is immediate.

Another of the main results of this paper is that, in general, the Kimura-Georgiou
parametrization is not convex, nor even star-shaped about the maximum entropy
solution. In fact, for 11;;' 3 there is an open set of y and ex values for which this
Kharitonov-like property fails. However, our numerical results suggest that the Schur
parameters may need to be extremely small, suggesting that this property may hold
for a reasonable range of Schur parameters. For reasons concerning the real and
complex Schur regions, the case /I = 2 is decidedly non-trivial. While convexity is
suggested by extensive simulation, it may turn out that the region is star-shaped about
the maximum entropy solution but non-convex.

2. Kimura-Georgiou parametrization
In what follows, without loss of generality, we set Co= I. Therefore, given a

sequence of real numbers {I, C" c2, ••• , c,} such that the Toeplitz matrix 7;, is positive
definite, we consider the class «!, of rational functions

V(z) = ~ . b(z)
2 a(z)

of degree at most /I such that

1 -1 -2 -'I -n-Iv(z)=2:+c,z +C2Z + ... +cnz +O(z )

and

V(z) is analytic for [z] ;;, I}

v(z) + v( liz) > 0 for [z] = I

This is precisely the class of functions (8) such that

a(z) and b(z) are monic of degree /I

a(z)b( I/z) + a( I/z)b(z) > 0 for [z] = 1

a(z) is stable, i.e. all zeros on [z] < 1

(8 a)

(8 b)

(9)

(lOa)

(lOb)

(10 c)
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2304 C. I. Byrnes and A. Lindquist

where the functions vIz) of degree less than n are represented by a(z) and bIz) with
common (stable) factors.

In this representation bIz) will also be stable, because vIz) is positive real if and
only if l/v(z) is. Kimura (1983) and Georgiou (1983) have shown independently that
any vIz) E CCn can be written

vIz) = ~. i/Jn(z) + a,i/Jn-'(z) + + ani/Jo(z) (I J)
2 tPn(z) + a1tPn-'(z) + + antPo(z)

where (a" al, ... , an) are real numbers and {tPk(Z)} and {i/Jdz)} are the Szego
polynomials of the first and second kind respectively. These are polynomial ortho
gonal on the unit circle, and they are defined by the recursions

and

tP,+ lIz) = ztP,(z) - Y,tP~(z)

tP~+ ,(z) = tP~(z) - y,ztP,(z)

i/J,+ lIz) = zi/J,(z) + y,i/J*(z)

i/J~+ lIz) = i/J~(z) + y,ii/J,(z)

tPo(z) = I}
tPt)(z) = 1

i/Jo(z) = I}
i/J~(z) = I

( 12)

( 13)

respectively, where {Yo, y" Yl' Y3' ... } are the Schur parameters defined by

1['-' ]y,=- l:4> r ,,-iCi + l + Ct + l
r, i=O

Here {tP,d are the coefficients of

tP,(z) = z' + tPtl Z'-' + ... + tPu

(14)

( 15)

and tP,·(z) ,= z'tP,( liz) is the reversed polynomial

tP~(z) = tPuz' + ... + tP"z+ 1 (16)

Therefore, in each of (12) (13), the second equation is equivalent to the first.
Now let .91 +(11) be the set of all a = (a" al, ... , an) such that (II) is positive real.

Kimura has raised the question of whether .91 +(n) is star-shaped, i.e. whether

a E.9I +(n) =:».a E sl +(n) for all ). E [0, I]

Simulations in lower dimensions seem to support such an assertion. In the case
II = I, we have

a(z) = z - Yo + a

which is stable if and only if

la-Yol < I

Moreover

bIz) = z + Yo + a

and hence condition (lOb) can be written

(a2 + I - Y5) + 2a cos e> ° for eE [0, 2n]

( 17)
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Geometry of Kimura-Georgiou parametrization

i.e.
_a2

- I + Y5 < 2a < a2 + I - Y5
which holds if and only if

- (I - IYoll < a < (I -IYol)

2305

( 18)

Any « satisfying (18) also satisfies (17) and hence.s1 +(1) is the interval defined by

( 18).
More generally, there is a strong relationship between the geometry of.s1 +(11) and

the geometry of the following set of Schur polynomials

9"R(Il)={P(z)=z·+p,Z·-l+ ...
+ P. :p, E R, p(z) = O=>lzl < 1}

9"dll) = {q(z) =z· +qlZ·-1 + ... +q.:q,E C, q(z) =0=>1 < l}

Of course, if the rational function (8 a) is positive real, then b(z), a(z) E 9"R(Il). In
particular, it is plausible that by allowing the Schur parameters to tend to zero and
allowing only stable cancellations, we would have

v ly,I < I, .W +(n) is convex=>9"R(n) is convex (19 a)

The relationship between .s1 +(n) and 9"dll) is known in the literature in various
guises. Given that a(z) E 9"R(n), to say that the rational function (8 a) is positive real is
to say, by the 'maximum modulus principle', that the harmonic function

Re {b(z)j2a(z)}, Izl;;' I

which achieves its minimum value on [z] = I, takes only positive values. That is, for
anYIlEC+

I
--(b(z) + Il(Z)) E 9"dn)
1+1l

From this observation, we can easily see that

9"dn) is convex e-cs' +(n) is convex, for alllyol < I (10 b)

Thus, convexity of.s1 +(n) is 'sandwiched' between convexity of the real and of the
complex Schur polynomials. From the principle (19) we can easily see that

(i) for n;" 3, .s1 +(11) is not convex for all lv] < I since 9"R(II) is not convex;

(ii) .s1+( I) is convex for all IYol < I, since 9"c(l) is convex.

The remaining case, II= 2, has a special and quite interesting feature. Although
9"R(2) is convex, as it turns out, 9"d2) is not. If 0,,02,03 are sufficiently close to I for
the polynomials

PI(Z) = Z2 - 01 exp( -i02 ) , P2(Z) = Z2 - 203z + d
we have PI' P2 E 9"d2) but

J.Pl + (I - J·)pd9"el2)

for a J. in a subinterval of (0, I). Indeed, the analysis in this case promises to be both
tedious and decidedly non-trivial. While there is evidence for convexity on the basis of
a large number of simulations, our preliminary analysis raises the question as to
whether .s1 +(2) may be star-shaped yet not convex.
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2306 C. I. Byrnes and A. Lindquist

In ~ 4, we shall exploit in more rigorous detail a principle similar to (19) which
relates the star-shapedness or.<I +(n) about the maximum entropy solution to the star
shaped ness of ,9"R(n) about the monomial z".

3. .<I+ (II) is euclidean
In this section, we shall prove a positive result concerning the geometry of .9/ +(n),

asserting that there exists a smooth, one-to-one mapping

F:.<I +(n) ---> IR"

onto euclidean space with a smooth inverse

(20 a)

(20 b)

More precisely, for fixed Yo, ... , y,,_\ the set of ()( such that b(z), a(z) in the rational
function (8 a) has only stable common factors in an open subset of IR" (see Dayawansa
and Ghosh 1988). Furthermore, the set of all such ()( values for which (8 a) has strictly
positive real part on [z] '" I is again open. Therefore sf +(n) is an open subset of IR". So

. it makes sense to say that the function F in (20) is differentiable. We note that the
existence of such an F would, of course, be immediate if sf +(n) were convex and
would imply that sf +(11) is convex, and hence star-shaped, in many co-ordinate
systems. Being an open subset of !R", s/ +(11) is, in the language of differential geometry,
a smooth II-manifold and the existence of a smooth Fin (20) is just the assertion that
sf +(11) is diffeomorphic to IR".

Quite analogous to determining convexity, it is a difficult task to decide whether
two smooth Il-manifolds are diffeomorphic; however, Milnor (1964) gives an expo
sition of several tools which are useful in understanding whether a smooth n-manifold
M is diffeomorphic to IR", Among these criteria are those given in the following
lemmas.

Lemma I (Brown-Stallings)

A smooth II-manifold M is diffeomorphic to IR" if and only if for any compact
subset K c M, there is an open subset, U c M, diffeomorphic to IR" such that K c U.

In our proof we shall also need to recognize spaces of polynomials which are
diffeomorphic to IRn

. For nee any subset we denote by 9 0(11) is the space of real
monic polynomials p(z), of degree II, with all roots lying in n.

Lemma 2

Suppose nee is a self-conjugate open subset with a simple, closed, rectifiable,
orientable curve as boundary. Then 9,,(11) is diffeomorphic to IRn

•

Proof

By the Riemann mapping theorem, n is complex-analytically diffeomorphic to the
open unit disc [). Moreover, since n is self-conjugate, we can choose the diffeomorphic
T\ to be real; i.e, for z, E n

(21)
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Geometry of Kimura-Georgiou parametrization 2307

Next, choose any real diffeomorphism T2 of IT) to C. Composing, we obtain a real
diffeomorphism

T= T2oTt : Q---+C

Now the roots of any p E i?l'n determines an unordered n-triple (J'b ... , )'n)' i.e. a divisor
of degree n, of points )'1 E C, not necessarily distinct. We denote this divisor by [0p and
the space of such divisors is the so-called symmetric product Qln) of Q.

For example, using the elementary theory of symmetric functions, we see that the
symmetric products Qln) for Q = IR and C, are diffeomorphic, respectively, to IRn and
en. In general, the symmetric product Qln) is always a smooth n-manifold: in fact. Qln)
is diffeomorphic to i?l'n(n). Moreover. the projection

nn: Qn---+ Qln)

is smooth. and any diffeomorphism

T: Q\n) ---+ Q~n)

is induced by a unique permutation-invariant diffeomorphism

T: Qn---+Qn

In particular, if T: Q 1 ---+Q2 is a diffeomorphism. then the induced map

T: Q\n) ---+ Q~)

defined on divisors of degree n via

TO- b ...• )'n) = TO-d, ...• T()'n))

is a diffeomorphism.
Suppose, then, that Q is as in Lemma 2 and T is a real diffeomorphism of Q with C.

T induces. as above. a real diffeomorphism

(22)

and since T is real. T maps self-conjugate divisors to self-conjugate divisors. That is,

T: i?l'~ I ---+ i?l'g')

is a diffeomorphism. However. by the 'fundamental theorem or algebra', .C!i'dn) is the n
dimensional euclidean space of real monic polynomials of degree n. 0

Theorem I

sl +(n) is diffeomorphic to IRn.

Proof

First note that 'Yo E sI +(n) if and only if b + ua E [f'dn) for all I" E C+. Let
1

ro, ... , Yn- 1 be fixed. Then given 'Yo. the polynomial --(b + I"a) and its divisor of
1+1"

roots D.([0b) are determined uniquely. Thus. 'Yo E .91 +(n) if and only if two conditions
are satisfied:

(i) fib cIT)

(ii) D.(fib ) c IT) for all u E C+
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2308 C. I. Byrnes and A. Lindquist

Of course, Do(E0b ) = E0b. We note that since bl2a is strictly positive real, the roots of
b + JW are bounded away from the unit circle; i.e.

(23)

Moreover, by a standard compactness argument, if K c.srl +(11) is a compact subset,
then for all C( E K, (23) holds where p may be chosen (uniformly) less than one.
Therefore, any compact K c sl +(11) determines, and is determined by, a compact set
of divisors E0b satisfying (i) and (ii) and hence (23). Now let K be an arbitrary but fixed
compact subset of s1 +(11). Of course, s1 +(11) # K and therefore there exists a relatively
compact subset V c sf +(11) such that

K eVe Vc.srl +(11), dist (K, V) > 0

hold. In particular, (i), (ii) and (23), for some p < I, hold for all divisors E0b

corresponding to C( E V. Noting that the sets

DK = {z E [): Z E D"(E0b ) , b E K, /1 E C+}

Dp={ZE[):ZED"(E0b),bEV,/1EC+}

arc each self-conjugate subsets of [)(O; p), it is possible to choose a simple, closed,
rectifiable, orientable curve y (also self-conjugate) such that y c E0 p - E0 K . Choosing n
to be the interior ofy, i.e. the bounded component of C - y (as we may by the 'Jordan
separation theorem') we set U = 9 0(11). Since E0 K en c E0 p and V c.srl +(11), we see
that

K cUe s1 +(11)

and, by Lemma 2, U is diffeomorphic with [R". By the Brown-Stallings criterion,
sl +(11) is therefore diffeomorphic with [R". 0

4. Higher dimensional case
We begin with an elementary but useful observation. Consider the pencil of

polynomials

Po(Z) + ;.p,(z), 0::;;;;;.::;;;; 1 (24)

Such an interval of polynomials arises in studying the star-shapedness of the
Kimura-Georgiou parametrization and the Hurwitz or Schur properties of polytopes
of polynomials. Indeed it is known (Bartlett et al. 1988) that in order to test the
stability of a polytope of polynomials, it is sufficient to test the stability of each edge.
Of course, testing the stability properties of (24) can be done using Nyquist criteria or
root-locus methods by restricting the gain values to lie in the interval [0, I]. However,
it is more convenient to note that the root loci of(24) can, in fact, be interpreted as an
'unrestricted' root-locus plot,

Lemma 3

The root loci, Zi(}.)' of (24) are the root loci zi(k) of

Po(z) + k(po(z) + p,(z)) 0::;;;; k ~ 00

Proof
Since

(25)
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Geometry of Kimura-Georgiou parametrization

to say (24) holds is to say that (25) holds when

k = i.j( 1 - i.)

so that for 0,;;; i. < I, we have 0,;;; k < 00.

Example 1

Consider, for 0,;;; E';;; I, the interval of polynomials

p,(i., z) = Z3 + i.(3EZ2 + 3E 2Z + E3
) 0,;;; i,,;;; I

2309

(26)

Using Lemma I and standard generalized root-locus methods involving Newton
diagrams, we see that for i. near zero the roots Zi(i.), i = 1,2, 3, depart from zero in a
Butterworth pattern of order three; viz., their tangent directions have the constant
phases - n, ± n/3. Also, for i. near one the roots Zi(i.), i = 1,2, 3, approach the point
-E in a Butterworth pattern of order three with asymptotic phases ofO, 2n/3, 4n/3. In
particular, while PI( I, z) is marginally Schur and PI(O, z) is a Schur polynomial, two of
the roots of p,(i.,z) lie outside the unit disc if i. is sufficiently close to one.

For Example I, we may conclude the following lemma.

Lemma 4

There is a non-empty open interval (Eo, I) such that for Econtained in (Eo, I) the
following assertions hold:

(i) p,(O, z) and p,( I, z) are Schur polynomials;

(ii) for a non-empty open interval I, = (i._(E), i.+(E)) C [0, I], the polynomial

P,o., z) = (I - i.)p,(O, z) + i.p,( 1,z)

is not Schur for i. E I,.

We now state the main result of this section, which proves that the
Kimura-Georgiou parametrization is not star-shaped about the maximum entropy
solution.

Theorem 2

There is a non-empty open subset

U = {(Y" Y2' Y3' IX" 1X 2, 1X 3)} C R6

such that

(i) the Schur parameters Yi satisfy Iy;i < I;

(ii) each rational function

()
i/t3(Z) +1X 1i/t2(Z) +1X 2i/tI(Z) +1X3g Z =

o 4>3(Z) + 1X 1<P2(Z) + 1X 2<PI(Z) + 1X 3
is positive real; and

(iii) for each go there exists a non-empty open subinterval 10 C [0, I] such that for
i. E 10 the rational function g,o(z) is not positive real.

Remark 1

In particular, there is an 'open set' of counter-examples to a Kharitonov-like
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2310 C. I. Byrnes and A. Lindquist

property for positive reality in the Kimura-Georgiou parametrization. Moreover, this
gives another proof that the positive real functions do not form a convex set in the
Kimura-Georgiou parametrization. However, it is very tempting to speculate that
such a Kharitonov property might hold if the Schur parameters are sufficiently close
in modulus to unity.

Proof oj Theorem 2
We note first that as the Yi tend towards zero the Szego polynomials of the first and

second kind <Pno and "'no tend to the monomial ZOO. In particular, for Yi sufficiently small

and

"'3(Z) +0(''''1(Z) +0(1"'I(Z) +0(3

will be Schur polynomials if

(27)

(28)

(29)

is a Schur polynomial. Similarly, if (29) has two roots lying outside the closed unit
disc, for Yi sufficiently small, both (27) and (28) will have two roots lying outside the
closed unit disc. Therefore, choosing

(30)

from Lemma 4(i) there is an open set of Yi, sufficiently small, and an open interval
(1:0, I) of E values such that

(i) both (27) and (28) are Schur polynomials; and

(ii) the ratio of (27) and (28) has real part close to unity on the unit circle and
hence is positive real.

Moreover, by Lemma 4(ii), for each choice of 0( corresponding to an E contained in
(Eo, I), there is a non-empty open interval la c [0,1] such that

(iii) the rational function

is not positive real for any). E la. Indeed both the numerator and denominator
will have two roots outside the closed unit disc.

Since these conclusions are valid for arbitrary small deviations in 0(1) 0(1' 0(3' we
conclude that there exists an open subset

U = {(Y" Y1, YJ, 0(" 0(2' 0(3)} C [R6

such that the conclusions of the theorem hold. o

We now give a numerical example, illustrating Theorem 2. First, we note that for
the polynomials

the pencil

Po(Z) + ).p,(Z) 0 ~ i.~ I
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Geometry oj Kimura-Georgiou parametrization 2311

consists entirely of Schur polynomials only for a proper subinterval [0, Eo] contained
in [0, I]. Rough calculations put Go between 0·8 and 0·9. In particular, it is easily
checked that choosing f: = 0·95 gives an interval of polynomials with end points being
Schur polynomials but for which an interval of ), yields 'non-Schur' polynomials
defined ai via (30).

Furthermore, choosing the Schur parameters

Y, = 0·000 I , Y2 = 0'0002, Y3 = 0·0003

and constructing the corresponding Szego polynomials rP" l/1i' i = I, ... , 3, we obtain
the positive real rational functions

for which

0) _1/I3(Z) + 2'71/12(Z) + 2-431/1,(z) +0·729
gl(" - rP3(Z) + 2'74>2(Z) + 2-434>,(z) + 0·729

(31)

(32)
1/13(Z) + 2·7),1/12(Z) + 2-4314,(z) + 0·729),

gAz) = 4>3(Z) + 2·7).4>2(Z) + 2-43),4>,(z) + 0·729),

is not positive real for ), in the interval (0' 708,0'98). For example, it is easily seen from
(32) that, for ). = 0'84, it is not positive real, while for ), = 0 and for ), = 1 it is positive
real.

While convexity of Y'R(n) for n ~ 2 rules out the existence of such counter
examples, for n:;;, 3 a similar construction to Example I, mutatis mutandis, gives a
proof of the following extension of Theorem 2.

Theorem 3

For n:;;, 3, there is an open subset U c [R2. of parameters (a b ... , a., Yo, ... , Y._I)
such that

(i) IYjl < I j= I .... , n-I

(ii) a = (a, . .. . , a,,) E sl +(n)

Moreover, for each (a, y) E U there exists an open subinterval 1
0

. , c (0, I) such that

(iii) ),a ri.w +(n) for). E I,.,.

In particular, for n:;;, 3, sf +(n) is in general not star-shaped about the maximum
entropy filter.
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