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Abstract. Variational problems and the solvability of certain nonlinear equations
have a long and rich history beginning with calculus and extending through the cal-
culus of variations. In this paper, we are interested in “well-connected” pairs of such
problems which are not necessarily related by critical point considerations. We also
study constrained problems of the kind which arise in mathematical programming
as well as constraints of a geometric nature where a solution is sought on a leaf of a
foliation. In these cases we are interested in interior minimizing points for the vari-
ational problem and in the well-posedness (in the sense of Hadamard) of solvability
of the related systems of equations. We first prove a general result which implies the
existence of interior points and which also leads to the development of certain gen-
eralization of the Hadamard-type global inverse function theorem, along the theme
that uniqueness quite often implies existence. This result is illustrated by prov-
ing the non-existence of shock waves for certain initial data for the vector Burgers’
equation. The global inverse function theorem is also illustrated by a derivation of
the existence of positive definite solutions of matrix Riccati equations without first
analyzing the nonlinear matrix Riccati differential equation. The main results on
the existence of solutions to geometrically constrained well-connected pairs are then
presented and illustrated by a universal solution to the generalized moment prob-
lem, with a nonclassical complexity constraint, given by a a geometrically derived
minimization problem for a strictly convex nonlinear functional. A more general
result is then illustrated by a geometric analysis of the existence of interior points
for linear programming problems. In a final section, our solution to the generalized
moment problem is applied to two interpolation problems, arising in signal pro-
cessing and systems theory. These moment problems are of the Carathéodory, and
of the Nevanlinna-Pick, type, respectively. The nonclassical complexity constraints
reflect constraints on the physical synthesis of the corresponding filters or circuits.
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1. Introduction

Consider two n-manifolds M and N and a continuous map

(1.1) f : M → N.

We assume that N is connected. Following Hadamard, one is typically interested in
the existence of solutions to the equations

(1.2) f(x) = y,

the uniqueness of solutions, and the continuous dependence of solutions on the y. More
formally, the problem of finding solutions to (1.2) is said to be well-posed provided
the map (1.1) satisfies:

(i) f is surjective
(ii) f is injective
(iii) f has a continuous inverse.

In geometric terms, the solvability problem is well-posed provided f is a homeomor-
phism. One consequence of well-posedness is therefore that the map f is proper, i.e.
that, for any compact subset K of N , f−1(K) is compact. In other words, given a
priori bounds on the right hand side of (1.2), there exists bounds on the solutions to
(1.2).

We shall also consider variational problems of the following form. For each y ∈ N ,
let Qy be a closed connected subset of a topological space Zy. In many applications
Qy and Zy will not vary with y, in which case we suppress the subscripts. For each
y ∈ N , suppose there is a function

(1.3) Jy : Qy → R ∪ {∞}.

Here, one is often interested in computing

(1.4) inf
q∈Qy

Jy(q),

and in finding all q0 for which

(1.5) Jy(q0) = inf
q∈Qy

Jy(q).

Denoting by int(Qy) the set of interior points of Qy in its relative topology, we are
particularly interested in finding minimizers in int(Qy). We refer to such a point as
an interior minimizing point for Jy. While for concave problems we are interested
in interior maximizing points, there are important problems when we would want to
know about the uniqueness of saddle points. For these reasons, and others illustrated
throughout this paper, our basic definition will include general critical points.

Definition 1.1. Consider a pair of problems of the form formulated above. This pair
is said to well-connected if, for all y ∈ N , there exists an injection from the solution
set of (1.2) into the set of interior critical points of Jy.

Of course, one instance of well-connectedness arises from an analysis of the sta-
tionarity of interior points for variational problems. Conversely, there is a finite
dimensional analogue of the inverse problem, or Dirichlet Principle, of the calculus of
variations. More explicitly, suppose

f : R
n → (Rn)∗
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is a smooth map. This map defines a 1-form on Rn which can be expressed as

ω =

n
∑

i=1

fidxi

in terms of a global coordinate system (x1, x2, · · · , xn). If dω = 0, then there exists a
smooth functional J such that these two problems are well-connected. Indeed, since
ω is closed on Rn, it is exact; i.e.,

dJ = ω

for some smooth J : Rn → R. Since

D2J(x) = Jac(f)(x),

Jac(f) is symmetric, and we now assume that Jac(f)(x) > 0 for all ∈ Rn so that

Jy(x) = J(x) − y(x)

is strictly convex for each y ∈ (Rn)∗. Alternatively, by the second derivative test, Jy

has only minima as critical points, and to say that Jy achieves its minimum at x is to
say that f(x) = y. Now suppose f is proper. By Hadamard’s global inverse function
theorem [30, 31, 32], f : Rn → (Rn)∗ is a diffeomorphism so that the problem,
f(x) = y, is well-posed, and, in fact, Jy always achieves its minimum.

As an elementary example consider the equation

(1.6) F (z) = c,

where F a holomorphic function of one variable and c = c1 + ic2. Since the 1-form
(F (z) − c)dz is exact, taking the imaginary part of a primitive yields a functional
Jc : C → R such that

dJc = (v − c2)dx + (u− c1)dy.

where F (x, y) = u(x, y) + iv(x, y). In particular, the pair (F, Jc) is well-connected.
Moreover, by the Cauchy-Riemann equations, the Hessian D2Jc is an indefinite sym-
metric matrix satisfying

detD2Jc ≤ 0

with equality at z0 if and only if F ′(z0) = 0. In particular, if F ′(z) 6= 0, (1.6) is well-
connected to a variational problem for which the critical points are nondegenerate
saddle-points. Interestingly, Jc has a unique critical point for all c if and only if F is
univalent.

Remarkably, a similar situation arises in the analysis of the generalized moment
problem of classical analysis. For simplicity, we restrict to the case of real quanti-
ties, deferring the complex case to Section 3. Consider a sequence of real numbers
c0, c1, · · · , cn and a sequence of continuous, linearly independent real-valued functions
α0, α1, · · · , αn defined on the real interval [a, b]. The moment problem is then to find
all monotone, nondecreasing functions µ of bounded variation such that

(1.7)

∫ b

a

αk(t)dµ(t) = ck, k = 0, 1, · · · , n,

where the sequence c0, c1, · · · , cn is positive in the following sense. Let P be the
subspace of C[a, b] spanned by the functions

α0, α1, · · · , αn
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and let P+ be the subset of p ∈ P that are positive on [a, b]. It is typically assumed
that P+ is nonempty, in which case P+ is an open convex subspace of P. One says
that the sequence c0, c1, · · · , cn is positive if and only if

(1.8) 〈c, q〉 :=
n
∑

k=0

qkck > 0

for all q := (q0, q1, · · · , qn) ∈ R
n+1 such that

(1.9)

n
∑

k=0

qkαk ∈ P+.

Denote by C+ the space of positive sequences. The fact that P+ is nonempty implies
that C+ is nonempty. Therefore, C+ is also a convex open subset of the space of real
sequences of length n + 1.

Motivated by several applications in speech synthesis, robust control and signal
processing (see Section 4), we introduce the complexity constraint

(1.10)
dµ

dt
= Φ(t) =

P (t)

Q(t)
, P, Q ∈ P+.

Fix P and define the function

F : P+ → C+

componentwise via

Fk(Q) =

∫ b

a

αk(t)dµ(t)

Parameterizing Q via Q =
∑n

k=0 qkαk, we construct the 1-form

ωc =
n
∑

k=0

[ck − Fk(µ)] dqk,

on P+ and observe that ωc is closed. Therefore, by the Poincaré Lemma, there exists a
smooth function Jc such that dJc = ωc, leading to the construction of a well-connected
pair for the generalized moment problem with complexity constraints. More explicitly,

Jc =

∫

ωc,

with the integral being independent of the path between two endpoints. Therefore,
since

ωc =

n
∑

k=0

[

ck −

∫ b

a

αk

P

Q
dt

]

dqk

=

n
∑

k=0

ckdqk −

∫ b

a

P

Q
dQdt,

computing the path integral
∫ Q1

Q0

ωc =

[

〈c, q〉 −

∫ b

a

P logQdt

]Q1

Q0

,
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we obtain, modulo a constant of integration,

Jc(Q) = 〈c, q〉 −

∫ b

a

P logQdt.

In general, since Jc is strictly convex, any interior critical point is a nondegenerate
minimum, yielding uniqueness of a distribution of constrained complexity solving the
moment problem. In Section 3, we shall address existence.

As a final example, these conditions are also always satisfied for the pair of well-
connected problems arising from the Ritz approximations of a strictly convex varia-
tional problem and, as pointed out by Hilbert, its fully elliptic Euler Lagrange equa-
tion. For example, following [52], let G be a bounded region in RN with a piecewise
smooth boundary ∂G, and let Ḡ = G ∪ ∂G be the closure of G. Consider the varia-
tional problem

inf
u∈C1(Ḡ)

Jh(u), u = 0 on ∂G

where

Jh(u) =

∫

G

(

1

2

N
∑

k=1

(
∂u

∂xk

)2 + g(u)− uh

)

dx.

The corresponding Euler-Lagrange equations are given by

∆u− g′(u) = −h on G

u = 0 on ∂G,

and they are equivalent to the variational problem, for suitable g and sufficiently
smooth u (u ∈ C2(Ḡ)). If V ⊂ C2(Ḡ) is finite-dimensional subspace, Ritz’s method
gives two problems, namely the optimization problem

inf
v∈V

ϕ(v) − 〈b, v〉,

where ϕ is a smooth function, and the problem to solve the equation

ϕ′(v) = b

for b ∈ V . In this case, ϕ is strictly convex, ϕ′ is strictly monotone and proper
(coercive), and

D2ϕ > 0.

In this paper, however, we are also interested in well-connected pairs where f
need not generate an exact 1-form and need not have an everywhere nonsingular
Jacobian. And, we are particularly interested in constrained problems of two types:
the constraints arising in mathematical programming and the geometric constraints
that solutions lie on a particular leaf of a foliation.

In an ascending order of complexity, in Section 2 we begin with the case where the
leaf is the entire manifold M and prove a “duality” theorem for well-connected pairs
which asserts that problem (1.2) is well-posed and the variational problem (1.4) has
an interior critical point provided f is proper and Jy has at most one critical point.
Of course, the case when Qy is convex and Jy is strictly convex is particularly easy
to apply. The “duality” theorem is then illustrated by a well-posed pair of problems
concerning shock waves in an interval [t0, T ] for solutions of the (vector) inviscid
Burgers’ equation. We begin by defining a variational problem for which, when viewed
as an optimal control problem, the Riccati partial differential equation [6] for the
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gradient of the value function turns out to be the Burgers’ equation in backwards time.
We then construct, for each t ∈ [t0, T ], a map ft for which well-posedness is equivalent
to the absence of shock waves at time t. Several criteria for properness of this map
are given in terms of qualitative behavior of the initial data. After rendering the
variational problem finite dimensional , it is shown that these two problems are well-
connected. In particular, convexity of the terminal constraint condition is equivalent
to monotonicity of the intial condition, which is related (equivalent in the scalar case)
to the absence of shock waves. Moreover, in the nonconvex case, the formation of
multiple critical points is related to the formation of shock waves. Finally, an example
is given where a parameter variation in the initial condition causes an onset of shock
waves that is reflected, as a finite-dimensional “shadow,” in the critical point equation
undergoing a pitchfork bifurcation.

The proof of our basic result in Section 2 belongs to a long tradition of global
inverse function theorems, relying on a lemma that uniqueness of solutions to certain
finite dimensional nonlinear problems implies existence. The lemma is illustrated
by showing existence of positive definite solutions to the algebraic matrix Riccati
equation, for which it is relatively simple to establish uniqueness.

In Section 3, we formulate a theorem for well-posedness and for existence of interior
minima for problems constrained to an arbitrary leaf of a foliation. To illustrate
how such problems arise, we consider here the generalized moment problem over the
complex number field. In the real case considered above, fixing either P or Q defines
leaves of two complementary foliations. While in this paper we will encounter less
trivial foliations, the remarkable fact is that, restricted to these leaves, there is a
natural variational problem which is well-connected to the moment problem.

For constrained well-connected pairs, the existence of a pair of foliations arises very
naturally. While the mappings obtained by restricting f to the leaves of a constraint
foliation do not always generate closed (or exact) 1-forms, we are able to obtain
enhancements of the basic duality theorem in terms of geometric properties of the
corresponding foliations. In Section 3, we illustrate this for the nontrivial problem of
the analysis of of interior point methods for finite-dimensional linear programming.

In section 4, the results obtained in Section 3 for the generalized moment prob-
lem are illustrated by interpolation problems arising in spectral estimation and signal
processing, and in applications to robust controller design. As it turns out, the first
interpolation problem is the classical Carathéodory extension problem with a nonclas-
sical complexity constraint defined by the rationality of, and a degree constraint on,
the interpolant. The second interpolation problem is the classical Nevanlinna-Pick
interpolation, again with the same nonclassical complexity constraints. In each case
the complexity constraints reflect the physical synthesizabilty of a filter, or circuit,
that solves the relevant interpolation problem.

2. The unconstrained problem

Not surprisingly, a great deal can be said about well-connected pairs of problems,
especially when either the number of solutions to (1.2) or the number of minimizers
for Jy is independent of y. One such example is given in the following result.

Theorem 2.1. Consider a well-connected pair of problems. If f is proper, and, for
each y ∈ N , Jy has at most one critical point, then
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(i) problem (1.2) is well posed;
(ii) for each y ∈ N , Jy has a unique critical point which is an interior point.

Example 2.2. (Variational methods for the absence of shock waves in Burgers’ equa-
tion.) Consider the (vector) inviscid Burgers’ equation

(2.1)
∂Π

∂t
=
∂Π

∂x
Π, Π(x, 0) = Π(x),

where x ∈ R
n and Π is a smooth map Π : R

n → R
n.

We are interested in long-time existence of solutions on arbitrary intervals [t0, T ],
with the obstructions to existence being finite escape time or the existence of a shock
wave at some time t. We shall first define a variational problem for which, when
viewed as an optimal control problem, the Riccati partial differential equation [6] for
the gradient of the value function turns out to be the vector inviscid Burgers’ equation
in backwards time.

For Q : Rn → R a smooth map, the canonical equations

ẋ = p, x(t0) = x0 ∈ R
n,

ṗ = 0, p(T ) = −∇Q(x(T )) ∈ R
n(2.2)

for the variational problem

(2.3) V (x, t0) = inf

{
∫ T

t0

1

2
‖ẋ‖2dt+Q(x(T ))

}

generate characteristic curves

p = Θ(x(t)) = Θ(x, t),

which satisfy a related equation

0 = ṗ =
∂Θ

∂t
+
∂Θ

∂x
Θ

with terminal condition

Θ(x, T ) = ∇Q(x).

In particular, a solution of Burgers’ equation with

Π(x, 0) = ∇Q(x)

yields a solution (backwards in time)

p(T − t) = Θ(x, T − t) = Π(x, t)

of the canonical equations (2.2). Denote the “time t” map of the canonical equations
by

Φt : (x0, p0) 7→ Φt(x, p) = (x(t; x0), p(t; p0)).

In order to define the other ingredient in a well-connected pair, we also consider
the two projection maps

proj1(x, p) = x and proj2(x, p) = p,

defined on R2n. If Q is Ck+1, then

Mt = Φt(graph(Π(x, 0)))
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is a smooth (Ck) n-manifold for all t ≥ 0. Now define the smooth map ft : Rn → Rn

via

ft(x0) = proj1{Φt(x0,∇Q(x0))}.

To say that the problem of solving

ft(x) = y

is well-posed is to say that Mt is the graph of a Ck function. If this is the case for all
t ∈ [t0, T ], then (see [7, 8])

Mt = graph(Π(x, t)) = graph(V ′(x, t))

so that the “value” function V of the variational problem is Ck+1 and is a classical
solution of the Hamilton-Jacobi Theorem. In general, if V is C2, then it is Ck+1, and,
in fact, a shock wave for Burgers’ equation occurs precisely when V fails to be twice
differentiable, and in this case the (Lagrangian) submanifold Mt is a “generalized
solution” of Burgers’ equation.

We now show that these problems are well-connected. Integrating the canonical
equations (or the Euler-Lagrange equations) to obtain

x(t; x0) = pt+ x0, for p a constant vector in Rn,

one can see that ft is proper provided either ∇Q is bounded or 〈∇Q(x), x〉 ≥ 0 for
all x ∈ Rn. Now, the critical points of

W (x0, p) =
1

2

∫ T

t0

‖ẋ‖2dt+Q(p(T − t0) + x0)

are characterized by the terminal constraint equations

p = −∇Q(p(T − t0) + x0).

Therefore, every solution x0 of

ft(x) = y0

determines, in a 1 − 1 fashion, a critical point

p0 = proj2(Φt(x0,∇Q(x0)))

of W , but not necessarily a minimum. Indeed, if xi satisfy ft(xi) = y0 for i =
1, 2, · · · , N , and pi are the corresponding “costates”, then (y0, pi) ∈ Mt generate
extremal trajectories for the variational problems, which may correspond to local
minima, local maxima, or inflections, as we shall illustrate by example.

We next investigate when the variational problem has a minimum as its only critical
point. Analytically, the Hessian of W (x0, p) at a critical point is given by

D2W (x0, p) = I + (T − t0)D
2Q(p(T − t0) + x0).

In particular, if D2Q(x) > 0 for x ∈ Rn, then W (x0, p) has only nondegenerate
minima as critical points.

One can also see this directly from the variational problem. Indeed, suppose that Q
is strictly convex. Then, the variational problem (2.3) is a strictly convex optimization
problem defined on an affine subset of a Hilbert space and therefore has a unique
minimum point. Moreover, the problem of solving

ft(x) = y
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is well-posed so that there do not exist shock waves. Conversely, suppose ϕ : Rn → Rn

is an initial condition for (2.1), and consider the submanifold

graph(ϕ) = {(x, p) | p = ϕ(x)} ⊂ R
2n,

where we now consider R2n as a symplectic manifold with the standard symplectic
form dx ∧ dp. To say that graph(ϕ) is a Lagrangian submanifold is of course to say
that there exists a Q such that

∇Q(x) = ϕ(x),

which also occurs if, and only if, the 1-form

ω =
n
∑

i=1

ϕidxi

is exact, ω = dϕ. We call ϕ Lagrangian in this case. Suppose this is the case and
that ϕ is strictly monotone; i.e.,

〈ϕ(x) − ϕ(y), x− y〉 > 0

for x, y ∈ Rn with x 6= y. In this case, Q is strictly convex. Therefore, there exists no
shock waves as we solve (2.1) with Π(x, 0) = ϕ(x) whenever ϕ is a strictly monotone,
Lagrangian map.

If n = 1, every function is Lagrangian, so this argument yields a variational proof of
the classical fact that shock waves do not occur for monotone increasing initial data.

Finally, consider the explicit example with

Q(x) =
1

4
(x4 − 2εx2).

When ε = 0, there are no shocks, but for ε > 0, a shock occurs at T = 1/ε. For
T > 1/ε the pitchfork bifurcation for Q′(x) = 0 produces a shock wave yielding three
extremals, two minima and a maximum, for sufficiently small x, as can be seen in
Figure 1.
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The proof of the duality theorem follows from Brouwer’s Theorem on Invariance of
Domain [46, page 3].

Proof of Theorem 2.1. Since Jy has at most one minimizing point, and the pair of
problems is well-connected, f is injective. In this case, uniqueness implies existence
of solutions, as stated in the ensuing lemma. Matters being so, since the pair of
problems is well-connected, for each y ∈ N , Jy has a minimizing interior point, which
is therefore the unique minimizer for Jy. �

Lemma 2.3. Suppose M and N are n-dimensional, topological manifolds and that N
is connected. Consider a continuous map f : M → N . Then, f is a homeomorphism
if and only if f is injective and proper. In this case, M is connected.

Proof. If f is a homeomorphism, then f is injective, and since f−1 is continuous f
is proper. Conversely, if f is injective, f is an open mapping by Brouwer’s Theorem
on Invariance of Domain. In particular, f(M) is a nonempty open submanifold of
N . Since f is proper, f is a closed mapping so that f(M) is a closed subset of N .
Since N is connected, f is surjective. Finally, since f is a closed mapping, f−1 is
continuous. �

That uniqueness implies existence for a class of nonlinear problems has several
precedents. Generalizing the linear case, it is known [5, 43] that injective polynomial
maps from Rn to Rn are surjective. One can also extend Lemma 2.3 to the case where
f is locally injective and N is simply connected. This would also follow from the
Banach-Mazur Theorem [4, p. 221] after one observes, by Brouwer’s Theorem, that
locally injective maps of n-manifolds are also local homeomorphisms. In the smooth
category for the same class of smooth manifolds, Hadamard’s Theorem asserts that
smooth, proper maps with nonvanishing Jacobian are diffeomorphisms.

These global inverse function theorems give criteria for problems to be well-posed.
The following example illustrates the use of uniqueness implying existence for the
algebraic Riccati equation, replacing a standard argument requiring an analysis of
the nonlinear matrix Riccati differential equation.

Example 2.4. (Uniqueness implies existence for algebraic Riccati equations.) As is
well-known, the algebraic Riccati equation

(2.4) PA+ ATP − PBBTP = −CTC

plays a crucial role in infinite-horizon linear-quadratic optimal control. Recall that,
in that problem, one considers the optimal control problem to infimize

(2.5)

∫

∞

0

(‖y(t)‖2 + ‖u(t)‖2)dt,

subject to the constraints

ẋ = Ax +Bu, x(0) = x0(2.6)

y = Cx(2.7)

Here x is square integrable as a function on (0,∞) taking values in Rd and u is square
integrable as a function on (0,∞) taking values in Rk. Thus, A, B and C are real
matrices of dimensions d×d, k×k and m×d, respectively. Without loss of generality,
we may take m ≤ d. We assume that the system (2.6) is controllable; i.e., for any time
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t1 > 0 and any initial state x0 ∈ Rd, there exists a control u defined on the interval
[0, t1], which drives the trajectory of (2.6) from state x0 and time t = 0 to state 0 at
time t = t1. Controllability ensures that the integral (2.5) has a finite infimum. We
also assume that the system is observable; i.e., if y(t) ≡ 0 on some interval [0, t1], then
x0 = 0.

In the solution of such optimal control problems it is important to show the exis-
tence of a unique positive definite solution to (2.4). Here we shall use Lemma 2.3 to
do this. To this end, we first use a standard argument to show uniqueness. In fact,
let P be any positive definite solution of (2.4), and consider the control law

(2.8) u(t) = −BTPx(t),

which yields the solution x(t) = eΓtx0, where Γ := A − BBTP . Then P is also a
positive definite solution to

(2.9) ΓTP + PΓ = −PBBTP − CTC,

and consequently, since the right member of the Lyapunov equation (2.9) is negative
semidefinite, Γ must have all its eigenvalues in the closed left half-plane Re z ≤ 0.
However, observability implies that none of these eigenvalues lies on the imaginary
axis, for if there were such eigenvalues we could choose the initial value x0 in the
corresponding eigenspace, thus producing a solution x(t) = eΓtx0 which is periodic;
i.e., x(t0) = x(t1) for some t0 6= t1. Computing the rate of change of the quadratic
“candidate” Lyapunov function xTPx along this trajectory, we obtain

d

dt
xTPx = xT(ΓTP + PΓ)x = −xT(PBBTP + CTC)x,

so integrating from t0 to t1 we obtain
∫ t1

t0

(‖BTPx‖2 + ‖Cx‖2)dt = 0.

However, then BTPx ≡ 0 and Cx(t) ≡ 0 on [t0, t1], contradicting observability.
Consequently, Γ has all its eigenvalues in the open left half-plane, and hence the
control law (2.8) is stabilizing so that, in particular, both x and u are square integrable.

Now, if u is any square-integrable control for which x is also square-integrable, then
first computing the rate of change of xTPx along this trajectory, we have

d

dt
xTPx = xTPAx+ uTPBu+ xTATPx+ uTBTPx.

Next, integrating from 0 to ∞ yields

−x0
TPx0 =

∫

∞

0

(xTPAx + uTPBu+ xTATPx+ uTBTPx)dt.

In particular,

(2.10)

∫

∞

0

(‖y(t)‖2 + ‖u(t)‖2)dt = x0
TPx0 +

∫

∞

0

‖u+BTPx‖2dt.

From this one sees that, if P were to exist, the control law (2.8) would be optimal for
all initial data x0, resulting in a minimum cost J(x̂, û) = x0

TPx0. Supposing that P̃
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is another positive definite solution of (2.4), we obtain, as above, J(x̂, û) = x0
TP̃ x0,

i.e.,

x0
T(P̃ − P )x0 = 0.

However, this is valid for all x0 ∈ Rn, and hence P̃ = P . Therefore, the algebraic
Riccati equation (2.4) has at most one positive definite solution.

To show that uniqueness of the positive definite solution implies existence of such
a solution, we apply Lemma 2.3. To this end, we first assume that Q := CTC is
positive definite. Consider the two n-manifolds, where n := d(d+ 1)/2,

M = {P | P > 0 and −PA− ATP + PBBTP > 0}

and

N = {Q | Q > 0}.

Note that N is connected. We define the continuous map f : M → N to be

f(P ) = −PA− ATP + PBBTP.

We have just established that f is injective.
To see that f is proper, we first note that

f(∂M) ⊂ ∂N.

Then, all that remains to be proven to establish properness is show that, if Qk →
Q ∈ N as k → ∞ and Pk ∈ M with f(Pk) = Qk, the ‖Pk‖ ≤ c for some constant c.
To this end, let ũ be a control that drives the controllable system (2.6) from state x0

at time t = 0 to state 0 at time t = t1 and that is identically zero for t ≥ t1, and let
x̃ be the corresponding state trajectory. Then, since Pk is a solution to the algebraic
Riccati equation f(P ) = Qk, it follows from (2.10) that

x0
TPkx0 ≤

∫ t1

0

(

x̃TQkx̃+ ‖ũ‖2
)

dt.

However, since Qk → Q, there is a matrix Q̃ such that Qk ≤ Q̃. Consequently, for
each x0 ∈ Rn, there is a bound c(x0) such that x0

TPkx0 ≤ c(x0) for all k. Bounding
x0

TPkx0 in this way for each x0 in a basis in R
d provides an upper bound for Pk

and thus establishes the required bound on ‖Pk‖. Consequently, f is proper, so, by
Lemma 2.3, f is a homeomorphism. We also observe that solvability of the equation
f(P ) = Q and the linear-quadratic optimization problem are well-connected.

In particular, the equation f(P ) = Q has a solution that depends continuously on
Q. To prove that there exists a solution to the algebraic Riccati equation (2.4), we
need to extend this result to the boundary. Let C̃ be the d× d matrix obtained from
C by amending zero rows as needed, and define the square matrix Cε := C̃+εI, where
ε > 0. If we exchange C for Cε, we do not change the dynamical system (2.6), and,
since Cε is full rank, we still have observability. Also, Qε := Cε

TCε ∈ N . Next, let
Pε be the unique solution to f(P ) = Qε. Again applying the control ũ, driving the
trajectory of (2.6) to zero at time t = t1, (2.10) implies that there is a bound µ(x0)
for all x0 ∈ Rn such that

x0
TPεx0 ≤

∫ t1

0

(‖Cx̃(t)‖2 + ‖ũ(t)‖2)dt+ ε

∫ t1

0

x̃T(C̃T+C̃ + εI)x̃dt ≤ µ(x0)
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for all ε ∈ [0, δ]. Precisely as above, this provides an upper bound for Pε on [0, δ].
Hence, as ε→ 0, some subsequence of Pε tends to a limit P0 ≥ 0, which clearly must
satisfy (2.4). Since Γε := A − BBTPε has all its eigenvalues in the open right half-
plane, the limit Γ0 := A−BBTP0 has all its eigenvalues in the closed left half-plane.
However just as above, we can show that observability ensures that none of these
eigenvalues can lie on the imaginary axis. Consequently (2.10) holds for P = P0 and
u = −BTP0x so that

x0
TP0x0 =

∫

∞

0

(‖y(t)‖2 + ‖u(t)‖2)dt.

Therefore, if there were an x0 6= 0 such that x0P0x0 = 0, this would contradict
observability. Hence, P0 must be positive definite.

Consequently, there is always a unique positive definite solution P of the Riccati
equation (2.4), which depends continuously on C.

As these examples suggest, there is a broad class of problems for which the number
of interior points for Jy is at most one. We conclude this section with specializations
of the duality theorem to the case where the variational problems are convex.

Corollary 2.5. Consider a well-connected pair of problems for which Qy is a convex
subset of a topological vector space and for which Jy is strictly convex for all y ∈ N .
Then the problem (1.2) is well-posed if and only if f is proper. In this case, Jy has a
(unique) minimizing point which, for each y ∈ N , is an interior point.

Corollary 2.6. Let M be a connected, open subset of Rn, and let ϕ : M → R

be a C1 function, which is proper and bounded from below. Then, if the derivative
ϕ′ : M → (Rn)∗ is locally injective and proper, then ϕ has a unique minimum on M ,
and ϕ′ is a homeomorphism between M and (Rn)∗.

Remark 2.7. This formulation and conclusion remain valid, mutatis mutandis, when-
ever M is a parallelizable n-manifold.

Corollary 2.8. Let M be an open convex subset of Rn, and let ϕ : M → R be a C1

convex function. Consider the problem to minimize

ψ(x) = ϕ(x) − 〈b, x〉.

If the derivative ϕ′ : M → (Rn)∗ is locally injective and proper, then, for each b ∈
(Rn)∗, ψ achieves a unique minimum on M and ϕ′ is a homeomorphism between M
and (Rn)∗.

3. A geometric approach to constrained problems

Let L, M and N be manifolds of dimensions `, (n + `) and n, respectively, with
M connected and N an open subset of (Rn)∗, and consider two functions g : M → L
and f : M → N . For a ∈ L and b ∈ N , we seek solutions to the equation

(3.1) f a(x) = b,

where f a := f |Ma
is the restriction of f to Ma = g−1(a). In this setting, we are

interested in the well-posedness of solving the equation (3.1) subject to the constraint
g(x) = a. There is of course also a dual problem which involves Mb = f−1(b) and the
map gb := g|Mb

obtained by restricting g to Mb.
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In this way, one may think of the constrained well-posedness problem as defining
two (possibly singular) foliations on M . More precisely, we assume that g is a sub-
mersion and that each Ma is connected. Then, {Ma | a ∈ L} are the leaves of a
foliation F1 of M . We now consider the question of when f a is well-connected to a
variational problem, constrained to the leaf Ma. To this end, let d1 denote the tan-
gential derivative of F1; i.e., the exterior derivative relative to each leaf Ma. If there
were a variational functional Ja defined on each Ma, then well-connectedness would
arise if the level sets of d1Ja defined a (possibly singular) foliations on M whose leaves
were the level sets of f . There are several ways this can occur, leading to a pair of
theorems, each of which we illustrate by example.

First, assume that Ma is diffeomorphic to Rn and that (x1, x2, · · · , xn) are global
coordinates for Ma. Any tangent vector v ∈ Tx(Ma) to Ma can be represented, using
these coordinates, as an n-vector v ∈ Rn. In this sense, f a defines a 1-form ω0. More
generally, for each x ∈M and each b ∈ N , f a − b is a linear functional on TxMa; i.e.,
an element of the cotangent space T ∗

xMa. As a functional which depends on x, f a − b
is a 1-form on Ma. In the chosen coordinates, this 1-form ωb is given by

ωb =

n
∑

i=0

(f a
i − bi)dxi,

where f a
i and bi represent the i-th component of f a and b, respectively. We note that

graph(ωb) = graph(f a − b) ⊂ T ∗Ma 'Ma × (Rn)∗

where T ∗Ma denotes the cotangent bundle
⋃

x∈Ma
T ∗

xMa of Ma The same construction
can, of course, be carried out if Ma were just parallelizable.

Theorem 3.1. Let f a be proper for all a ∈ L, and suppose that M and each Ma are
connected and N is Euclidean. Then, the following sets of statements are equivalent:

(i) For all a ∈ L, Ma is diffeomorphic to R
n.

(ii) There exists a functional Jb : Ma → R whose tangential exterior derivative
d1Jb is given, as a map d1Jb : Ma → (Rn)∗, by

d1Jb = f a(x) − b.

(iii) The functional Jb has only nondegenerate critical points.

and

(i)′ The connected components of the inverse images {f−1(b) | b ∈ N} form the
leaves of a foliation F2 of M , which is transverse to F1.

(ii)′ For any a ∈ L, ω0 is d1-closed, i.e., d1ω0 = 0.
(iii)′ For some x ∈Ma, det Jac f a(x) 6= 0.

Moreover, if either set of conditions holds, f a is well-posed and Jb has a unique critical
point.

Proof. Suppose that Ma is diffeomorphc to Rn. Choosing global coordinates we com-
pute

d1Jb =

n
∑

i=1

(f a
i − bi)dxi.

At each solution x of equation (3.1),

detD2Jb(x) = det Jac(f a)(x)
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is nonzero. Since f a is proper, f a is a diffeomorphism by Hadamard’s Theorem. In
particular, f : M → N is a submersion, and hence F2 is a foliation.

Choose x ∈ M , and suppose that any v in the tangent space Tx(M) of M at x
satisfies

v ∈ Tx(Ma) and v ∈ Tx(f
−1(f a(x))),

that is, suppose v is tangent to a leaf of both foliations. In this case, Jac(f a)(x)v = 0
so that

D2Jb(x)v = 0, where b = f a(x),

contradicting nondegeneracy of the critical points of Jb on Ma. In particular, the
foliations F1 and F2 are transverse.

Since ωb = d1Jb, taking b = 0 we obtain

d1ω0 = d2
1J0 = 0

so that ω0 is d1-closed.
Finally, since f a is a diffeomorphism solving f a(x) = b is well-posed and since f a

is injective, for each b there is a unique critical point for Jb, which is nondegenerate
by hypothesis.

We shall now prove the converse. To say that F2 is a foliation transverse to F1 is
to say that if v ∈ Tx(Ma) satisfies

Jac(f a)(x)v = 0

then v must be zero. Therefore, since Ma is connected and f a is proper, f a : Ma → N
is a diffeomorphism by Hadamard’s Theorem, and hence Ma is diffeomorphic to Rn.
We also conclude that Jb can only have one critical point, which is nondegenerate.

Choosing global coordinates (x1, · · · , xn) on Ma, suppose that

ω0 =

n
∑

i=1

fa
i dxi

is d1-closed. In this case,

ωb =
n
∑

i=0

(f a
i − bi)dxi

is also d1-closed. Then, since Ma is Euclidean, the Poincaré Lemma implies that there
exists a functional Jb : Ma → R such that dJb = ωb, or d1Jb = f − b. Indeed, since
path integrals of ωb are dependent only on the end points of the path, choosing any
point x0 ∈Ma,

Jb(x) =

∫ x

x0

ωb =

∫ x

x0

n
∑

i=1

(f a
i (x) − bi) dxi

is well-defined and smooth, satisfying d1Jb = f a − b.
Finally, since f a is a diffeomorphism and d1Jb = ωb, Jac f a(x) is a nonsingular,

symmetric matrix-valued function on M satisfying

D2Jb(x) = Jac(f a)(x)

�
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Corollary 3.2. With the same notation and hypotheses as in Theorem 3.1, suppose
that either of the sets of three conditions hold. If gb is proper, then each leaf of F1

intersects each leaf of F2 in exactly one point, and the map

(f, g) : M → N × L

is a diffeomorphism.

Corollary 3.3. With the same notation and hypotheses as in Theorem 3.1 but with
hypothesis (iii) specialized to

(iiia) The functional Jb has nondegenerate minima at its critical points,

and (iii)′ specialized to

(iiia)′ For some x ∈Ma, Jac f a(x) > 0.

the conclusions hold, but with Jb having a unique minimum. In particular, this holds
if each Ma is convex and each Jb is strictly convex.

Example 3.4. The generalized moment problem with complexity constraint. There
is a vast literature on the generalized moment problem (see, e.g., [1, 2, 28, 38]),
in part because so many problems and theorems in pure and applied mathematics,
physics and engineering can be formulated as moment problems. Recall, that we are
given a sequence of complex numbers c0, c1, · · · , cn and a sequence of continuous, lin-
early independent complex-valued functions α0, α1, · · · , αn defined on the real interval
[a, b]. In order for the moment equations (1.7) to hold it is necessary that ck be real
whenever αk is real, with a similar statement holding for the case that αk is purely
imaginary. Indeed, a purely imaginary moment condition can always be reduced to a
real one, and henceforth we shall assume that this is the case. In fact, we assume that
α0, . . . , αr−1 are real functions and αr, . . . , αn are complex-valued functions whose real
and imaginary parts, taking together with α0, . . . , αr−1 are linearly independent over
R. In analogy with the real case discussed in the introduction, we introduce the real
vector space P which is the sum of the real span of α0, . . . , αr−1 and the complex
span of αr, . . . , αn. In particular, the real dimension of P is 2n− r + 2.

The moment problem is then to find all monotone, nondecreasing functions µ of
bounded variation such that (1.7) is satisfied whenever the sequence c0, c1, · · · , cn is
positive in the sense that

(3.2) 〈c, q〉 := Re
n
∑

k=0

qkck > 0

for all q := (q0, q1, · · · , qn) ∈ R
r × C

n−r+1 such that

(3.3)
n
∑

k=0

qkαk ∈ P+ r {0},

where P+ consists of all functions in P that have positive real part, and P+ is its
closure. Denote by C+ the space of positive sequences.

We shall assume that P+ is nonempty, so that it is also open and convex, and
therefore diffeomorphic to R2n−r+2. Then C+ is also nonempty, and, since it is an
open convex subset of R2n−r+2, it is diffeomorphic to a Euclidean space of the same
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dimension as P+. Moreover, we introduce the complexity constraint

(3.4)
dµ

dt
= Φ(t) =

P (t)

Q(t)
,

where however we now ask that P = Re{P̃} and Q = Re{Q̃} where P̃ , Q̃ ∈ P+.
Since the real and imaginary parts of αr, . . . , αn, taken together with α0, . . . , αr−1,
are linearly independent over R, any P̃ ∈ P+ is uniquely determined by its real
part P := Re{P̃}. Each choice of P defines the leaf {P} × P+ of a foliation F1 of
M := P+ × P+ having Euclidean leaves. On such a leaf we consider the function

F P̃ : P+ → C+

componentwise via

F P̃
k (Q̃) =

∫ b

a

αk(t)dµ(t).

Parameterizing Q̃ via Q̃ =
∑n

k=0 qkαk, we construct the 1-form

ωc = Re

{

n
∑

k=0

[

ck − Fk(Q̃)
]

dqk

}

,

on P+. Explicitly, we have

ωc = Re

{

n
∑

k=0

ckdqk −

∫ b

a

n
∑

k=0

αk

P

Q
dqkdt

}

= Re

n
∑

k=0

ckdqk −

∫ b

a

P

Q
dQdt

so taking the exterior derivative (on P+) we obtain

dωc =

∫ b

a

P

Q2
dQ ∧ dQdt = 0,

establishing that the 1-form ωc is closed.
Therefore, by the Poincaré Lemma, there exist a smooth function Jc such that

Jc =

∫

ωc =

∫

(

Re
n
∑

k=0

ckdqk −

∫ b

a

P

Q
dQdt

)

,

with the integral being independent of the path between two endpoints. Computing
the path integral along the lines in Section 1, one finds that

(3.5) Jc(Q) = 〈c, q〉 −

∫ b

a

P logQ dt,

which is strictly convex and bounded from below for positive sequences c0, c1, · · · , cn.
As in the real case, Jc has an interior critical point precisely at the solution of the
(complex) generalized moment problem. To see this on the second factor of Rr ×
Cn−r+1, we decompose the exterior differential as the sum d = ∂ + ∂̄, where ∂̄ is
the Cauchy-Riemann differential. Since Jc is real, to say that dJc = 0 is to say that
∂Jc = 0 or, equivalently, that ∂̄Jc = 0. Finally, by inspection we see that ∂Jc = 0 is
the set of defining equations of the generalized moment problem.
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In order to apply Theorem 3.1, we need now only show that F P : P+ → C+ is
proper.

Lemma 3.5. Suppose P is a vector space consisting of C2-smooth functions. Then
F P : P+ → C+ is proper.

Proof. First note that

(3.6) Re
n
∑

k=0

fkFk(Q̃) =

∫ b

a

Re

{

n
∑

k=0

fkαk

}

P

Q
dt > 0

whenever
∑n

k=0 fkαk ∈ P+. Given any compact set K in C+, (F P )−1(K) is bounded.
In fact, if ‖Q‖ tends to infinity, then F P (Q) tends to zero, which belongs to the
boundary of C+ but not to C+ itself. Thus the preimage of a convergent sequence
in K has a cluster point in the closure of P+. Such a cluster point, let us call it
Q̃, cannot lie on the boundary of P+, for then Q is a smooth, nonnegative function
having a zero on the interval so that (3.6), and hence the integral defining F P , is

divergent. Hence, Q̃ ∈ P+, establishing that F P is proper. �

Corollary 3.6. Let P be spanned by C2 functions α0, α1, . . . , αn, and let c ∈ C+.
Suppose also that the nonzero real and imaginary parts of α0, α1, . . . , αn form a linearly
indepentent set over R. Then, for any choice of P̃ ∈ P+ there is one and only one
Q̃ ∈ P+ solving the generalized moment problem

∫ b

a

αk(t)
P (t)

Q(t)
dt = ck, k = 0, 1, . . . , n,

where P = Re{P̃} and Q = Re{Q̃}. Moreover, the generalized moment problem
determines, for each choice of c = (c0, c1, . . . , cn), a leaf of a foliation F2 of P+×P+.
The foliation F2 is transverse to the foliation F1, whose leaves are defined by fixing a
choice of P . Each leaf of F1 meets each leaf of F2 in exactly one point. In particular,
the generalized moment problem is well-posed with Q̃ depending smoothly on c and P̃ .
Indeed, c and P determine Q as the unique minimum in P+ of the strictly convex
functional

JcP (q) = 〈c, q〉 −

∫ b

a

P logQdt.

Remark 3.7. We have shown that the solutions of the generalized moment problem
are completely parameterized by P . It is therefore natural to ask whether there is
also a complete parameterization in terms of Q. In fact, all the steps, save one, can be
reproduced for this setting, and one can even derive a functional Jc whose minimum
would be the unique solution if a solution would exist. However, what fails is the

proof that F Q̃ is proper. Consequently, for an arbitrary fixed Q, there may be no
solution.

In Theorem 3.1, we assumed that Jb had a very classical form. Of course, one can
have a pair of well-connected problems for more general situations, e.g., when the
solution set of fa(x) = b is a branch of Jb(x) = 0. This indeed occurs in example
that illustrates the next theorem. In this theorem, well-posedness and uniqueness of
minima again have interesting implications about the geometry of the corresponding
foliations.
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Theorem 3.8. Suppose the manifolds M , N , L and each leaf Ma are connected and
that, for each a ∈ L and b ∈ N , there exists a functional Jb defined on Qb such that
the problems of solving f a(x) = b and minimizing Jb are well-connected. Suppose g is
a submersion so that each Ma is a leaf of a foliation F1 of M . Suppose further that
fa is proper and that each Jb has at most one minimum. Then

(i) f a : Ma → N is a homeomorphism.
(ii) Jb achieves its minimum at an interior point.

Furthermore, if f a is a submersion and gb : Mb → L is proper, then

(iii) gb is a homeomorphism.
(iv) f−1(b) is the leaf of a foliation F2 of M .
(v) Each leaf of F1 intersects each leaf of F2 in exactly one point.
(vi) (f, g) : M → N × L is a homeomorphism.

Proof. Conditions (i) and (ii) follow from Theorem 2.1. We now show that gb is an
injection. To say that gb(x1) = gb(x2) is to say that x1, x2 ∈ Ma, when gb(x1) = a.
Since x1, x2 ∈ f−1(b), we have f a(x1) = f a(x2) so that x1 = x2. The map gb is a
proper injection, and therefore, by Lemma 2.3, gb is a homeomorphism and f−1(b) is
connected, proving (iii) and (iv). Given any a ∈ L and b ∈ N , there exists one and
only one x ∈Ma such that f a(x) = b, which proves (v). Finally, (f, g) is a continuous
bijection between M and N × L. By Brouwer’s Theorem, (f, g) is an open map and
therefore has a continuous inverse. �

Example 3.9. (Interior-point methods for linear programming problems.) Recall that
linear programming problems are often given in the standard form

(3.7) min cTx subject to Ax = b, x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given and x ∈ Rn is the variable. For simplicity,
we assume that the matrix A is fixed and has full rank. The corresponding dual
problem is

max bTu subject to ATu ≤ c,

where u ∈ Rm is the variable. This can also be written

(3.8) max bTu subject to ATu+ s = c, s ≥ 0,

by introducing slack variables s1, s2, . . . , sn. From now on, we shall refer to (3.7) as
the primal problem and to (3.8) as the dual problem.

It is well-known that the primal problem has an optimal solution if and only if the
dual one does, and this happens if and only if the the primal-dual feasibility set

F = {(x, u, s) | Ax = b, ATu+ s = c, x ≥ 0, s ≥ 0}

is nonempty. Then (x̂, û, ŝ) ∈ F is optimal for the dual and the primal problems if
and only if the complementary-slackness condition

(3.9) x̂kŝk = 0 k = 1, 2, . . . , n

is fulfilled. Let M = {(x, u, s) ∈ R
2n+m | x > 0, s > 0}.

Introducing the notation a =

[

b
c

]

, we also consider the strictly feasible set

Ma = {(x, u, s) ∈ F | x > 0, s > 0}.
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Then Ma = g−1(a) where g : M → L := Rn+m is defined via
[

Ax
ATu+ s

]

.

On Ma the variable u is uniquely determiner by s, and therefore we parameterize a
point in Ma by the coordinate pair (x, s). A point in Ma is called an interior point.
The tangent space to Ma at an interior point (x, s) is given by

T(x,s)(Ma) = {(h, k) ∈ R
n × R

n | h ∈ kerA, k ∈ (kerA)⊥}.

In fact, since ImAT = (kerA)⊥, x1 − x2 ∈ kerA and s1 − s2 ∈ (kerA)⊥ for all (x1, s1)
and (x2, s2) in Ma. In particular,

(3.10) (x1 − x2)
T(s1 − s2) = 0.

Since dimT(x,s)(Ma) = n, Ma is an n-manifold.
The basic idea in interior-point methods is to construct a parameterized set of

interior points satisfying

(3.11) xksk = τk, k = 1, 2, . . . , n,

where the parameters τ1, τ2, . . . , τn are positive real numbers. This set is called the
central path, and the idea is to construct a sequence of points in this set converging
to an optimal solution as τ := (τ1, τ2, . . . , τn)T→ 0. For details, see, e.g.,[50]), where,
however, τ is chosen so that τ1 = τ2 = · · · = τn. Here, we prefer the more general
parameterization.

Now, define Rn
+ to be the n-manifold of vectors τ := (τ1, τ2, . . . , τn)T such that

τk > 0, k = 1, 2, . . . , n. Next, consider the smooth function f : Ma → N := Rn
+ given

by

fa(x, s) =









x1s1

x2s2
...

xnsn









.

If Ma is nonempty, f a is proper. To see this, let f̄a : Ma → Rn be the continuous
extension of f a to the boundary ∂Ma. Then

f̄a(∂Ma) ⊂ ∂R
n
+,

and hence f−1(K) ⊂ Ma for any compact set K ∈ Rn
+. Now, f−1(K) is closed by

continuity, so it just remains to prove that f−1(K) is bounded. Let (x̃, s̃) ∈ Ma, and
let (x, s) ∈ f−1(K) be arbitrary. In view of (3.10), (x− x̃)T(s− s̃) = 0, and hence

xTs+ x̃Ts̃ = x̃Ts+ s̃Tx ≥ εeT(x + s),

where e := (1, 1, . . . , 1)T and where

ε = min{x̃1, x̃2, . . . , x̃n, s̃1, s̃2, . . . , s̃n} > 0.

Consequently,

0 < eT[x + s] ≤
1

ε
eT[f(x, s) + f(x̃, s̃)],

which is bounded since K is. Hence, f−1(K) is bounded, as claimed.
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We shall now construct a variational problem which is well-connected to f . To this
end, for each τ ∈ Rn

+, let Jτ : Ma → R ∪ {∞} be the function

(3.12) Jτ (x, s) = xTs−

n
∑

k=1

τk log(xksk),

and consider the problem of solving the problem

(3.13) inf
Ma

Jτ (x, s).

The function Jτ is strictly convex for each τ ∈ Rn
+. In fact, since the functions

− log xksk = − log xk − log sk are strictly convex, convexity of Jτ follows from the fact
that the function g(x, s) = xTs is linear on Ma. To see this, note that

[x2−λ(x1−x2)]
T[s2−λ(s1−s2)] = x2

Ts2+(x1−x2)
T(s1−s2)−λx2

T(s1−s2)−λ(x1−x2)
Ts2

for (xi, si) ∈Ma, i = 1, 2, which is the same as

g(λx1 + (1 − λ)x2, λs1 + (1 − λ)s2) = λg(x1, s1) + (1 − λ)g(x2, s2).

In fact, in view of (3.10), x2
T(s1 − s2) = x1

T(s1 − s2).
Next, note that

∂Jτ

∂xk

= sk −
τk
xk

, k = 1, 2, . . . , n,

∂Jτ

∂sk

= xk −
τk
sk

, k = 1, 2, . . . , n,

and hence the directional derivative of Jτ in (x, s) ∈Ma in the direction (h, k) is given
by

d1Jτ (x, s; h, k) =
n
∑

k=1

(xksk − τk)

[

hk

xk

+
kk

sk

]

.

Consequently, (x̂, ŝ) ∈ Ma is a critical point for the optimization problem (3.13)
whenever (x̂, ŝ) is a solution of

(3.14) f a(x, s) = τ

so that (3.14) is a branch of d1Jτ = 0. In particular, the family of optimization
problems (3.13) and the family of equations (3.14) form a well-connected pair. Since
Jτ is strictly convex, it has at most one critical point, which is a minimum.

By Theorem 2.1, Jτ has an interior minimizing point, and the map f is a homeo-
morphism between Ma and Rn

+. In particular, as ‖τ‖ → 0, (xτ , sτ ) tends to a limit

(x̂, ŝ) ∈Ma, which satisfies the complementary-slackness condition (3.9) and hence is
optimal for the primal and dual linear programming problems (3.7) and (3.8).

Remark 3.10. From Theorem 3.8 we know that f a is a homeomorphism so that
the problem of solving (3.14) is well-posed. We also know that the unique solution of
(3.14) is the unique minimizing interior point for the strictly convex functional (3.12).
In fact, one can actually prove smooth dependence of solutions on the data in this
particular case. Rn with (Rn)∗ using the standard inner product, consider the subsets
of Ma ×N defined by the following two conditions:

d1J(x, s) = 0(3.15)

τ − f a(x, s) = 0(3.16)
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The second set, being the graph of a smooth function is a smooth submanifold of
dimension n. Since ∂

∂τ
d1Jτ (x, s) is full rank, the first set is also a submanifold of

dimension n, which is everywhere locally the graph of a smooth function of (x, s). One
such branch is given by (3.16), and therefore graph(f a) is a connected component of
the submanifold (3.15). Now, consider the projection p2(x, s, τ) = τ restricted to this
connected component of (3.15). The Jacobian of this map, computed with respect to
(x, s) at the point (x, s, τ) is D2Jτ (x, s), which is positive definite by strict convexity
of Jτ . Therefore, the Jacobian Jac(f a) is everywhere nonsingular on Ma. Since f a is
proper, f a is a diffeomorphism by Hadamard’s Theorem.

Theorem 3.11. For the interior-point method for linear programming, the problem
of solving f a(xi, si) = τi on the (generalized) central path τ = (τ1, τ2, . . . , τn)T → 0
as i → ∞ is well-posed. In particular, the solution sequence (xi, si) exists, is unique,
and lies in a compact set. Moreover, the solution (x, s) to (3.14) is a smooth function
of τ . Indeed, (x, s) is the unique minimizing interior point for the strictly convex
functional

Jτ (x, s) = xTs−

n
∑

k=1

τk log(xksk).

4. Some interpolation problems occurring in signal processing and

systems theory

Interpolation problems for meromorphic functions are an important class of moment
problems, with a history going back to Carathéodory, Schur, Toeplitz, Nevanlinna and
Pick. One class of meromorphic functions studied in this context are those functions
of a complex variable which are analytic in the open unit disc and map points there
into the open left half-plane. In the mathematics literature these are typically referred
as Carathéodory functions, while in the engineering literature they are often called
positive real functions. Indeed, given that the impedance of a circuit with finitely
many active components is a positive real rational function, it is not surprising that
important problems involving interpolation by positive real functions at points in
the finite complex plane emerged in circuit theory. They also abound in robust
stabilization and control and in signal processing; see [13, 14, 19, 33, 34, 36, 51].

As an example, the mathematical basis for the design of the Linear Predictive
Coding (LPC) filters used for speech synthesis by most existing cellular telephones
involves the interpolation problem of finding a positive-real rational function (filter)
which matches a given window of Laurent (or covariance) coefficients. More explicitly,
in signal processing it is common to model a signal {y(t) | t ∈ Z} as a convolution

y(t) =
t
∑

k=−∞

wt−kuk

of some excitation signal {u(t) | t ∈ Z}. In the language of systems and control, this
amounts to passing the excitation signal u through a linear filter with the transfer
function

w(z) =

∞
∑

k=0

wkz
−k
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which is assumed to be rational, thus obtaining the signal y as the output. More
specifically, we take w(z) to be rational with w0 6= 0 and all zeros and poles in the
open unit disc. In other words, the function w is outer with respect to the complement
of the unit disc. Such a filter is often called a shaping filter when it is used to “shape”
a white noise input into a stationary stochastic process.

Indeed, consider a signal y for which the excitation signal u is white noise, i.e.,
E{u(t)u(s)} = δts, where δts is one if t = s and zero otherwise. Then y is a stationary
stochastic process with a rational spectral density

Φ(eiθ) = |w(eiθ)|2

that is positive for all θ. The Fourier coefficients

ck =
1

2π

∫ π

−π

eikθΦ(eiθ)dθ, k = 0, 1, 2, · · ·

are then the covariance lags ck = E{y(t+ k)y(t)}, and a relatively short sequence of
these, c0, c1, · · · , cn, can be determined, via ergodic limits, from a record of observed
data from the output process y.

As pointed out by Delsarte et al [20], to find a rational Φ matching this window
of covariance lags is to find a rational solution of the classical trigonometric moment
problem, since whenever

Φ(eiθ) = c̃0 +

∞
∑

k=1

c̃k cos(kθ), c̃k = ck, k = 0, 1, . . . , n

then
1

2π

∫ π

−π

cos(kθ)Φ(eiθ)dθ = ck, k = 0, 1, · · · , n.

If we write

(4.1) Φ(eiθ) = 2Re{F (eiθ)},

where

(4.2) F (z) =
1

2
c0 + c1z + c2z

2 + · · · ,

then this problem is also an interpolation problem for the value and the first n deriva-
tives at z = 0 of the positive real function F , with the complexity constraint that it
be rational of degree at most n.

According to Corollary 3.6, given any positive trigonometric polynomial P of de-
gree at most n and any positive sequence (c0, c1, . . . , cn), there is a unique positive
trigonometric polynomial Q of degree at most n, given as the minimum of the strictly
convex functional

Jc(q) = 〈c, q〉 −

∫ π

−π

P logQdθ,

such that

Φ =
P

Q

solves the trigonometric moment problem.
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Either by applying the Riesz-Fejér Theorem to P and Q and substituting z = eiθ

or by substituting z = eiθ and applying spectral factorization, from Φ we obtain

Φ(z) = w(z)w(z−1),

where

(4.3) w(z) =
σ(z)

a(z)

with σ(z) and a(z) Schur polynomials of degree n. (A Schur polynomial is a poly-
nomial with all its roots in the open unit disc.) In this way, the choice of spectral
zeros (i.e., the zeros of σ(z)) parameterizes all shaping filters having a given window
of covariance lags as there is one and only one a(z) for each choice of zeros. In this
context, the condition that the sequence (c0, c1, · · · , cn) be positive is a positivity
condition on the corresponding Toeplitz matrix:

Tn =









c0 c1 c2 · · · cn
c1 c0 c1 · · · cn−1
...

...
...

. . .
...

cn c0 cn−1 · · · c0









> 0.

In fact, for Q(z) = a(z)a(z−1),

〈c, q〉 = aTTna,

where a := (a0, a1, · · · , an)T is the vector of coefficients of a(z).
Classically, it is well-known that the choice P = 1, corresponding to σ(z) = zn, al-

ways yields such a rational filter, known as the maximum entropy solution or the LPC
filter. Indeed, this filter is characterized as the maximum of the entropy functional

E(Φ) =

∫ π

−π

log Φdθ

subject to the covariance constraints. Since the parameters of the LPC filter can
be computed very easily from the covariance data, LPC filters are in widespread
commercial use. However, it is well-documented in the literature on speech processing
(see [3, p. 1726], [39, pp. 271–272], [44, pp. 76–78,105]) that nontrivial choices of
spectral zeros are necessary for high quality speech synthesis, an observation which
led to many attempts to incorporate a choice of zeros into shaping filter design.

In 1983, using degree theory applied to spaces of rational positive real functions,
Georgiou [24] showed that for every choice of σ(z) in the open unit disc there exists
an a(z) having all roots in the open unit disc such that the positive real function (4.2)
corresponding to the shaping filter (4.3). He also conjectured uniqueness which, of
course, in this setting would itself imply existence. Interestingly, the space of positive
real functions on which Georgiou applied a degree theoretic argument was a leaf of the
foliation of the space of rational positive real functions, of degree at most n, defined by
fixing the choice of σ(z). As it turns out, this is also the foliation whose leaves are the
stable manifolds of a variety of equilibria for a fast form of Kalman filtering, viewed as
a dynamical system on this space of rational positive real functions [17]. In [9] it was
shown that the interpolation conditions define a second foliation, transverse to the
filtering foliation. The geometry of these foliations then allowed for a refinement of
degree theoretic arguments which proved uniqueness, proving Georgiou’s conjecture.



VARIATIONAL PROBLEMS AND GLOBAL INVERSE FUNCTION THEOREMS 25

The computation of solutions by solving a strictly convex optimization problem was
then developed in [11, 16], starting with a generalized maximum entropy integral as
a primal problem and deriving Jc as the functional defining the dual problem. The
direct derivation of Jc in terms of tangentially closed one-forms presented here is new.
Further applications of these methods to problems of speech processing and signal
processing are given in [15].

Generalizing the trigonometric moment problem described above to the situation
that F interpolates at arbitrary points in the open unit disc, rather than just at z = 0,
leads to Nevanlinna-Pick interpolation with a complexity constraint, which amounts
to imposing a degree constraint on a rational interpolant. During the last two decades
it has been discovered that this analytic interpolation problem is closely related to
several robust control problems, for example, the gain-margin maximization problem
[47, 48, 36], robust stabilization problem [37], sensitivity shaping in feedback control,
simultaneous stabilization [27], robust regulation problem [18] and general H∞ control
problem [23]. In fact, by now such Nevanlinna-Pick interpolation problems appear
even in textbooks on a first course in control [21].

Given n + 1 distinct points z0, z1, . . . , zn in the open unit disc, our interpolation
problem consist in determining the rational Carathéodory functions F of degree at
most n satisfying the interpolation condition

(4.4) F (zk) = wk for k = 0, 1, . . . , n,

where w0, w1, . . . , wn are prescribed values in the open right half of the complex plane.
Without loss of generality, we assume for convenience that z0 = 0 and w0 is real. If
the points z0, z1, . . . , zn are not distinct, the interpolation conditions are modified in
the following way. If zk = zk+1 = · · · = zk+m−1, the corresponding interpolation
conditions are replaced by

F (zk) = wk

F ′(zk) = wk+1

...
1

(m− 1)!
F (m−1)(zk) = wk+m−1

This formulation of the Nevanlinna-Pick interpolation problem differs from the clas-
sical one in that a degree constraint on the interpolant F has been introduced, a
restriction motivated by applications.

Next, we reformulate this interpolation problem as a generalized moment problem.
From the Herglotz Theorem we see that the rational Carathéodory functions of degree
at most n can be represented as

(4.5) F (z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
Φ(eiθ)dθ

for some rational spectral density Φ of degree at most 2n, which is given by

(4.6) Φ(eiθ) = Re{F (eiθ)}.
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Differentiating (4.5), we obtain

1

ν!
F (ν)(z) =

1

2π

∫ π

−π

2eiθ

(eiθ − z)ν+1
Φ(eiθ)dθ, ν = 1, 2, . . . .

Consequently, the interpolation conditions can be written

1

2π

∫ π

−π

αk(θ)Φ(eiθ)dθ = wk, k = 0, 1, . . . , n,

where

αk(θ) =
eiθ + zk

eiθ − zk

for single interpolation points and

αk(θ) =
eiθ + zk

eiθ − zk

αk+1(θ) =
2eiθ

(eiθ − zk)2

...

αk+m−1(θ) =
2eiθ

(eiθ − zk)m

whenever zk = zk+1 = · · · = zk+m−1. In particular, α0 = 1.
In order for this moment problem to have a solution, the sequence w0, w1, . . . , wn

must be positive with respect to α0, α1, . . . , αn. For distinct interpolation points
z0, z1, . . . , zn, this is equivalent to the Pick matrix

(4.7) Pn =

[

wk + w̄`

1 − zkz̄`

]n

k,`=0

being positive definite. To see this, first note that there is a factorization

Re

n
∑

k=0

qkαk(θ) =

∣

∣

∣

∣

∣

n
∑

k=0

ak

αk(θ) + 1

2

∣

∣

∣

∣

∣

2

,

from which a straight-forward calculation shows that

(4.8) 〈w, q〉 = a∗Pna,

where a = (a0, a1, . . . , an)∗.
Then, by Corollary 3.6, to each P = Re{P̃} with P̃ ∈ P+, there is a unique

Q = Re{Q̃} with Q̃ ∈ P+ so that

(4.9) Φ(z) =
P (z)

Q(z)

solves the corresponding moment problem, and this Q is given as the minimum of the
strictly convex functional

(4.10) Jw(Q) = 〈w, q〉 −

∫ π

−π

P (eiθ) logQ(eiθ)dθ.
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In the language of Hardy spaces of functions analytic in the unit disc D, the space
P = span{α0, α1, . . . , αn} can be identified with the coinvariant subspace

H(B) := H(D) 	 BH(D),

where B is the Blaschke product

B(z) = z
n
∏

k=1

z − zk

1 − z̄kz
.

In fact, the analytic functions g0, g1, . . . , gn defined via

gk(e
iθ) = α(θ), k = 0, 1, . . . , n

span H(B), and P and Q are invariant under conjugation. Moreover, H(B) consists
precisely of those functions that can be written as

g(z) =
π(z)

τ(z)
, τ(z) =

n
∏

k=1

(1 − z̄kz),

for some polynomial π(z) of degree at most n, and hence any Carathéodory function
F of degree at most n has a representation

(4.11) F (z) =
b(z)

a(z)
,

where a and b are outer functions in H(B). Since therefore

F + F ∗ =
a∗b + ab∗

aa∗
,

it follows from (4.6) and (4.9) that

Q(z) = a(z)a∗(z)(4.12)

P (z) = a∗(z)b(z) + a(z)b∗(z).(4.13)

Hence, there is unique interpolant (4.11) corresponding to P which can be determined
in the following way. Given the unique minimizer Q of (4.10), determine a as its outer
spectral factor. Then b is the unique solution to the linear equation (4.13), since the
kernel of the linear map S(a) defined by S(a)v = a∗v + av∗ is zero. In fact, if
ζ1, ζ1, . . . , ζn are the zeros of the outer function a, a∗(ζk) 6= 0 for k = 1, 2, . . . , n, and
therefore S(a)v(ζk) = a∗(ζk)v(ζk) = 0 for k = 1, 2, . . . , n implies that v = 0.

Determining the Q that minimizes (4.10) is particularly simple when P = 1, as
this problem can then be reduced to solving a system of linear equations. The corre-
sponding interpolant F is called the central solution. In fact, replacing Q(eiθ) in (4.10)
by |a(eiθ)|2, where a(z) is outer, and observing that, for such an a(z), log |a(eiθ)| is
harmonic in the unit disc, we see that

1

2π

∫ π

−π

logQ(eiθ)dθ = 2 log |a(0)|,

and consequently (4.10) can be replaced by

Ĵw(a) = a∗Pna− 2 log |a(0)|,

where the positive definite quadric form a∗Pna is formed as in (4.8), Pn being the Pick
matrix (4.7) when the interpolation points are distinct or a generalized Pick matrix
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otherwise. Modifying the basis in H(B) so that a(0) = a0, it is not hard to see that
the unique minimizer can be obtained by solving a system of linear equations in ak/a0,
k = 1, 2, . . . , n. This approach is taken in [41], where the case of distinct interpolation
points is worked out in detail, and where also an efficient homotopy continuation
method for solving the convex optimization problem (4.10) for an arbitrary P is
presented. (This builds on some previous work [22] on the the Caratheodory extension
problem.)

Consequently, the set of all rational solutions of degree at most n to the Nevanlinna-
Pick interpolation problem are completely parameterized by P , and each such solution
can be determined by solving the convex optimization problem to minimize Jw. Tra-
ditionally, one has only been able to determine the central solution corresponding
to P = 1, and then in a much less direct way than described above. Our present
method and parameterization in terms of P , first presented in the Nevanlinna-Pick
setting in [13], provides us with an extra set of “tuning parameters”, which, in the
applications mentioned above, may be used to satisfy additional design specifications
without having to increase the degree of the interpolant.

The existence of solutions to the Nevanlinna-Pick interpolation problem with de-
gree constraint was established in [25] using topological degree theory. Uniqueness
was proven in [26], using methods from [10], and in [13], using the variational problem
to minimize the functional Jw defined above and Hardy space theory with both ap-
proaches making extensive use of Hardy spaces. In [12] we proved that the problem is
well-posed by establishing that the foliation F1 defined by the fast filtering algorithm
and the foliation F2 defined by Nevanlinna-Pick interpolation are transverse, each leaf
in F1 intersecting each leaf in F2 in one and only one point. Applications of these
result to high-resolution spectral estimation can be found in [14]. These results are
also used in the design of robust controllers in [41, 42].
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