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Abstract—The separation principle is the statement that
under suitable conditions the design of stochastic control can be
divided into two separate problems, one of optimal control with
state information and one of filtering. The literature over the
past 50 years contains several derivations where subtle difficul-
ties are overlooked and inadmissible shortcuts taken. Other
contributions that have established the separation principle
under various hypotheses require considerable mathematical
sophistication, which makes the ideas difficult to include in
standard textbooks. The contribution of the present work is a
new set of conditions that are in line with basic engineering
thinking and ensure that the separation principle holds. The
feedback system is required to be well-posed in the sense that
it defines a map between sample paths, representing signals
rather than stochastic processes per se. This approach allows
certain generalizations of the separation theorem to a wide
class of feedback laws, models and stochastic noise, including
martingales with possible jumps.

I. INTRODUCTION
The separation principle of stochastic control — the fact

that the problems of optimal control and state estimation
can be decoupled in certain cases — was discovered in the
early 1960’s, and the term was coined in [12], [22]. This is
also closely connected to the idea of certainty equivalence;
see, e.g., [28]. Since then, a constant stream of accounts
have appeared in the literature attempting to identify the most
general setting where the principle is valid.
While the separation principle has been established un-

der various conditions, rigorous treatments tend to require
considerable mathematical sophistication that are difficult to
present in a classroom setting. The purpose of this work is
to present a framework for the separation principle which
is more in line with basic engineering thinking. In this,
signals “travel” around feedback loops and the feedback
equations define maps between signal spaces rather than
stochastic processes per se. Besides a cleaner presentation
of the classical separation principle, our approach allows for
a considerable generalization to the case where the driving
noise is a martingale that does not need to be Gaussian and
can have jumps.
The outline is as follows. In Section II we review the

standard quadratic regulator problem and prove it for linear
control laws. In Section III we point out the challenges and
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subtleties that arise when one allows the control laws to be
nonlinear. In Section IV we review previous treatments in the
literature and point out certain shortcomings. In Section V
we present our framework and main results.

II. THE SEPARATION PRINCIPLE IN ITS BASIC FORM

Consider the linear stochastic system
{

dx = A(t)x(t)dt + B1(t)u(t)dt + B2(t)dw

dy = C(t)x(t)dt + D(t)dw
(1)

where x is the state process, y the output process, and u the
control, while w(t) is a vector-valued Wiener process and
x(0) is a zero-mean Gaussian random vector independent
of w(t). Moreover, y(0) = 0, and A, B1, B2, C, D are
continuous matrix-valued functions of compatible sizes and
bounded variation. We take DD′ to be nonsingular on the
interval [0, T ]. Finally, if we want the noise processes in
the state and output equations to be independent, as often is
assumed but not required here, we take B2D

′ ≡ 0.
Next consider the control problem to design an output

feedback law
π : y "→ u (2)

over the window [0, T ] which specifies the control input
u based on the observation process y in a nonanticipatory
manner so as to minimize the functional

J(u) = E

{

∫ T

0
x(t)′Q(t)x(t)dt

+

∫ T

0
u(t)′R(t)u(t)dt + x(T )′Sx(T )

}

.

(3)

Here, Q and R are continuous matrix-valued functions of
bounded variation, Q(t) is positive semi-definite and R(t) is
positive definite for all values of t. The separation principle is
the statement that, under suitable conditions to be discussed
in this paper, the optimal feedback law is linear in the data
and given by

u(t) = K(t)x̂(t), (4)

where x̂(t) is obtained by the Kalman filter

dx̂ = A(t)x̂(t)dt + B1(t)u(t)dt

+L(t)(dy − C(t)x̂(t)dt)
(5)

x̂(0) = 0

while the gains

K(t) = −R(t)−1B1(t)
′P (t), and (6)

L(t) =
(

Σ(t)C(t)′ + B2(t)D(t)′
)

R(t)−1 (7)



are obtained by solving the pair of dual Riccati equations
{

Ṗ = −A′P − PA − Q + PB1R
−1B′

1P

P (T ) = S
(8)











Σ̇ = AΣ + ΣA′ + B2B
′
2

− (ΣC′ + B2D
′)R−1(ΣC′ + B2D

′)′

Σ(0) = E{x(0)x(0)′}

(9)

A standard approach establishing the separation principle
is based on a completion-of-squares argument similar to the
one used in deterministic linear-quadratic-regulator theory;
see e.g. [1]. We briefly review this construction as this is
central to our theme. Itô’s differential rule (see, e.g., [13],
[21]) gives

d(x′Px) = x′Ṗxdt + 2x′Pdx + tr(B′
2PB2)dt,

where tr(M) denotes the trace of a matrix M . Then, using
(1) and (8),

d(x′Px) = [−x′Qx − u′Ru + (u − Kx)′R(u − Kx)]dt

+tr(B′
2PB2)dt + 2x′PB2dw.

By integrating from 0 to T and taking expectation, we obtain

J(u) = E

{

x(0)′P (0)x(0) (10)

+

∫ T

0
(u − Kx)′R(u − Kx)dt

}

+

∫ T

0
tr(B′

2PB2)dt.

Now, if complete state information is available, (1) is re-
placed by

{

dx = A(t)x(t)dt + B1(t)u(t)dt + B2(t)dw

y = x
(11)

and, since the last term in (10) does not depend on the
control, we immediately conclude that the feedback law

u(t) = K(t)x(t) (12)

is optimal.
However, in general the control is a function of the

observed process {y(τ); 0 ≤ τ ≤ t}, and we need to carry
the analysis one step further. To this end, first note that
u = π(y) is adapted to the filtration

Yt := σ{y(τ), τ ∈ [0, t]}, t ∈ [0, T ], (13)

generated by the output process; i.e., the family of increasing
sigma fields representing the data. Now define

x̂(t) := E{x(t) | Yt}, (14)

and
x̃(t) := x(t) − x̂(t). (15)

The components of x̃(t) are orthogonal to Yt-measurable
random variables in the sense of the inner product 〈ξ, η〉 =
E{ξη}. Hence, since u and x̂ are functions of the data,

E{[u(t) − K(t)x̂(t)]x̃(t)′} = 0.

Therefore

E

∫ T

0
(u − Kx)′R(u − Kx)dt (16)

= E

∫ T

0
[(u − Kx̂)′R(u − Kx̂) + tr(K ′RKΣ)]dt,

where Σ is the covariance matrix

Σ(t) = E{x̃(t)x̃(t)′}. (17)

Consequently, in view of (10), it would follow that (4) is
the optimal control law provided we can show that Σ is
independent of the choice of control law.
The state process can be written as

x(t) = x0(t) +

∫ t

0
Φ(t, s)B1(s)u(s)ds, (18)

where x0 is the state process of the uncontrolled system
{

dx0 = A(t)x0(t)dt + B2(t)dw

dy0 = C(t)x0(t)dt + D(t)dw
(19)

obtained from (1) by setting the control u identically equal
to zero, and Φ(t, s) is the transition matrix function of (1).
Then

x̂(t) = x̂0(t) +

∫ t

0
Φ(t, s)B1(s)u(s)ds (20)

with
x̂0(t) := E{x0(t) | Yt}. (21)

since u is a function of the data and hence adapted to Yt.
Therefore

x̃(t) = x̃0(t) := x0(t) − x̂0(t), (22)

as the control terms cancel.
We now complete the argument in the special case where

the admissible control laws are restricted to those in the linear
class

(L) u(t) = ū0(t) +

∫ t

0
F (t, τ)dy, (23)

where ū is a deterministic function and F is an L2 kernel.
In this case, as shown in the appendix,

Yt = Y0
t = σ{y0(τ), τ ∈ [0, t]}, t ∈ [0, T ]. (24)

Therefore
x̂0(t) = E{x0(t) | Y

0
t } (25)

does not depend on the control law and is generated by the
Kalman filter

dx̂0 = Ax̂0dt + L(dy0 − Cx̂0dt), x̂0(0) = 0. (26)

This together with (20) and (22) yields the Kalman filter (5)
for the controlled process as well as

dx̃ = (A − LC)x̃dt + (B2 − LD)dw, x̃(0) = x(0),

from which we readily derive the Riccati equation (9).
Consequently, the separation principle is valid for all

control laws in L since obviously Σ does not depend on
the particular choice. The remainder of the paper considers
versions of the separation principle where nonlinear feedback
is admissible.



III. NONLINEAR CONTROL LAWS: A DELICATE POINT

In general the separation principle is stated for control
laws that are allowed to be nonlinear. In this generality, a
frequent mistake in the literature is to assume without further
investigation that Σ defined by (17) does not depend on the
choice of control. Indeed, if this were the case, it would
follow directly that (10) is minimized by choosing the control
as (4), and the proof of the separation principle would be
immediate as in Section II. This mistake appears to be due
to the fact that the control term in (18) cancels when forming
(15). As we have seen in Section II such a conclusion would
require that x̂0 given by (21) does not depend on the choice
of control law. This would follow if the filtrations Yt and
Y0

t were equal as exhibited in (24), and needs to be proven
in the case where nonlinear control laws are considered. A
detailed discussion of this dilemma can be found in [19].
Given a nonlinear control law u = π(y), the output process

dy = dy0 +

∫ t

0
C(t)Φ(t, s)B1(s)u(s)dsdt, (27)

can be written as

dy = ϕ(t; y(s), 0 ≤ s ≤ t)dt + dy0 (28)

where ϕ is the non-anticipatory map

ϕ(t, y) =

∫ t

0
C(t)Φ(t, s)B1(s)π(y)(s)ds. (29)

From (28) we readily see that

Y0
t ⊂ Yt, t ∈ [0, T ]. (30)

For the separation principle to hold we need (24). The reverse
containment needs to be proven. The potential pitfalls are
underscored by a celebrated example by Tsirel’son [27] (also
see [2], [8, p. 298], [24, Section V.18]) taking as functional

ϕ(t, y) =
∑

k<0

{

y(tk) − y(tk−1)

tk − tk−1

}

1(tk,tk+1](t) (31)

in (28) instead, where (tk)k≤0 satisfies tk < tk+1,
limk→−∞ tk = 0, {λ} denotes the fractional part λ ∈ R,
1S is the indicator function of the set S, and y0 is a Wiener
process. Tsirel’son showed that for the functional (31), the
stochastic differential equation (28) does not have strong
solutions and that (30) is a proper inclusion (see also [24,
p. 156, Theorem 18.3]). Tsirel’son’s example is not in the
form (29) that arises in the feedback problem, but it still
underscores the potential subtlety in showing the reverse
inclusion in general.
To avoid these problems one might begin by uncoupling

the feedback loop and determine an optimal control process
in the class of stochastic processes u that are adapted to
the family of (uncontrolled) sigma fields (Y0

t )t∈[0,T ]. Such
a problem, where one optimizes over the class of all control
processes adapted to a fixed filtration, was called a stochastic
open loop (SOL) problem in [19]. In the literature on the
separation principle it is not uncommon to assume from the

outset that the control is adapted to (Y0
t )t∈[0,T ]; see, e.g., [4,

Section 2.3], [11], [30].
In [19] it was suggested how to embed various SOL

classes in a problem-dependent manner, and then construct
the corresponding feedback law. More precisely, the class
of admissible feedback laws was taken to consist of the
nonanticipatory functions u := π(y) such that the feedback
equations have a unique solution with an output process yπ

and u = π(yπ) adapted to {Y0
t }. In the next section we shall

give a few examples.

IV. HISTORICAL REMARKS
We have already discussed the case where the control

law is a linear function of the data in Section II. An
early treatment can be found in [5] where control laws are
restricted to being finite-dimensional compensators. For the
more general class of linear control laws L, see [19].
Regarding the case of nonlinear control laws we begin

with a construction due to Kushner [15]. Let

ξ̂0(t) := E{x0(t) | Y
0
t },

be the Kalman state estimate of the uncontrolled system
(19), where we use the notation ξ̂0 to distinguish it from
x̂0, defined by (21), which a priori might depend on the
control. Then the corresponding Kalman filter is

dξ̂0 = Aξ̂0(t)dt + L(t)dv0, ξ̂0(0) = 0

where the filtration (V0
t ) of the innovation process

dv0 = dy0 − C ξ̂0(t)dt, v0(0) = 0

is the same as that of y0; i.e., V0
t = Y0

t for t ∈ [0, T ]. In
analogy with (18), we define

ξ̂(t) = ξ̂0(t) +

∫ t

0
Φ(t, s)B1(s)u(s)ds,

taking
u(t) = ψ(t, ξ̂(t)) (32)

with ψ(t, x) Lipschitz in x and ξ̂ the unique strong solution
of the stochastic differential equation

dξ̂ =
(

Aξ̂(t) + B1ψ(t, ξ̂(t))
)

dt + L(t)dv0, ξ̂(0) = 0. (33)

Clearly ξ̂ is adapted to (V0
t ) and hence to (Y0

t ); see, e.g.,
[13, p. 120]. Hence the selection (32) of control law forces
u to be adapted to (Y0

t ), and hence, due to (27), Yt ⊂ Y0
t

for t ∈ [0, T ]. Since the control-dependent terms cancel,

dv0 = dy0 − C ξ̂0(t)dt = dy − C ξ̂(t)dt,

which inserted into (33) yields a stochastic differential equa-
tion, obeying the appropriate Lipschitz condition, driven by
dy and having ξ̂ as a strong solution. Therefore, ξ̂ is adapted
to {Yt}, and hence, by (32), so is u. Consequently, (27)
implies that Y0

t ⊂ Yt for t ∈ [0, T ] so that actually Yt = Y0
t .

Finally, this implies that ξ̂ = x̂, and thus u is given by

u(t) = ψ(t, x̂(t)). (34)



However, it should be noted that the class of control laws
(32) is a subclass of (34) as it has been constructed to make
u a priori adapted to {Y0

t }. Therefore, the relevance of these
results, presented in [15], for the proof in [16, page 348] is
unclear. In their popular textbook [14], widely used as a ref-
erence source for the validity of the separation principle over
a general class of admissible (including nonlinear) controls,
Kwakernaak and Sivan prove the separation principle over
a class of linear laws but claim with reference to [16], [15]
that it holds “without qualification” in general [14, p. 390].
In his pioneering paper [31], Wonham proved the separa-

tion theorem for the class of control laws (34) and also for a
more general cost functional than (3). However, his proof is
far from simple and marred by many technical assumptions.
A case in point is the assumption that C(t) is square and has
a determinant bounded away from zero, which is a serious
restriction. A subsequent proof by Fleming and Rishel [9]
for quadratic cost functionals is considerably simpler and
applies to control laws u = ϕ(t; y(τ), 0 ≤ τ ≤ t) that are
Lipschitz in y.
We note that if there is a delay ε > 0 in the processing

of the observed data so that, for each t, u(t) is a function
of {y(τ), 0 ≤ τ ≤ t − ε}, then (Yt) = (Y0

t ). To see
this, let n be a positive integer, and suppose that Yt = Y0

t

for t ∈ [0, nε]. Then, in view of (27) and the fact that
u(t) is Y0

t−ε- measurable on [0, (n + 1)ε], y(t) is Y0
t -

measurable on the same interval, and hence Yt = Y0
t for

t ∈ [0, (n + 1)ε]. Since Yt = Y0
t for t ∈ [0, ε], the claim

follows by induction. This observation shows why control-
dependent sigma fields do not occur in the usual discrete-
time formulation. In contrast, careful analysis is needed to
rule out that the same is true in continuous-time. This point
is overlooked in several textbooks (see, e.g., [26]) where a
continuous-time Σ is constructed as limits of finite difference
quotients of a discrete-time one, which does not depend
on the control and is the solution of a discrete-time matrix
Riccati equation. However, we cannot a priori conclude that
the continuous-time Σ satisfies this Riccati equation. For
this to be true, (Yt) = (Y0

t ) is needed, otherwise such an
argument is circular.
A popular viewpoint in Duncan and Varaiya [7] and Davis

and Varaiya [6] relies on weak solutions. It is tailored
to the case of a Brownian input process and utilizes the
Girsanov transformation for the purpose of avoiding control
dependence of the filtration (Yt) [4, Section 2.4]. By an
appropriate change of probability measure,

dw̃ = B1udt + B2dw

can be transformed into a (weighted) Brownian motion
process, which in the sense of weak solutions [13, page
128] is the same as any other Brownian motion process.
In this way, the filtration (Yt) can be fixed to be constant
with respect to variations in the control. The engineering
interpretation of this scheme is unclear.
Yet another approach to the separation principle is based

on the fact that although (1) with a nonlinear control is
non-Gaussian, the model is conditionally Gaussian given the

filtration (Yt) [20, Chapters 16.1]. This fact can be used to
show that x̂ is actually generated by a Kalman filter [20,
Chapters 11 and 12]. This last approach requires a lengthy
and sophisticated analysis and applies only to the case where
the driving noise w is a Wiener process.
In the sequel, we take a viewpoint which is more in line

with engineering thinking. We consider control laws that
render the feedback equations well posed in the sense that
they represent non-anticipatory measurable maps between all
sample paths of the various processes.

V. MAIN RESULTS

Following [18], [19] we rewrite the model in (1) in an
integrated form which allows similar conclusions for more
general classes of linear systems. Setting

z(t) =

(

x(t)
y(t)

)

,

the system (1) can be cast in the form
{

z(t) = z0(t) +
∫ t

0 G(t, τ)u(τ)dτ

y(t) = Hz(t),
(35)

where G is a Volterra kernel. This is shown in Figure 1,
where g represents the Volterra operator

g : (t, u) "→

∫ t

0
G(t, τ)u(τ)dτ, (36)

and where H is a constant matrix. As usual, Figure 1 is a
graphical representation of the algebraic relationship

z = z0 + gπHz. (37)

In the stochastic system (1) H = [0, I], but H could be any
matrix or linear system. Setting z = x and H = I we obtain
the special case of complete state information.

π

z y

z0

+
+

g H
u

Fig. 1. A feedback interconnection.

In the sequel, we take the point of view that for any
natural class of feedback laws (2), the function π should act
on sample paths of the stochastic process y rather than on
the process itself. Likewise, feedback systems are thought of
as maps between sample paths which are well-posed in the
sense that the feedback equations admit a unique solution
which causally depends on the input. This formulation is
substantially different from the probabilistic viewpoint which
focuses on sample paths in the complement of a zero measure
set, whereas we insist instead on the engineering viewpoint
that signals (rather than processes) drive a feedback system.



A. Signals and systems
Signals are thought of as sample paths of a stochastic pro-

cess with possible discontinuities. This is quite natural from
several points of view. First, it encompasses the response
of a typical nonlinear operation that involves thresholding
and switching, and second, it includes sample paths of
counting processes and other martingales. More specifically
we consider signals to belong to the Skorohod space D; this
is defined as the space of functions which are continuous on
the right and have a left limit at all points, i.e., the space
of càdlàg functions.1 It contains the space C of continuous
functions as a proper subspace.
Systems are thought of as general measurable non-

anticipatory maps from D → D, sending sample paths to
sample paths so that the output at any given time t is a
measurable function of past values of the input and of time.
An important class of systems is provided by stochastic
differential equations that have strong solutions. Strong solu-
tions induce such maps between corresponding path spaces.
In particular, semimartingales have sample paths in D and,
under fairly general conditions (see e.g., [23, Chapter V]),
stochastic differential equations driven by martingales have
strong solutions who are themselves semimartingales.
Besides stochastic differential equations in general, and

those in (35) in particular, other nonlinear maps may serve
as systems. For instance, discontinuous hystereses nonlin-
earities with continuous inputs as well as non-Lipschitz
static maps are reasonable as systems from an engineering
viewpoint. Indeed, these induce maps from D → D (or
from C → D, as in the case of relay hysteresis) and can
be considered as components of nonlinear feedback laws.
These typify systems that need be considered as an option
in control laws when establishing separation theorems.

B. Sample-path well-posedness
The question of well-posedness of feedback systems has

been studied from different angles for over forty years (see,
e.g., [29]). In our present setting of stochastic control we
need a concept of well-posedness which ensures that signals
inside a feedback loop are causally dependent on external
inputs.
Definition 1: The feedback system depicted in Figure 2

is (sample-pathwise) well-posed if the closed-loop maps are
themselves systems; i.e., the feedback equation

z = z0 + f(z)

has a unique solution z for inputs z0 and the operator
(1 − f)−1 is itself a system.

Thus, now thinking about z0 and z in the feedback system
in Figure 2 as stochastic processes, well-posedness implies
that Zt ⊂ Z0

t for t ∈ [0, T ], where Zt and Z0
t are the

sigma-fields generated by z and z0, respectively. This is a

1“continue à droite, limite à gauche” in French, alternatively RCLL (“right
continuous with left limits”) in English.

f

z

z0

+ +

Fig. 2. Basic feedback system.

consequence of the fact that (1−f)−1 is a system. Likewise,
since (1 − f) is also a system, Z0

t ⊂ Zt so that in fact

Z0
t = Zt, t ∈ [0, T ]. (38)

Next we consider the situation in Figure 1 and the
relation between Yt and the filtration Y0

t of the process
y0 = Hz0. The latter represents the “uncontrolled” output
process where the control law π is taken to be identically
zero. A key technical lemma for what follows states that the
filtrations Yt and Y0

t are also identical. This is not obvious
at first sight, solely on the basis of the linear relationships
y = Hz and y0 = Hz0, as the following simple example
demonstrates: the two vector processes `

w

0

´ and `

0

w

´ generate
the same filtrations while `

1 0
´ `

w

0

´ and `

1 0
´ `

0

w

´ do not.
Lemma 2: Assume that gπ is a system, H =

[

0 I
]

, and
the feedback interconnection in Figure 1 is well-posed. Then
(1 − Hgπ)−1 is a system and Yt = Y0

t for t ∈ [0, T ].
The conditions of the lemma can be further relaxed to

requiring that H be a linear dynamical system having a
right inverse which is itself a system. The idea of the proof,
which is given in detail in [10], is to show that provided
(1−gπH)−1 is a system (assumed by well-posedness), then
(1 − Hgπ)−1 exists and is a system as well. The essence
of the lemma is to underscore the equivalence between the
configuration in Figure 1 and that in Figure 3. It is this
equivalence which accounts for the identity (Yt) = (Y0

t )
between the respective filtrations. An analogous notion of
well-posedness was considered by Willems in [30] where
however, in contrast, the well-posedness of the feedback
configuration in Figure 3, and consequently the validity of
Yt = Y0

t , is assumed at the outset.

π

y

z0

+

+
g

H

H
u

Fig. 3. An equivalent feedback configuration.



All reasonable feedback laws from an engineering stand-
point must render the feedback system well-posed, which we
now formally define.
Definition 3: A feedback law π is well-posed for the

system (35) if gπ is a system and the feedback loop of Figure
1 is well-posed.
Thus, if the feedback law π is well-posed, then, by

Lemma 2, the feedback loop in Figure 3 is also well-posed.
Remark 4: For pedagogical reasons, it is worth consider-

ing the case of complete state information, as in (11), i.e.,
take H = I and z = x, with the feedback loop depicted
in Figure 2 and z, z0 replaced by x, x0, respectively. Then
well-posedness (38) amounts to the filtration (Xt), where
Xt := σ{x(s); s ∈ [0, T ]}, being independent of the control.
Therefore, Lemma 2 is not needed to resolve the circular
control dependence. This is consistent with the analysis
leading up to (12).

C. The separation principle

Our first theorem is a very general statement of the
separation principle admitting nonlinear control laws for the
classical stochastic control problem stated in Section II.
Theorem 5: Given the system (1), consider the problem of

minimizing the functional (3) over the class of all feedback
laws π that are well-posed. Then the unique optimal control
law is given by (4) and x̂ is given by the Kalman filter (5).
The proof is based on Lemma 2 and the analysis in

Section II. In fact, equality of the filtrations (Yt) and (Y0
t )

implies that (21) does not depend on the choice of control
law and hence neither does (17). Therefore, in view of the
analysis in Section II, (4) is the unique optimal control
provided it defines a well-posed control law. A detailed proof
is given in [10], where well-posedness is also proven.
Thus, for a system driven by a Wiener process with

Gaussian initial condition, the linear control law defined by
(4) and (5) is optimal in the class of all linear and nonlinear
control laws for which the feedback system makes sense as
a map between path spaces of signals. There is no need for
any Lipschitz condition or change of measures.
Interestingly, in this framework, if we dispense with the

requirement that x̂ is given by a Kalman filter, we can allow
x0 to be non-Gaussian and w to be an arbitrary martingale,
even allowing jumps. This is stated next, and the proof is
given in [10].
Theorem 6: Given the system (1), where w is a martingale

and x(0) is an arbitrary zero-mean random vector indepen-
dent of w, consider the problem to minimize the functional
(3) over the class of all feedback laws π that are well-
posed for (1). The control law given by (4) with x̂ being the
conditional mean (14) is the unique optimal control provided
it is well-posed.
Clearly, although the feedback law in Theorem 6 is linear

in x̂, computing x̂ is in general a nonlinear operation that
requires a nonlinear filter. Here, well-posedness is not guar-
anteed by the theorem and needs to be verified separately.

VI. CONCLUDING REMARKS

The central technical point of the separation principle in
continuous time is the dichotomy between the information
content of the controlled and the uncontrolled observation
processes. In fact, Lemma 2 raises the following question.
Given that z = z0 + gπHz has a unique strong solution,
does y = y0 + Hgπy admit a unique strong solution as
well? If Yt *= Y0

t , then y is only a weak solution. A
celebrated example of Tsirel’son [3] shows that there are
not always strong solutions. Hence there may be nonlinear
feedback laws that are not admissible for this reason. In
our formulation we restrict the class of admissible feedback
laws a bit more. Whereas in stochastic theory equations need
only be satisfied with probability one, our definition of well-
posedness requires that the equations represent (measurable)
maps which are well defined for every sample path. Hence,
insisting on well-posed feedback loops and on signals as
sample functions comes at a certain price.
The present paper is based on [10] which contains fur-

ther technical details, examples, and a detailed treatment
of more general linear systems with possible time-delays,
generalizing [18], [19]. During the review process of [10] an
anonymous referee has provided us with important insightful
suggestions and corrections which have helped us improve
the paper.

VII. APPENDIX: LINEAR CONTROL LAWS
Herein we present the statement that the controlled and

uncontrolled filtrations (Yt) and (Y0
t ) coincide for linear

control laws, i.e., for π ∈ L. We do this in the general
framework of Section V.
Lemma 7: Consider the stochastic system (35), and let L

be defined by (23). Then, Yt equals Y0
t for any π ∈ L.

Proof: For simplicity and without loss of generality we
let ū0 = 0 in (23). Thus,

u(t) =

∫ t

0
F (t, τ)dy

which we now substitute into (27) to obtain an expression
of the form

dy = dy0 +

∫ t

0
N(t, τ)dy(τ)dt. (39)

Define the Volterra resolvent which is the unique solution of

R(t, τ) =

∫ t

τ

R(t, s)N(s, τ)ds + N(t, s),

see, e.g., [25], [32]. Then, it can be shown that
∫ t

0
N(t, τ)dy(τ) =

∫ t

0
R(t, τ)dy0(τ),

which together with (39) yields

dy = dy0 +

∫ t

0
R(t, τ)dy0(τ)dt. (40)

Then, Y0
t ⊂ Yt follows from (39), and Yt ⊂ Y0

t follows
from (40).
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[1] K.J. Åström, Introduction to Stochastic Control Theory, Academic

Press, 1970.
[2] A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Springer,

2007.
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