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Abstract. Though there are hundreds of papers on rational spectral factorization, most of them are concerned
with full-rank spectral densities. In this paper we propose a novel approach for spectral factorization
of a rank-deficient spectral density, leading to a minimum-phase full-rank spectral factor, in both
the discrete-time and continuous-time cases. Compared with several approaches to low-rank spec-
tral factorization, our approach exploits a deterministic relation inside the factor, leading to high
computational efficiency. In addition, we show that this method is easily used in identification of
low-rank processes and in Wiener filtering.
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1. Introduction. In this paper we consider spectral factorization of rational spectral den-
sities of low rank, a topic for which there is a severe lack of computational methods compared
with the situation for spectral factorization of polynomials or full-rank matrix densities.

Rational spectral densities often appear in second-order linear stochastic systems. Pro-
cesses with a rank-deficient spectral density, named rank-deficiency processes or low-rank pro-
cesses [10, 11], may appear in dynamic networks where there are interconnections between the
nodes [49, 7, 12] and play an important role in singular autoregressive (AR) models [17, 19] as
well as dynamic factor models [22, 15]. These system representations have recently attracted a
lot of attention, especially in the large-scale cases, in a broad range of areas, such as stochastic
control [2, 34], macroeconomics [36], engineering [44, 33], biology and neuroscience [30, 52].
The need to calculate full-rank minimum-phase spectral factors thus increases rapidly, as they
are used as the transfer function for a latent variable system, an innovation model, or similar.

The starting point of this research comes from our paper [11] on the identification of low-
rank processes, where a full-column-rank minimum-phase factor is required for an innovation
model. However for low-rank processes (see, e.g., [10][19]), a classical identification approach
like prediction-error methods (PEM, [37]) cannot be used directly because of the rank-deficient
property. In [11] we use a special feedback structure for low-rank systems to simplify identifi-
cation, and find that a minimum-phase full-rank spectral factor can be recovered under some
restrictions, by means of a right-coprime factorization with an inner factor. This was not fully
discussed in previous papers, but we found that our approach can be used to solve spectral
factorization problem of rank-deficient densities analytically.

So far, there has been no less than hundreds of publications on the computation of spec-
tral factors both in continuous-time and discrete-time cases; for references see, e.g., [25, 45].
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Classical methods based on matrix factorizations or filtering, like the Bauer method, the
Levinson-Durbin algorithm, the Schur algorithm and the Riccati equation, can be found in
[51, 13, 45, 31, 20, 21]. For methods based on interpolation see, e.g., [26, 27]. There are also
several approaches based on the ideas underlying subspace identification [47, 32]. Though
the plethora of approaches can provide numerically efficient spectral factorization with sound
properties, they typically require a common restrictive assumption of a positive definite spec-
tral density, with the result that the methods cannot be applied to rank-deficient spectra. It
is worth mentioning that some so-called sparse spectral factorization methods [38, 46] con-
sider scalar polynomial spectral factorization with many zero data in signal processing and
communications, which is different from rank-deficient spectral factorization.

To our best knowledge, only [48, 42, 40, 29] propose computation methods for rank-
deficient spectral factorizations to a full-rank minimum-phase factor. Among them, [48, 29]
use (generalized) algebraic Riccati equations (ARE) to realize the factorizations iteratively.
In the singular case, the inverse of a spectral density is not proper, resulting in the infeasi-
bility of directly using the classical ARE methods. Hence in [48], a full-rank descriptor form
of the original spectra is used instead for ARE, which is of a higher dimension with some
system pencils repeated on the diagonal of the realization denominator. Similarly, paper [29]
overcomes the infeasibility by solving two different ARE at the same time, also increasing the
calculation cost by multiples. Worse still, as the dimension of the spectra increases consider-
ably in large-scale problems, a huge amount of increased computation is required if choosing
such schemes.

The paper [42, Section V. B] introduces an approach to general spectral factorization
(including low-rank spectral factorization) to obtain a full-rank minimum-phase factor in
continuous time; for the same approach for the discrete-time case see [40]. They solve the
spectral factorization problem by first applying a left-coprime factorization with the same
dimension as the spectral dimension, and then a general inner-outer factorization, without
increasing the order of the equations to be solved like in the above approaches.

In this paper, we shall propose a novel coprime factorization-based rank-deficient spectral
factorization approach to obtain full-rank minimum-phase factors. Our main contributions
are as follows. Compared to the approaches in [42, 40], our approach provides a coprime fac-
torization with a lower order, and does not require a post-processing inner-outer factorization,
leading to a higher computation efficiency. Specifically, we extract the deterministic relation
inside a low-rank spectral density, and use it to construct a coprime factorization problem,
from which the set of all analytical minimum-phase spectral factors can be obtained after
a matrix multiplication. By using the deterministic relation, the factorization problem and
hence the equation to be solved has a much lower dimension than for all existing methods
above, and this makes it more efficient. In addition, the identification of singular processes,
and the Wiener filter between the sub-processes, are discussed through the spectral factor-
ization results. These preliminary application results may provide insight into the further
generalization of applications in stochastic control and filtering (see, e.g., [23, 15, 29]) in the
singular and large-scale cases.

The structure of this paper is as follows. The preliminaries for our approach are intro-
duced in section 2. In particular, we investigate deterministic relations in tall spectral factors,
consider the related problems of factorization, and establish the uniqueness of minimum-phase
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spectral factors. The main observation behind our novel approach is described at the begin-
ning of section 3. Moreover, in section 3 our novel low-rank spectral factorization approach
is explained in the discrete-time case, first focusing on a special case without operating the
coprime factorization before describing the general solution. In section 4 we show the con-
venience of our approach in the application of identifying low-rank processes, both for an
innovation model, and for a canonical internal feedback structure with a Wiener predictor.
Section 5 introduces low-rank spectral factorization in the continuous-time case. In section 6,
numerical examples are given in discrete time with applications, as well as in continuous time.
Finally, the conclusions are given in section 7.

2. Preliminaries. We shall show in the next sections that, given the deterministic relation
inside a low rank spectral density, the minimum-phase spectral factorization problem is solv-
able by a general coprime factorization procedure with an inner function. This was roughly
discussed, but not dwelt on, in our previous work [11]. In this section the preliminaries for
solving rank-deficient spectral factorization in this paper are introduced.

2.1. Deterministic relation in a tall spectral factor. Let Φ(z) be an (m + p) × (m + p)
spectral density of rank m in discrete time. By rearranging rows and columns, it can be
partitioned as

(2.1) Φ(z) =

[
Φ11(z) Φ12(z)
Φ21(z) Φ22(z)

]
,

where Φ11 is m × m and full-rank, and Φ12 = Φ⊤
21. It is well known that there exists an

(m + p) × m full-column-rank (henceforth called merely full-rank) stable spectral factor of
Φ(z) [35, Remark 4.2.3],

(2.2) W (z) =

[
W1(z)
W2(z)

]
,

with W1(z) an m×m full-rank matrix, such that

(2.3) Φ(z) = W (z)W (z)∗,

where W (z)∗ = W (z̄−1)⊤ denotes the conjugate transpose, m > 0, p ≥ 0, and m, p ∈ Z.
Our problem is how to extract a tall minimum-phase full-rank W (z) from Φ(z) in (2.1).

Note that spectral factorization of rational matrices are also studied in the dual case where
Φ(z) = W ∗(z)W (z). We choose the form (2.3) because it is the natural factorization associated
to the representation of second-order stationary stochastic processes and hence to filtering and
estimation problems.

A deterministic relation between W1 and W2 was first proposed in [28] and extracted
from Φ(z) in [10, 11] with some conditions. Here we generalize the previous theorems to one
without restrictions. The result also applies to the continuous-time case, and will be further
used to calculate a minimum-phase full-rank W .

Theorem 2.1. Suppose W (z) is a full-column-rank spectral factor of Φ(z) in (2.1), with
partition (2.2), where W1 is m × m and full-rank. Then there is a unique deterministic
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relation between W1 and W2, not affected by the particular choice of W (z), namely

(2.4) W2(z) = H(z)W1(z),

where

(2.5) H(z) = Φ21(z)Φ11(z)
−1.

Proof. From (2.1) and (2.2), we have

Φ11 = W1W
∗
1 , Φ21 = W2W

∗
1 .

Since W1 is full-rank, Φ11 is full-rank. Hence

W2W
−1
1 = Φ21Φ

−1
11 ,

which leads to (2.4) and (2.5). Since the spectral density is unique for any process, the value
of H(z) is not affected by the particular choice of W (z).

2.2. General left-coprime factorization with an inner factor. In the following, we shall
give a corollary of [41, Theorem 6.2] specialized to the left-coprime factorizations with an
inner factor of the minimal degree in discrete time. And we will show in section 3 that the
coprime factorization in our problem will only lead to a minimal degree solution.

We shall need the following notation for a realization

(2.6)

[
A B

C D

]
:= C(zI −A)−1B +D.

Corollary 2.2. Given an arbitrary rational matrix T (z) with a minimal realization

(2.7) T (z) =

 Au Aus Bu

0 As Bs

Cu Cs D

 ,

where the eigenvalues of Au, As respectively correspond to the unstable (i.e., in the exterior
of the closed unit disk containing the infinity) and stable (i.e., in the closed unit disk) poles
of T (z). Let nu be the number of unstable poles of T (z). Then the left-coprime factorization
with an inner denominator with respect to the unit circle has a solution

(2.8) T (z) = TD(z)
−1TN (z),

of minimal degree nu if and only if the Stein equation

(2.9) X −A∗
uXAu − C∗

uCu = 0

has an invertible Hermitian solution X. In this case, the class of all solutions is given by

(2.10a) TN (z) =

 Au +Ru Aus +Rs Bu +RD

0 As Bs

PCu PCs PD

 ,
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(2.10b) TD(z) =

[
Au +Ru (1− z)M

PCu P

]
,

where

(2.11a) Rs = (1− z)MCs,

(2.11b) Ru = (1− z)MCu,

(2.11c) RD = (1− z)MD,

(2.11d) M = −X−1(I −Au)
−∗C∗

u,

and P is an arbitrary unitary matrix.

The above corollary is easy to obtain by limiting the J all-pass denominator to be an inner
matrix in [41, Theorem 6.2], and specifying some matrices. Hence we omit the proof here.
Note that our symbol (2.6) of representing a realization is different from that of [41]. Since
we use right-coprime factorizations, matrix transpositions will be made after using the above
result. The continuous-time counterpart of this corollary is given in section 5.

2.3. Remarks on calculating a minimal realization. To solve the general coprime factor-
ization problem as shown in subsection 2.2, one may consider the way to obtain a minimal
realization (2.7). Till now, the problem of calculating a minimal realization (2.6) with matri-
ces A,B,C,D from a rational transfer function has been widely studied and led to numerous
different approaches. In this subsection, we shall give some suggestions on constructing (2.7)
given T (z) with different kinds of poles. A numerical example in continuous time will be given
in Appendix E.

Considering here the matrix [
Au Aus

0 As

]
(2.12)

which is block upper-triangular, a convenient way to determine the realization is by using
Gilbert realization (see, such as [39, pp. 114-116]) when all the poles are distinct. Then (2.12)
will be a diagonal matrix with all poles on its diagonal. This also applies to the situation
when there are complex distinct poles. Note that for our case, the unstable poles and the
stable poles need to be put in Au and As respectively.

When there is any pole with a multiple degree, Gilbert realization cannot be used directly
anymore. However, the realization T (z) can be seen as the parallel connection of different
‘smaller’ realizations (see, such as [39, pp. 116]). Specifically, we write T (z) as a summation
of products containing different poles (including their degrees), similar as when calculating
Gilbert realization. Then the small realizations with distinct poles can be obtained as the
above. Separate the items with repeated poles, and for each repeated pole, construct its
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corresponding small realization with the matrix A in (2.6) as a Jordan block, with its diagonal
the pole itself. Then the other matrices in the realizations are easily obtained.

Though the above method is able to calculate a minimal realization in (2.7), there might
be complex numbers in the matrices. A realization with complex matrices is not welcomed
in the area of system control, for lack of physical meaning. Hence in this paper, we suggest
constructing the small realizations with repeated complex poles, or poles symmetric on both
sides of the real axis, in a different way from the above, such as using the standard controllable
form.

2.4. Minimum-phase spectral factors and their uniqueness. In the discrete-time formu-
lation a rational spectral factor W (z) is said to be minimum-phase if it has all its poles in
the open unit disc and all its zeros in the closed unit disc [35, p.137 or p.194]; in other words,
W (z) is outer. Next we shall demonstrate how established results on spectral factorization
of full-rank spectral densities can be extended to the situation when the spectal factor is tall
full-rank and minimum phase. More details on tall matrix zeros and minimum-phase function
matrices are given in Appendix A.

As for uniqueness, there have been established results for full-rank factors in the dual
case Φ(z) = W ∗W . In [50] it was proved in continuous time that a full row rank spectral
factor is unique up to left multiplication by a unitary matrix, and [4] gave a corresponding
result in discrete time. Furthermore, [3, Theorem 2.2] proved such uniqueness of a full row
rank minimum-phase factor in discrete time. In the following, we shall modify these results
to our case, which applies to the full-rank spectral densities as well. The proof will be given
in Appendix B.

Lemma 2.3 ( Uniqueness of full-column-rank minimum-phase spectral factor). A minimum-
phase spectral factor W (z) of a low rank spectral density Φ(z) always exists and is unique up
to right multiplication by an arbitrary m×m constant unitary matrix.

3. Spectral factorization. In this section, we shall first explain the key observation behind
our novel approach, and then provide a procedure for spectral factorization of Φ to obtain a
full-rank minimum-phase factor. Before starting, it is worth mentioning that neither W1 nor
W2 in a minimum-phase full-rank factor W need to be minimum-phase. This fact prevents us
from obtaining W by calculating some (maybe square or scalar) submatrices one by one; for
more details see Appendix A.

3.1. Key observation. Suppose we have already obtained a square minimum-phase factor
G1 for Φ11, which is easily obtained from any stable factor of Φ11 by square outer-inner
factorization and existing computational methods. Hence for W1 in a minimum-phase W ,
there exist a nontrivial m×m inner function Q1(z), satisfying

(3.1) W1(z) = G1(z)Q1(z).

Then we have the following result on the existence of a rank-deficient spectral factorization
solution.

Lemma 3.1. Given H, G1, a full-column-rank minimum-phase spectral factor (2.2) can be
constructed.
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Proof. From (3.1) and (2.4), we have

(3.2) H(z)G1(z) = W2(z)Q
∗
1(z) = W2(z)Q1(z)

−1.

Since W is minimum-phase, W2 must be stable. Hence Q−1
1 contains the complete unstable

part of the factor HG1. Hence one can get W2 and Q1 by performing a right-coprime factor-
ization in the rational H∞

p×m space, with a restriction that Q1 should be inner. Hence, W1 and
W can be calculated from (3.1), (3.2) and (2.2) in both the continuous-time and discrete-time
cases.

Lemma 3.1 and Lemma 2.3 respectively show the feasibility and uniqueness of such tall
minimum-phase spectral factorizations through a right-coprime factorization. That is, given
a spectral density Φ with partition (2.1), a minimum-phase full-rank factor can be determined
uniquely up to right multiplication by a unitary matrix, from a minimum-phase factor G1 of
Φ11 and the deterministic relation H inside the low rank process.

In the following, we shall give the set of solutions to tall full-rank minimum-phase factoriza-
tion. In most cases, the solutions depend on solving a Sylvester matrix equation (specifically,
a Stein equation for the discrete-time and a Lyapunov equation for the continuous-time case).
However, there is still a special case, when W1 itself in a minimum-phase W is minimum-
phase. In that case the complicated right-coprime factorization can be avoided. We shall first
discuss the special case and then introduce the more general solution in discrete time.

3.2. A special case. When W1 in a minimum-phase W is itself minimum-phase, the
matrix H(z)G1(z) = W2(z)Q

∗
1(z) will be a stable matrix, as shown in the proof of Theorem 3.2

below. Hence we may obtain the set of minimum-phase W (z), avoiding doing any right-
coprime factorization. To explain this, we give the following theorem on the sufficient and
necessary condition of a minimum-phase W1.

Theorem 3.2. Let W (z) be a minimum-phase spectral factor with decomposition (2.2) and
let H(z) be defined as in (2.4). Then H(z) is stable if and only if W1(z) is minimum-phase.

Proof. Sufficiency: Recall that H = W2W
−1
1 . If H is stable, any non-minimum-phase

zeros of W1 (i.e., the poles of W−1
1 ), should be cancelled by the non-minimum-phase zeros

of W2. However, if this holds, W1 and W2 will have the same non-minimum-phase zeros,
implying that these zeros are non-minimum-phase zeros of W , which is conflict to the fact
that W is minimum-phase (see Appendix A). Hence W1 has no non-minimum-phase zeros,
i.e., W1 is minimum-phase.
Necessity: When W1(z) is minimum-phase, by W1(z) = G1(z)Q1(z), similar to the reasons
in the proof of Lemma 2.3 in Appendix B, Q1 should be a constant unitary matrix. Hence
W2(z)Q

−1
1 = H(z)G1(z) is stable. Recalling that G1(z) has no non-minimum-phase zero,

H(z) is stable.

From Theorem 3.2, given a stable H(z), W1(z) will be minimum-phase when recovering
a minimum-phase W (z), i.e., W1(z) = G1(z)Q1 with Q1 a unitary matrix. Hence the set of
minimum-phase factors is

(3.3) W (z) =

[
G1(z)

H(z)G1(z)

]
Q1,
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where Q1 is any unitary matrix.
Theorem 3.2 applies directly to the continuous-time case, by substituting continuous-time

functions. It also gives a further answer to Manfred Deistler’s question [18]: is there always
a stable causal deterministic relation between the subvectors of a singular process (i.e., in
the special feedback structure (4.2) in Section 4)? In our previous work [10], this question
was discussed and a negative answer was given through a counterexample. In this paper a
necessary and sufficient condition for H(z) to be stable is given in Theorem 3.2, which can
be used as a judging criterion. Moreover, since W1(z) in a minimum-phase W (z) can be non-
minimum-phase no matter how Φ(z) is rearranged or partitioned, the stability cannot always
hold.

In the following we shall give the procedure of obtaining a minimum-phase spectral factor
W (z) in general in discrete time, through the general left-coprime factorization methods in
Corollary 2.2. Note that by using the left-coprime results for our right-coprime factorizations,
matrix transpositions are used in some final steps.

3.3. Rank-deficient spectral factorization. Suppose the proper function G⊤
1 H

⊤ has a
minimal realization (2.6), where A is square and invertible. From the fact that[

A B

C D

]
=

[
PAP−1 PB

CP−1 D

]
,

when P is an invertible matrix, the realization is equivalent to

(3.4) G1(z)
⊤H(z)⊤ =

 Au Aus Bu

0 As Bs

Cu Cs D

 ,

where the eigenvalues of Au, As respectively correspond to the unstable and stable poles of
G1(z)

⊤H(z)⊤. When (2.12) is a Jordan matrix, Aus = 0.
From Corollary 2.2, we know that the solution to left-coprime (also our right-coprime)

factorizations in discrete time is based on solving the Stein equation (2.9). Now we shall
present our results on full-column-rank minimum-phase spectral factorization of rational rank-
deficient densities.

Theorem 3.3. Given a low-rank rational spectral density Φ(z) partitioned as in (2.1), a
minimum-phase square spectral factor G1(z) of Φ11(z), and a minimal realization (3.4), then
the Stein equation (2.9) has a unique invertible Hermitian solution X, and all the minimum-
phase full column rank spectral factors W (z) can be given from

(3.5) W (z) =

[
G1(z)Q1(z)

W2(z)

]
,

with

(3.6a) W2(z) =

 Au +Ru Aus +Rs Bu +RD

0 As Bs

PCu PCs PD

⊤

,
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(3.6b) Q1(z) =

[
Au +Ru (1− z)M

PCu P

]⊤
,

where Ru, Rs, RD, M are the same as (2.11), and P is any unitary matrix; the other matrices
are from the minimal realization in (3.4). The pair (Q1,W2) is unique when the unitary matrix
P has been chosen.

Proof. First we shall show that the solution X to (2.9) is unique and invertible, so that
Corollary 2.2 with a minimal degree denominator is suitable for our problem to calculate the
coprime factorization. It is obvious that the pencils A∗

u− zI and Au− zI are regular (i.e., the
determinate of a pencil is not equivalent to 0). Then from Theorem C.1 in Appendix C, since
Au and A∗

u are conjugate with Au containing only the poles outside the closed unit circle, X
is the unique solution to (2.9). The invertibility of X is established since (3.4) is a minimal
realization, implying that (Cu, Au) is an observable pair.

Then from Corollary 2.2, (3.6) is obtained. Note that to obtain W2(z) and the inner
denominator Q1(z), in the end a matrix transposition is required.

Next we shall show that (3.6) can represent all the solutions to minimum-phase full-
rank spectral factorization, even though the minimal realization (3.4) is not unique. From
Lemma 2.3, if we can give one spectral factorization solution, then all the solutions can be
obtained by right multiplication by a unitary matrix. The matrices in (3.6) can be written as

W2(z) =

 Au +Ru Aus +Rs Bu +RD

0 As Bs

Cu Cs D

⊤

× P⊤

=Ŵ2(z)P
T ,

Q1(z) =

[
Au +MCu(1− z) M(1− z)

Cu I

]⊤
× P⊤

=: Q̂1(z)P
⊤,

where P is an arbitrary unitary matrix. Hence we have

W (z) =

[
G1(z)Q̂1(z)

Ŵ2(z)

]
P⊤,

which can represent all the minimum-phase full-rank factors.

Note that the set of solutions will change when the partition of Φ as (2.1) changes. Another
proof, avoiding referring to Lemma 2.3, that (3.6) can represent all the solutions under some
fixed partition, is given in Appendix D.

When (2.12) is in Jordan form, i.e., Aus = 0, the result (3.6a) becomes

W2(z) =

 Au +Ru Rs Bu +RD

0 As Bs

PCu PCs PD

⊤

,(3.8)
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and other matrices remain the same as in Theorem 3.3. When H(z) is stable, there is no
unstable part of the realization G⊤

1 H
⊤, hence (3.6) reduces to

W2(z) =

[
As Bs

PCs PD

]⊤
, Q(z) = P⊤,

with P a unitary matrix, which leads to the same result (3.3) in the special case. Hence
Theorem 3.3 also works for the special case. For the approaches to solve a Stein equation see,
e.g., [14].

A trick to simplify the calculations in practice is to choose a simple format or expression for
the minimal realization of G1(z)

⊤H(z)⊤. This can be realized by restricting Au to be a Jordan
block (even a diagonal matrix sometimes), or choosing C with values suiting computation so
that (2.9) and (3.6) are easy to solve and calculate. The trick works also for the continuous-
time case in the following, and will be used in the examples of this paper in section 6.

Compared to the general spectral factorization methods in [42][40], we apply the coprime
factorization to an m × p matrix, instead of a longer m × (m + p) matrix, by using the
deterministic relation. Hence our approach is more efficient.

4. Identification of low-rank vector processes. The above results in section 3 on solving
the spectral factorization problem also help us understand better the identification of low-rank
vector processes.

Such low-rank processes may arise in diverse areas besides the research on control systems
[23, 15, 29, 2, 34], namely macroeconomics [36], networked systems [7, 12], biology [30, 52],
aviation [44], chemical industry [1] and other fields. The low-rank vector processes are widely
used, since they are common in practice when a system has interconnections, or when a large
dimensional vector variable only depends on several scalar key elements. It is meaningful to
study estimation and identification specialized to such systems and thus break away from the
traditional methods of full-rank systems which consume considerable computational resources
and are not accurate enough in the low-rank cases.

The identification problems are discussed in several recent papers recently [49, 6, 7] includ-
ing our previous papers [43][11], where a preliminary but key problem can not be neglected:
identifying an innovation model (for example, in discrete time)

(4.1) y(t) = W (z)e(t) =

[
W1(z)
W2(z)

]
e(t),

where y(t) of dimension m + p is a low rank vector process (i.e., with a low rank spectral
density), e(t) of dimension m is a normalized innovation process. Hence W := [W⊤

1 , W⊤
2 ]⊤

is an (m + p) ×m minimum-phase transfer matrix, also a full-rank minimum-phase spectral
factor.

4.1. An innovation model. Since y(t) has a greater dimension than e(t), a classical iden-
tification approach such as prediction error methods (PEM) [37] cannot be applied directly.
Then a problem comes naturally: can we identify the entries of W one by one when it is 2×1,
or more generally, can we partition W as in (4.1), with W1 full-rank, and directly identify the
two parts separately?
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Recall that when identifying y1(t) := W1(z)e(t), the model we estimate actually is y1(t) =
G1(z)e1(t), where G1 is minimum-phase and e1(t) is an innovation process of y1(t). Hence our
work [11] gave a negative answer to the above question from the aspect of a minimum-phase
factor. The reason in brief is that, neither W1 nor W2 must be minimum-phase, in a minimum-
phase full-rank factor W (for more details see Appendix A), implying that the estimates by
PEM directly are not the ones of W1 and W2. And how to recover the minimum-phase W (z)
from some accessible estimates becomes essential.

+
++

+

Figure 1. The structure diagram of feedback models.

In [11], a special feedback structure as in Figure 1 with r(t) ≡ 0 is used to simplify the
identification of W (z), and to explore the interconnections between the sub-vectors,

y1(t) = F (z)y2(t) +K(z)e(t),(4.2a)

y2(t) = H(z)y1(t),(4.2b)

where K(z) is a minimum-phase function, H(z) is the deterministic function in Theorem 2.1,
which is easy to identify by imposing a deterministic relation on y2 and y1.

Previously, our approach had difficulties in estimating W when facing processes with a
larger scale, because there was a lack of sound theories on tall minimum-phase factors, and
lack of simple and appropriate computational methods for low-rank spectral factorization.
In this paper, Theorem 3.2 first gives a necessary and sufficient condition to check if W1 is
minimum-phase. Then when the estimate of H converges to a stable matrix, we can use
the estimate of G1 as the estimate of W1, and an estimated innovation model (4.1) can be
calculated from (3.3). Conversely, if H does not converge to a stable matrix, the general
solution in section 3 can be used.

4.2. The interconnections in the process. As for the identification of the interconnec-
tions between y1(t) and y2(t), which are represented by the special feedback model (4.2), we
have shown that H(z) is unique and hence identifiable given a fixed partition. However, the
forward loop (4.2a) is shown to be not identifiable in [11].

To reconstruct F (z), one idea is to construct a compensator F for H so that the whole
system is internally stable, with the help of robust control (see, e.g., [53]). This was first
suggested in our paper on modeling of low-rank time series [10, Section VI, VIII-D], which
deals with an equivalent problem in dual form. There the problem was solved by Nevanlinna-
Pick interpolation (see, e. g., [16][8]). Note that here since K(z) is a minimum-phase function,
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i.e., the process K(z)e(t) is also an innovation process, the internal stability of the whole
system only depends on whether the sensitive function is stable; see [10].

Another view is to give a particular function F (z) which for example, besides being stable
with at least one unit delay. This F (z) can act as the transfer function of the Wiener predictor
of y1(t) based on the (strict) past of y2(t), making the two parts in the forward loop orthogonal.
In [11], we found that when K(z) in the forward loop is a constant matrix, F (z)y2(t) =
zF+(z)y2(t−1) coincides with the one-step ahead Wiener predictor based on the strict past of
y2(t), see Theorem A.3 in Appendix A. The estimation of a Wiener filter was also discussed,
and realized in the scalar case.

Here in this paper, we shall first give a conclusive theorem on calculating the Wiener filter
and its corresponding K(z) in one forward loop, which we name a canonical forward loop.
And then the calculations when F (z) is a matrix are realized through our results above on
the low rank spectral factorization to full column rank outer factors.

Figure 2. Strictly causal Wiener filter from y2 to y1.

Suppose W2 has an outer-inner factorization,

(4.3) W2(z) = G2(z)Q2(z),

where G2 is a p× r outer matrix, Q2 is r×m inner satisfying Q2Q
∗
2 = I, with r = rank(W2).

A structure diagram of the Wiener filter is shown in Figure 2, where G2(z)
−L denotes the left

inverse of G2(z) and [·]+ denotes the orthogonal projection operator onto the vector Hardy
space H2 yielding the causal stable part of a function. Then we have the following result.

Theorem 4.1 (Wiener filter). A forward loop of the feedback model (4.2) can be given as

(4.4) y1(t) = F+y2(t− 1) +K+e(t),

where

(4.5a) F+ = [zW1Q
∗
2]+G

−L
2

denotes all solutions to the one-step ahead Wiener filter from y2 to y1,

(4.5b) K+ = W1 − z−1[zW1Q
∗
2]+Q2,

W is a minimum-phase spectral factor of the process y as in (2.2), and G2 is a minimum-phase
full-rank spectral factor of Φ22(z).

Proof. As in Figure 2, a general one-step ahead Wiener filter is

E{y1(t) | H−
t−1(y2)} = [S(z)]+G2(z)

−Ly2(t).

12



where S(z) denotes the map from e2(t − 1) to y1(t), G2 is a full-rank minimum-phase factor
of Φ22 with e2(t) the corresponding innovation, i.e.,

(4.6) y2(t) = G2(z)e2(t).

From (4.1)(4.3) and (4.6),

y1(t) = W1(z)e(t) = zW1(z)Q
∗
2(z)e2(t− 1),

and hence we have S(z) = zW1Q
∗
2 and (4.5a). Then (4.5b) is obtained from

K+e(t) = y1(t)− F+y2(t) = (W1 − z−1F+W2)e(t),

from which the theorem follows.

Note that the two parts of the right hand side of (4.4) are always orthogonal. From
(4.6), Ht(y2) = Ht(e2). Since e2(t) = Q2(z)e(t) with Q2(z) inner, Ht(e2) ⊂ Ht(e). Hence
F+y2(t−1) is in the projection of Ht−1(e2) onto the space H2. And K+e(t) denotes the other
parts of H(y1), including the ones in Ht−1(e2)/H

2, Ht(e2), and Ht(e)/Ht(e2).
From Theorem 4.1 we see that W2 is needed in order to calculate the Wiener filter. This is

easily realized when W1 and W2 are scalar, through a scalar coprime factorization. Now with
the help of Theorem 3.3, W2 can be obtained in matrix case, and hence a Wiener filter from
y2 to y1 can be calculated in general. Meanwhile, a forward loop with a strictly causal stable
transfer function F := z−1F+ is obtained as well, which can be applied to where (Granger)
causality [9] or the interconnections between nodes are needed [7]. An instructive numerical
example on identification and calculating the Wiener filter by using our spectral factorization
approach will be given in subsection 6.3.

5. Spectral factorization in continuous time. In the continuous-time setting W (s) is
minimum-phase, i.e. outer, if and only if all its poles are in the open left half plane and all
its zeros are in the closed left half plane [35, Chapter 5.3.1].

In this section the symbol (2.6) denotes[
A B

C D

]
:= C(sI −A)−1B +D.

Next we provide the continuous-time counterpart of Corollary 2.2.

Corollary 5.1. Given an arbitrary rational matrix T (s) with a minimal realization (2.7)
where the eigenvalues of Au, As respectively correspond to the unstable (i.e., in the open right
half plane) and stable (i.e., in the closed left half plane and at infinity) poles of T (s).
Then the left-coprime factorization with an inner denominator with respect to the imaginary
axis has a solution

(5.1) T (s) = TD(s)
−1TN (s)

of minimal degree nu if and only if the Lyapunov equation

(5.2) A∗
uX +XAu − C∗

uCu = 0.
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has an invertible Hermitian solution X. In this case, the class of all solutions is given by

(5.3a) TN (s) =

 Au +MCu Aus +MCs Bu +MD
0 As Bs

PCu PCs PD

 ,

(5.3b) TD(s) =

[
Au +MCu M

PCu P

]
,

where

(5.3c) M = −X−1C∗
u,

and P is a unitary matrix.

Without loss of generality, suppose the proper function G1(s)
⊤H(s)⊤ has a minimal real-

ization

(5.4) G1(s)
⊤H(s)⊤ =

 Au Aus Bu

0 As Bs

Cu Cs D

 ,

where the eigenvalues of Au, As respectively correspond to the unstable and stable poles of
G1(s)

⊤H(s)⊤.
Finally we present the continuous-time version of Theorem 3.3.

Theorem 5.2. Given a low-rank rational spectral density Φ(s) partitioned as in (2.1), a
minimum-phase square spectral factor G1(s) of Φ11(s), and a minimal realization (5.4), then
the Lyapunov equation (5.2) has a unique invertible Hermitian solution X, and all the minimum-
phase full column rank spectral factors W (s) are given by

(5.5) W (s) =

[
G1(s)Q1(s)

W2(s)

]
,

with

(5.6a) W2(s) =

 Au +MCu Aus +MCs Bu +MD
0 As Bs

PCu PCs PD

⊤

(5.6b) Q1(s) =

[
Au +MCu M

PCu P

]⊤
where

(5.6c) M = −X−1C∗
u,

P is an arbitrary unitary matrix, and the other matrices are as in the minimal realization
(5.4), where

(5.6d) H(s) = Φ21Φ
−1
11 .
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Proof. That the Lyapunov equation (5.2) has a unique solution can be shown by Theo-
rem C.1. Then (5.6) can be obtained from Corollary 5.1. The other parts of this proof are
similar to those in the proof of Theorem 3.3, and therefore we omit them here.

Approaches to solve a Lyapunov equations can be found in [14][5]. Moreover, Theorem 5.2
works also for the special case when H(s) is stable, by deleting the unstable parts in (5.6).

6. Numerical Examples. In this section we shall give three examples illustrating the
theoretical results above. First we shall give an example of the special case of subsection
3.2, showing the convenience of this necessary and sufficient condition. Next, more general
spectral factorization examples separately in continuous-time case and discrete-time case will
be given. In the example for discrete-time case, the spectral factorization will be applied to a
singular process identification problem, where the forward loop of the feedback structure with
F+(z) := zF (z) a one-step Wiener filter is calculated as well.

6.1. Example 1: a special case in the discrete time. Suppose we are given a minimum-
phase factor G1(z) of Φ11(z) and the deterministic relation function H(z) as

G1(z) =

[
(z+0.4)(z+0.3)
(z+0.2)(z+0.1) 0

0 z+0.3
z+0.5

]
, H(z) =

[
z+0.1
z+0.3 1

]
.

H(z) has only one stable pole −0.3, hence it is stable. From Theorem 3.2, a minimum-phase
factor W (z) can be directly given by

W (z) =

[
G1(z)

H(z)G1(z)

]
=


(z+0.4)(z+0.3)
(z+0.2)(z+0.1) 0

0 z+0.3
z+0.5

z+0.4
z+0.2

z+0.3
z+0.5

 ,

without solving a coprime factorization. And any full column rank minimum-phase factor of
this density can be obtained from W (z)Q1, where Q1 is a unitary constant matrix.

The poles of the above W (z) are −0.5,−0.2,−0.1, and the zeros are −0.4,−0.3, showing
that W (z) is minimum-phase, in harmony with Theorem 3.2.

6.2. Example 2: continuous-time case. In this example, we shall introduce some tricks
of calculation in the continuous-time case. To illustrate the generality of our approach, we
have an example with different types of poles.

Suppose we start from a minimal stable factor Wo(s) = [Wo1(s)
⊤Wo2(s)

⊤]⊤,

Wo1(s) =

[
(s+1)(s−2)(s2−2s+2)
(s+3)(s+4)(s2+2s+2)

0

0 (s+3)(s−1)
(s+1)(s+5)

]
,

Wo2(s) =
[
(s+1)2(s−2)(s+2)
(s+4)2(s2+2s+2)

s+3
s+4

]
,

with Wo1 full-rank.
First we impose an outer-inner factorization on Wo1(s) without here dwelling on the

computational method to obtain Wo1(s) = G1(s)Q(s), where

G1(s) =

[
(s+1)(s+2)
(s+3)(s+4) 0

0 s+3
s+5

]
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is minimum-phase and

Q(s) =

[
(s2−2s+2)(s−2)
(s2+2s+2)(s+2)

0

0 s−1
s+1

]
is an inner function matrix.

When the expression of Wo1 is more complex than that of G1, of which we need to
calculate the inverse, we may transform the matrix Wo(s) into Wo(s)Q

∗(s) to calculate H(s).
This is feasible because the deterministic function H(s) remains the same as the spectral
factor changes (Theorem 2.1). By transformation,

(6.1) Wo2(s)Q
∗(s) =

[
(s+1)2(s+2)2

(s+4)2(s2−2s+2)
(s+1)(s+3)
(s−1)(s+4)

]
,

and then H(s) is easily obtained by

H(s) = G1(s)
−1Wo2(s)Q

∗(s)

=
[
(s+1)(s+2)(s+3)
(s+4)(s2−2s+2)

(s+1)(s+5)
(s−1)(s+4)

]
.

However in this case, given Wo and the outer-inner factorization results, we may skip the
step of calculating H(s). That is, we have H(s)G1(s) = Wo2(s)Q

∗(s) as in (6.1) directly, with
distinct unstable poles 1+ i, 1− i, 1, and a stable pole −4 with degree 2. From the calculations
in Appendix E, a possible minimal realization of G1(s)

⊤H(s)⊤ is (E.1), where clearly

Au =

 0 1 0
−2 2 0
0 0 1

 , As =

[
−4 1
0 −4

]
, Aus = 03∗2, Bu =

 0
25/169
8/5

 , Bs =

[
10/13
−3/5

]
,

Cu =

[
−7 12 0
0 0 1

]
, Cs =

[
−30/13 0

0 1

]
, D =

[
1
1

]
.

Plugging Au and Cu into (5.2), we have the unique Hermitian solution to the Lyapunov
equation

X =

 99/4 −49/4 0
−49/4 337/8 0

0 0 1/2

 .

Hence from Theorem 5.2 and equation (5.6), the set of the solutions is

M =

 28/169 0
−40/169 0

0 −2

 ,

W2(s) =

[
(s+ 2)2(s+ 1)2

(s+ 4)2(s2 + 2s+ 2)
,

s+ 3

s+ 4

]
P⊤,

Q1(s) =

[
s2−2s+2
s2+2s+2

0

0 s−1
s+1

]
P⊤,

16



where P is any 2 × 2 unitary matrix. Choosing P to be the identity matrix, we have the
minimum-phase spectral factor,

W (s) =

[
G1(s)Q1(s)

W2(s)

]
=


(s+1)(s+2)
(s+3)(s+4) 0

0 (s−1)(s+3)
(s+1)(s+5)

(s+2)2(s+1)2

(s+4)2(s2+2s+2)
s+3
s+4

 ,

with poles −1,−3,−4,−4,−5 and zeros −1,−2,−3.
Note that if H is given, W2 can also be calculated from HG1Q1 instead of (5.6a). This

continuous-time example shows that when we start from a non-minimum-phase factor, the
computation can be further simplified by cutting down calculating the inverse of an m × m
matrix, either by skipping calculating H or by calculating W2 = HG1Q1 instead of (5.6a)
((3.6a) in discrete time).

6.3. Example 3: discrete-time case and the application to identification. In this exam-
ple, we shall solve the minimum-phase spectral factorization problem in discrete-time through
Theorem 3.3, in an application of a singular process identification. For simplicity, we identify
a singular process of rank 1. Note that in the following, G1(z), H(z), W (z), etc. denote
estimates rather than functions, but are kept for theoretical clarity.

Consider a three-dimensional process y(t) of rank 1 described by

y(t) = Wo(z)e(t) =

[
Wo1(z)
Wo2(z)

]
e(t),

where e is a zero mean white Gaussian scalar noise of variance λ2 = 1, and the two blocks of
function Wo(z) are

Wo1(z) =
z + 2

5z − 1
, Wo2(z) =

[
z−2
5z−1

z−1
5z−1

]⊤
.

From these we obtain the transfer function

Ho(z) =
[
z−2
z+2

z−1
z+2

]⊤
.

We have generated 100 samples of the three-dimensional time series with N = 500 data points
{y(t) := [y1(t), y2(t)

⊤]⊤ ∈ R3; t = 1, · · · , N} in MATLAB, where y1(t) denotes the first scalar
entry of y(t), and y2(t) the remaining two in sequence. With these data we shall successively
identify a minimum-phase factor for the process y1, the deterministic relation function Ho(z),
and calculate the estimates of a minimum-phase factor of y as well as the Wiener fliter from
y2 to y1.

Suppose the orders of functions are known. First we estimate an ARMA model of y1 and
obtain

ŷ1(t)− 0.255y1(t− 1) = e1(t) + 0.528e1(t− 1),

with e1(t) an innovation of y1(t). Hence we have the estimate

G1(z) =
z + 0.528

z − 0.255
,
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which is minimum-phase. Then identifyingHo(z) by imposing a deterministic relation between
the data of y1(t) and y2(t), a consistent and nearly precise estimate is given by a least squares
method,

H(z) =
[
z−2.000
z+2.000

z−1.000
z+2.000

]⊤
.

For more details on identification, see our work [11].
Then we use Theorem 3.3 to calculate the estimate of a minimum-phase factor of y(t). A

minimal realization of G1(z)
⊤H(z)⊤ can be given as

G1(z)
⊤H(z)⊤ =

 −2 0 2.611 1.958
0 0.255 0.606 0.259

−1 −1 1 1

 ,

where we choose C = [−1,−1] to simplify the calculation. The matrices Au, As, Bu, etc. are
obtained by a procedure, omitted here, similar to the one in Example 2. The unique solution
to the Stein equation (2.9) is

X = −1/3.

Hence from Theorem 3.3, by setting P = I, we have

M = −1, Q1(z) =
z + 2

2z + 1

and one of the estimated minimum-phase factors is

W (z) =

[
1

H(z)

]
G1(z)Q1(z)

=
(z + 0.528)

(2z + 1)(z − 0.255)

z + 2
z − 2
z − 1

 ,

with poles −0.5, 0.255 and a zero −0.528.
Next we will use the above results to estimate a canonical forward loop of the feedback

structure with a Wiener filter. From the above we have the partition

W1(z) =
(z + 2)(z + 0.528)

(2z + 1)(z − 0.255)
,

W2(z) =
[

(z−2)(z+0.528)
(2z+1)(z−0.255)

(z−1)(z+0.528)
(2z+1)(z−0.255)

]⊤
,

where W2 is minimum-phase. Hence an outer-inner factorization of W2 is W2 = G2Q2, with
G2 = W2, Q2 = 1. Then from Theorem 4.1, a one-step ahead Wiener filter from y2 to y1 is

F+(z) = [zW1(z)Q2(z)
∗]+W2(z)

−L

=
z(2.283z + 1.184)

(z + 0.528)(3z2 − 7z + 3)

[
2z − 1, z − 1

]
.
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by defining the pseudo-inverse W−L
2 = (W ∗

2W2)
−1W ∗

2 , where

[zW1(z)]+ =
z(2.283z + 1.184)

(2z + 1)(z − 0.255)
.

Then from (4.5b),

K+ = W1 − z−1[zW1]+ = 0.5.

Since F := z−1F+ is strictly causal, it is easy to verify that K+e(t) is orthogonal to F (z)y2(t).

7. Conclusion. A novel low rank rational spectral factorization approach is proposed in
this paper. The deterministic relation in the spectral factor and the coprime factorization with
an inner factor are used to calculate the full-rank minimum-phase spectral factor efficiently.
The application of the algorithm in identifying low-rank processes is introduced, where an
innovation model and also the internal Wiener filter can be estimated. Examples show the
feasibility and convenience of our approach.

Appendix A. Details on matrix zeros and tall minimum-phase matrix functions. In
this section we give more details on zeros and other properties of tall minimum-phase matrix
functions.

Definition A.1 (zeros of a function matrix). Given an m×p function matrix W (λ), a complex
number α in the region where W is analytic is a (right) zero of W if there is a nonzero vector
v ∈ Cp, such that

W (α)v = 0.

Consider now the outer-inner factorizations

W1(λ) = G1(λ)Q1(λ),

W2(λ) = Ĝ2(λ)Q̂2(λ),

where G1, Ĝ2 are the outer (minimum-phase) factors and Q1, Q̂2 are square inner (in fact
matrix Blaschke products). The question we want to discuss is: if W is outer, does it follow
that any (or both) of the two components W1,W2 are also outer? We shall see that the answer
is in general negative.

Let us recall that the full-column-rank matrix function W (z) ∈ H2
(p+m),m is outer, if the

row-span

span(W ) := span{ϕ(z)W (z); ϕ ∈ H∞
(p+m)}

is the whole space H2
m. The greatest common right inner divisor of two inner functions Q1

and Q̂2, see [24, p. 188 top] is denoted Q1 ∧R Q̂2. This is the inner function representative of
the closed vector sum H2

mQ1 ∨H2
mQ̂2.

Theorem A.2. Let a full-column-rank matrix function W (z) ∈ H2
(p+m),m be partitioned as

in (2.2). Then W is outer if and only Q1 and Q̂2 are right-coprime, i.e., the greatest common
right inner divisor of Q1 and Q̂2 is the identity, i.e. Q1 ∧R Q̂2 = Im.
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Proof. Since the square full-rank outer matrix function G1 satisfies span(G1) = H2
m, we

have

span(W ) = span(G1)Q1 ∨ span(Ĝ2)Q̂2

= H2
mQ1 ∨ span(Ĝ2)Q̂2

where Ĝ2 is a p×m outer matrix, possibly not full-rank, satisfying span(Ĝ2) ⊂ H2
m. Hence,

H2
mQ1 ∨ span(Ĝ2)Q̂2 ⊂ H2

mQ1 ∨H2
mQ̂2.

On the other hand,

H2
m(Q1 ∧R Q̂2) ⊂ H2

mQ1 ⊂ H2
mQ1 ∨ span(Ĝ2)Q̂2.

Follows from the identity see [24, p. 188 top],

H2
mQ1 ∨H2

mQ̂2 = H2
m(Q1 ∧R Q̂2),

and from the above, we have

span(W ) = H2
m(Q1 ∧R Q̂2).

Hence W is outer if and only if Q1 ∧R Q̂2 = Im.

Hence W (z) ∈ H2
(p+m),m can be outer even if none of the two submatrices W1 and W2

is. They just need to have no non-identity inner divisors in common (no common unstable
zeros when m = 1). On the other hand, when W1 or W2 have no unstable zeros, they are
automatically outer.

Next is a proposition discussing the Wiener filter from y2(t − 1) to y1(t) when W2 is
minimum-phase.

Theorem A.3. Assume that W2 is minimum-phase. Then there is a representation (4.2)
where F is stable and strictly causal, that is F (z) = z−1F̄ (z) with F̄ (z) causal and stable
(analytic in {|z| ≥ 1}) and K(z) is a constant matrix K+. In fact, this F̄ (z) coincides with
the transfer function F+(z) of the one-step ahead Wiener predictor based on the strict past of
y2, that is

F+(z)y2(t− 1) = E{y1(t) | H−
t−1(y2)}

and the prediction error ỹ1(t) := y1(t) − F+(z)y2(t − 1) can be written K+e(t) where e(t) is
the innovation of the joint process y. The representation

y1(t) = F+(z)y2(t− 1) +K+e(t)

is the unique feedback representation (4.2a) of y1(t) in which e(t) is uncorrelated with the
strict past of y2.

Appendix B. Proof of Lemma 2.3.
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Proof. A rational rank deficient spectral density corresponds to a stationary process (of
dimension m + p in our case). Since a stable (m + p) × m spectral factor always exists for
such processes, the theorem can be proved by its equivalent statement:
In all full-column-rank stable spectral factors of Φ, there is one minimum-phase spectral factor
unique up to right multiplication by an arbitrary m×m constant unitary matrix.
Existence: Given any stable p×m spectral factor Wo with rank m, we can perform an outer-
inner factorization such that Wo(z) = W (z)Q(z), where Q(z) is an m×m inner function, to
extract the minimum-phase factor of Wo.
Uniqueness: Suppose we have a minimum-phase (m+p)×m factorW (z), and there is an square
inner function Q̂(z), satisfying Ŵ (z) = W (z)Q̂(z) is minimum-phase. Hence Q̂(z) must also
be an outer function. Then by Q̂−1(z) = Q̂(z−1)⊤, the function Q̂(z−1) is minimum-phase.
Since the poles and zeros of Q̂(z−1) are the inverse of those of Q̂(z), Q̂(z) can only be a
constant unitary matrix.

Appendix C. Uniqueness of the solution to some Sylvester matrix equation. Though
the two equations (5.2) and (2.9) used in the spectral factorization in continuous time and
discrete time are different, they are both Sylvester-type equations.

Theorem C.1 ([14]). A Sylvester-type equation

AXB⊤ + CXD⊤ = E

has a unique solution if and only if (i) the matrix pencils A − λC and D − λB are regular;
and
(ii) the spectrum of one (of the two pencils) is disjoint from the negative of the spectrum of
the other.

Appendix D. More details on (3.6) being able to represent all the minimum-phase
factors.

In this section, we shall prove that (3.6) can represent all the minimum-phase factors (in
discrete time), without referring to Theorem 2.3.

When equation (2.9) has a unique invertible solution, from [41, Theorem 6.2], W2(z)
⊤ and

Q1(z)
⊤ from (3.6a) and (3.6b) can represent all the solutions to the left-coprime factorization

of G1(z)
⊤H(z)⊤ with an inner denominator. Moreover, recall that from Theorem 3.2, H(z) is

unique regardless of specific factor. Hence we have to prove that, any minimum-phase factor
of Φ11 can lead to all the tall full-rank minimum-phase factors given a fixed partition.

Suppose G1 and Ĝ1 are two minimum-phase factors of Φ11, satisfying Ĝ1 = G1P̂ , where
P̂ is an m×m unitary matrix. Suppose G⊤

1 H
⊤ = (Q⊤

1 )
−1W⊤

2 , with W2, Q1 in (3.6a)(3.6b),
is the left-coprime factorization of G⊤

1 H
⊤ with an inner factor. Then we have a left-coprime

factorization

Ĝ⊤
1 H

⊤ = P̂⊤G⊤
1 H

⊤ = P̂⊤(Q⊤
1 )

−1W⊤
2

= ((P̂−1Q1)
⊤)−1W⊤

2 ,

where Q̂1 := P̂−1Q1 is obviously an inner matrix. Then a minimum-phase full-rank factor
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can be represented as

W (z) =

[
Ĝ1(z)Q̂1(z)

W2(z)

]
=

[
G1(z)P̂ P̂−1Q1(z)

W2(z)

]
=

[
G1(z)Q1(z)

W2(z)

]
,

showing that any G1 leads to the same solutions of minimum-phase tall full-rank factors.
Hence Theorem 5.2 gives all the full-rank spectral factors of (2.1).

Appendix E. A numerical example of calculating a minimal realization (2.7) from T (s).
Suppose we have a rational function in the continuous-time case,

T (s) =
[

(s+1)2(s+2)2

(s+4)2(s2−2s+2)
, (s+1)(s+3)

(s−1)(s+4)

]⊤
with unstable distinct poles 1, 1 + i, 1− i, and a stable repeated pole −4 of degree 2.

First we rewrite T (s) in a summation form, and obtain

T (s) =
1

s− 1− i

[
25(12− 5i)/338

0

]
+

1

s− 1 + i

[
25(12 + 5i)/338

0

]
+

1

s− 1

[
0
8/5

]
+

1

(s+ 4)2

[
−6(50s+ 161)/169

−3(s+ 4)/5

]
+

[
1
1

]
.

For the first two items in the summation, which contain a pair of complex poles symmetric
on the both sides of the real axis, we use the controllable standard form to calculate a small
minimal realization of them. We have

T1(s) :=
1

s− 1− i

[
25(12− 5i)/338

0

]
+

1

s− 1 + i

[
25(12 + 5i)/338

0

]

=
1

s2 − 2s+ 2

[
25(12s− 7)/169

0

]
=


0 1 0
−2 2 1

−175/169 300/169 0
0 0 0

 .

For the simplicity of solving the following Lyapunov equation (5.2),we rewrite T1(s) as

T1(s) =


0 1 0
−2 2 25/169

−7 12 0
0 0 0

 .

For the third item containing a distinct real pole in the above summation, by Gilbert
realization, we have

T2(s) :=
1

s− 1

[
0
8/5

]
=

 1 8/5

0 0
1 0

 .
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For the forth item in the summation, denote its realization by

T3(s) =

 A3 B3

C3

[
0
0

]  .

Since the degree of the repeated pole −4 is 2, we let A3 be a 2× 2 Jordan block,

A3 =

[
−4 1
0 −4

]
.

Then it is easy to obtain matrices B3, C3 by solving equations. One of the solutions is

T3(s) =


−4 1 10/13
0 −4 −3/5

−30/13 0 0
0 1 0

 .

Finally, we have

T (s) = T1(s) + T2(s) + T3(s) +
[
1 1

]⊤

=



0 1 0 0 0 0
−2 2 0 0 0 25/169
0 0 1 0 0 8/5
0 0 0 −4 1 10/13
0 0 0 0 −4 −3/5

−7 12 0 −30/13 0 1
0 0 1 0 1 1


.

(E.1)
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