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Abstract— Analytic interpolation problems with rationality
and derivative constraints occur in many applications in systems
and control. In this paper we present a new method for the
multivariable case, which generalizes our previous results on
the scalar case. This turns out to be quite nontrivial, as it poses
many new problems. A basic step in the procedure is to solve a
Riccati type matrix equation. To this end, an algorithm based
on homotopy continuation is provided.

I. INTRODUCTION

A common problem in robust control and spectral estima-
tion is to find an ` × ` matrix-valued real rational function
F , analytic in the unit disc D = {z | |z| < 1}, such that

F (eiθ) + F (e−iθ)′ > 0, −π ≤ θ ≤ π, (1)

which also satifies the interpolation condition
1

k!
F (k)(zj) = Wjk, j = 0, 1, · · · ,m, (2)

k = 0, · · ·nj − 1,

where ′ denotes transposition, F (k)(z) is the kth derivative of
F (z), and z0, z1, . . . , zm are distinct points in D, occurring in
conjugate pairs if not real, and Wjk ∈ C`×` for each (j, k).
We restrict the complexity of the rational function F (z) by
requiring that its McMillan degree be at most `n, where

n =

m∑
j=0

nj − 1. (3)

Without loss of generality we may assume that z0 = 0 and
W0 = 1

2I . Then F (z) has a realization

F (z) = 1
2I + zH(I − zF )−1G, (4)

where H ∈ R`×`n, F ∈ R`n×`n, G ∈ R`n×`, the matrix
F has all its eighenvalues in D and (H,F ) is an observable
pair.

Let W be the `(n+ 1)× `(n+ 1) matrix

W :=

W0

. . .
Wm

 (5)

with

Wj =


Wj0

Wj1 Wj0

...
. . . . . .

Wjnj−1
· · · Wj1 Wj0

 ∈ C`nj×`nj (6)
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for each j = 0, 1, . . . ,m. Moreover, let Z be the (n+ 1)×
(n+ 1) matrix

Z :=

Z0

. . .
Zm

 (7)

where, for each j = 0, 1, . . . ,m, Zj is the nj × nj matrix

Zj =


zj
1 zj

. . . . . .
1 zj

 . (8)

Finally define the n+ 1-dimensional column vector

e := [e1n0
, e1n1

, · · · , e1nm
]′, (9)

where e1nj
= [1, 0, · · · , 0] ∈ Rnj for each j = 0, 1, . . . ,m,

and let S be the unique solution of the Lyapunov equation

S = ZSZ∗ + ee′. (10)

Note that the eigenvalues of Z are all located in the open
unit disc D.

The problem of determining the interpolant F (z) is an
inverse problems which has a solution if and only if

W (S ⊗ I`) + (S ⊗ I`)W ∗ > 0, (11)

where ⊗ denotes Kronecker product (see, e.g., [1]), and then
there are an infinite number of solutions. We would like to
find a parametrization of these solutions.

The special case when ` = 1, m = 0 and n0 = n + 1
is called the rational covariance extension problem and was
first formulated by Kalman [2] and then solved in steps in [3],
[4], [5], [6], where a complete parameterization in terms of
spectral zeros was obtained, and in [7], [8], where a convex
optimization approach was introduced. This problem have
occurred in many applications in systems and control such
as in signal and speech processing [9] and in identification
[10]. The case n0 = n1 = · · · = nm = 1 and m = n is
called the Nevanlinna-Pick interpolation problem with degree
constraint and was early considered in robust control [11]
and many other applications in systems and control [12],
[13]. It was completely parameterized, again in steps, in [14],
[15], [16], [17], and a convex optimization approach was
introduced in [16], [17]. Since then a large number of papers
on the more general scalar problem has appeared [18], [19],
[20], [21], [22]. We refer to [10] for further references.

The multivariable case (` > 1) is much harder, and the
nice spectral-zero assignability present in the scalar case
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appears to be lost or at lease elusive. Restrictive classes
of such problems have been considered in large number of
papers [3], [1], [23], [24], [25], [26], [28], [27], [29], [30],
but the theory remains incomplete, and many problems have
been left open.

In [31] we presented a complete parameterization of the
problem presented above for the scalar case (` = 1) in terms
of a modified Riccati equation, which was first introduced
for more restricted classes of interpolation problems in [6]
and [32]. As [6] studied the rational covariance extension
problem, the modified Riccati equation was named the
Covariance Extension Equation (CCE), and we retain this
name although the problems now considered are much more
general.

In the present paper we take a first step in generalizing the
results in [31] to the multivariable case (` > 1). In Section II
we provide the basic tools for the multivariable problem. To
describe our ultimate goal we provide in Section III a brief
review of the scalar results in [31], and then in Section IV we
develop the multivariable case in the same spirit. In Section V
we present our main results and an algorithm based on
homotopy continuation in the style of [33], [31]. The results
fall somewhat short of what the scalar case promises, and,
given some results in [27], we suspect that this is due to
problems introduced by the nontrivial Jordan structure of
the multivariable case. In Section VI-C we provide some
simulations to illustrate this and also an example of model
reduction. Finally, in Section VII we give some concluding
remarks and suggestions for future research.

II. PRELIMINARIES

Defining Φ+(z) := F (z−1) we have

Φ+(z) = 1
2I +H(zI − F )−1G, (12)

which has all its poles in the unit disc D. In view of (1)

Φ+(eiθ) + Φ+(e−iθ)′ > 0, −π ≤ θ ≤ π,

and hence Φ+(z) is positive real [10, Chapter 6]. By a co-
ordinate transformation (H,F,G)→ (HT−1, TFT−1, TG)
we can choose (H,F ) in the observer canonical form

H = diag(ht1 , ht2 , . . . , ht`) ∈ R`×n`

with hν := (1, 0, . . . , 0) ∈ Rν , and

F = J −AH ∈ Rn`×n` (13)

where J := diag(Jt1 , Jt2 , . . . , Jt`) with Jν the ν × ν shift
matrix

Jν =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1
0 0 0 . . . 0


and A ∈ Rn`×`. The numbers t1, t2, . . . , t` are the observ-
ability indices of Φ+(z), and

t1 + t2 + · · ·+ t` = n`. (14)

Next define Π(z) := diag(πt1(z), πt2(z), . . . , πt`(z)), where
πν(z) = (zν−1, . . . , z, 1), and the `× ` matrix polynomial

A(z) = D(z) + Π(z)A, (15)

where
D(z) := diag(zt1 , zt2 , . . . , zt`). (16)

Lemma 1: H(zI − F )−1 = A(z)−1Π(z)

Proof: Since

Π(z)(zI − J) = diag(zt1 , zt2 , . . . , zt`)H,

Π(z)(zI − F ) = Π(z)(zI − J) + Π(z)AH = A(z)H

as claimed.

Then it directly follows from Lemma 1 and (15), that (12)
takes the form

Φ+(z) = 1
2A(z)−1B(z), (17)

where
B(z) = D(z) + Π(z)B

with
B = A+ 2G. (18)

Moreover let V (z) be the minumum-phase spectral factor of

V (z)V (z−1)′ = Φ(z) := Φ+(z) + Φ+(z−1)′.

We know [10, Chapter 6] that V (z) has a realization of the
form

V (z) = H(zI − F )−1K +R,

which, by Lemma 1, can be written

V (z) = A(z)−1Σ(z)R, (19)

where
Σ(z) = D(z) + Π(z)Σ (20)

with
Σ = A+KR−1. (21)

From stochastic realization theory [10, Chapter 6] we have

K = (G− FPH ′)(R′)−1 (22)
RR′ = I −HPH ′ (23)

where P is the unique minimum solution of the algebraic
Riccati equation

P = FPF ′ + (G− FPH ′)(I −HPH ′)−1(G− FPH ′)′.
(24)

Now, from (13), (22) and (23) we have

G = JPH ′ −AHPH ′ +KR−1(I −HPH ′)
= ΓPH ′ +KR−1,

where, in view of (21),

Γ = J − ΣH. (25)

Hence
G = ΓPH ′ + Σ−A. (26)

765

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on August 30,2022 at 17:12:22 UTC from IEEE Xplore.  Restrictions apply. 



Since F = Γ +KR−1H and G−ΓPH ′ = KR−1, (24) can
be written

P = (Γ +KR−1H)P (Γ +KR−1H)′ +KK ′

= ΓPΓ′ + ΓPH ′(KR−1)′ +KR−1HPΓ′

+KR−1(KR−1)′,

where we have also used (23). Inserting KR−1 = G−ΓPH ′

we have
P = Γ(P − PH ′HP )Γ′ +GG′. (27)

III. A REVIEW OF THE SCALAR CASE

To motivate our approach to the multivariable problem
presented in Section I we shall briefly review some results
on the scalar case (` = 1) presented in [31]. To stress the
fact that the matrices H,G,A,B and Σ are now n-vectors
we shall here denote them h, g, a, b and σ instead, and the
scalar R will be denoted ρ.

Introducing the interpolation conditions (2) into the cal-
culation we obtain

g = u+ Uσ + UΓPh,

where P is the unique solution of the algebraic Riccati
equation (27) and u ∈ Rn and U ∈ Rn×n are given by[

u U
]

:=
[
0 In

]
M (28)

with

M =
[
e V

]−1
(W +

1

2
I)−1(W − 1

2
I)
[
e V

]
(29a)

and
V :=

[
Ze Z2e · · · Zne

]
. (29b)

Eliminating g we then have the modified Riccati equation

P =Γ(P − Phh′P )Γ′

+ (u+ Uσ + UΓPh)(u+ Uσ + UΓPh)′,
(30)

We showed in [31] that there is a map sending W to u which
is a diffeomorphism and that there is a linear map L such
that U = Lu.

Let Sn be the space of Schur polynomials (i.e., polyno-
mials with all zeros in the open unit disc D) of the form

a(z) = zn + a1z
n−1 + · · ·+ an, (31)

and let Pn be the 2n-dimensional space of pairs (a, b) ∈
Sn × Sn such that b(z)/a(z) is positive real. Moreover, for
each σ ∈ Sn, let Pn(σ) be the submanifold of Pn for which

a(z)b(z−1) + b(z)a(z−1) = 2ρ2σ(z)σ(z−1) (32)

holds, where ρ2 is the appropriate normalizing factor. It was
shown in [34] that {Pn(σ) | σ ∈ Sn} is a foliation of
Pn, i.e., a family of smooth nonintersecting submanifolds,
called leaves, which together cover Pn. Moreover, for any
polynomial (31), let a∗(z) = zna(z−1) be the reversed
polynomial of a(z). Finally, let W+ be the space of all W
such that the generalized Pick matrix WS+SW ∗ is positive
definite, where S the unique solution of the Lyapunov
equation (10) .

The following result was proved in [31].

Theorem 2: Let ` = 1. For each (σ,W ) ∈ Sn ×W+, the
modified Riccati equation (30) has a unique positive definite
solution P such that hPh′ < 1, and the problem to find
a rational function b∗(z)/a∗(z) satisfying the interpolation
conditions (2) and the positivity condition (32) has a unique
solution given by

a = (I − U)(ΓPh+ σ)− u
b = (I + U)(ΓPh+ σ) + u

(33)

In fact, the map sending (a, b) ∈ Pn(σ) to W ∈ W+ is a
diffeomorphism. Finally, the degree of the interpolant equals
the rank of P .

Consequently, by (32), for each σ ∈ Sn there is a unique
interpolant b∗(z)/a∗(z) with the prescribed properties such
that

ρ2
σ(z)σ(z−1)

a(z)a(z−1)
=

1

2

[
b(z)

a(z)
+
b(z−1)

a(z−1)

]
.

Hence
V (z) = ρ

σ(z)

a(z)

is the correspondning spectral factor.
In [31] we solved (30) by homotopy continuation by taking

u(λ) = λu with λ varying from 0 to 1. We showed that
this provides an efficient and robust algorithm for analytic
interpolation with degree constraint that can handle situations
which are difficult with the optimization approach, especially
when system poles are close to the unit circle.

IV. THE MATRIX CASE

Next we turn to the general multivariable case and intro-
duce the interpolation condition (2) in the matrix setting of
Section II.

Lemma 3: Let the matrices W and Z be given by (5) and
(7), respectively. Then the interpolation condition (2) can be
written

F (Z ⊗ I`) = W. (34)

Proof: Since F (z) is analytic in D, it has the represen-
tation

F (z) =

∞∑
k=0

Ckz
k

for all z ∈ D, where C0 = 1
2I`. A straight-forward but

tedious calculation, omitted here for lack of space, yields

F (Zj ⊗ I`) =

∞∑
k=0

(Zj)
k ⊗ Ck = Wj ,

where Wj , defined by (6), is given by (2). Then (34) follows
from (7) and (5).

Let A∗(z) be the reversed matrix polynomial

A∗(z) = D(z)A(z−1) = I` +D(z)Π(z−1)A, (35)

where D(z) is given by (16), and let B∗(z) be defined in
the same way in terms of B(z). Then

F (z) = 1
2A∗(z)

−1B∗(z) (36)
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and the interpolation condition (34) can be written

2A∗(Z ⊗ I`)W = B∗(Z ⊗ I`). (37)

Moreover, let the `× `n matrices N1, N2, . . . , Nt be defined
by

D(z)Π(z−1) = N1z +N2z
2 + · · ·+Ntz

t, (38)

where t is the largest observability index. Then

A∗(z) = I` +A1z +A2z
2 + · · ·+Atz

t,

where Ak = NkA. For later use we observe that

N =

N1

...
Nt

 ∈ R`t×`n, Nk =


ekt1

ekt2
. . .

ekt`

 (39)

where ekj is a 1×j row vector with the k:th element 1 and the
others 0 whenever k ≤ j, and a zero row vector of dimension
1× j when k > j. We also define the `(n+ 1)× `t matrix

V :=
[
Ze⊗ I` · · · (Zte)⊗ I`

]
. (40)

Next we want to derive the matrix version of the modified
Riccati equation (30) by using the interpolation condition
(37) to eliminate G in (24). To this end, we define

Q := ΓPH ′ + Σ (41)

in terms of which we have Q = G+A from (26). We refer
to the longer version [35] of the present paper for the proof
of the following lemma.

Lemma 4: Let T := (W − 1
2I)(W + 1

2I)−1. Then the
interpolation condition (37) is equivalent to

Z ⊗G1 + Z2 ⊗G2 + · · ·+ Zt ⊗Gt
= (I`(n+1) + Z ⊗Q1 + Z2 ⊗Q2 + · · ·+ Zt ⊗Qt)T.

In particular, setting T̂ := T (e⊗ I`), we have

V NG = T̂ + (Z ⊗N1Q+ · · ·+ Zt ⊗NtQ)T̂ . (42)

Now, V N is an `(n+ 1)× `n matrix in which the top `
rows are zero, since z0 = 0. Therefore it takes the form

V N =

[
0`×`n
L

]
. (43)

For the moment assuming that the square matrix L is
nonsingular – we shall later see that this is not always true
– V N has a psuedo-inverse (V N)†, and hence (42) yields

G = (V N)†T̂+(V N)†(Z⊗N1Q+· · ·+Zt⊗NtQ)T̂ , (44)

and therefore, by (41),

G = u+ U(ΓPH ′ + Σ), (45)

where u := (V N)†T̂ and U : R`n×` → R`n×` is the linear
operator

Q 7→ (V N)†(Z ⊗N1Q+ · · ·+ Zt ⊗NtQ)T̂ .

Inserting (45) into (27) we obtain the modified Riccati
equation

P =Γ(P − PH ′HP )Γ′

+ (u+ UΣ + UΓPH ′)(u+ UΣ + UΓPH ′)′.
(46)

It was first introduced in [6] for the scalar case ` = 1 and
for the special case of covariance extension. Therefore it has
been called the Covariance Extension Equation (CEE).

V. MAIN RESULTS

Next we generalize the results of Section III to the general
multivariable problem, which is considerably more difficult.
Therefore several key questions will be left unanswered at
this time. Nevertheless the theory in its present (preliminary)
form does give an workable algorithm for large classes of
problems. To save space we refer the reader to the longer
version [35] of this paper for all the proofs.

A. Basic results

Now redefine Sn to be the class of `×` matrix polynomials
(15) such that detA(z) has all its zeros in the open unit disc
D. Clearly Sn consists of subclasses with different Jordan
structure J defined via (13). In each such subclass D(z) and
Π(z) in (15), as well as N1, N2, . . . , Nt in (38), are the same.
LetW+ be the values in (2) that satisfy the generalized Pick
condition (11).

Lemma 5: Let the `n × `n matrix L be defined by (43).
Then L is nonsingular if and only if all observability indices
are the same, i.e., t1 = t2 = · · · = t` = n.

In the present matrix case, the relation (32) reads

A(z)B(z−1)′ +B(z)A(z−1)′ = 2Σ(z)RR′Σ(z−1)′. (47)

Let Pn be the space of pairs (A,B) ∈ Sn × Sn such that
A(z)−1B(z) is positive real. Then the problem at hand is to
find, for each Σ ∈ Sn, a pair (A,B) ∈ Pn such that (47)
and (2) hold.

Theorem 6: Given (Σ,W ) ∈ Sn × W+, where Σ(z)
has all it observability indicies equal. Then to any positive
definite solution P of the Covariance Extension Equation
(46) such that HPH ′ < I , there corresponds a unique
analytic interpolant (36), where A(z) and B(z) have the
same Jordan structure as Σ(z), the matrices A and B are
given by

A = (I − U)(ΓPH ′ + Σ)− u
B = (I + U)(ΓPH ′ + Σ) + u

(48)

and A(z) and B(z) satisfy (47) with

R = (I −HPH ′) 1
2 . (49)

Finally,
degF (z) = rankP. (50)

Let us stress that these results are considerably weaker
than the corresponding theorem for the scalar case reviewed
in Section III. In fact, Theorem 6 does not guarantee that
there exists a unique solution to (46). In fact, if there were
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two solutions to (46), there would be two interpolants, a
unique one for each solution P . Moreover, the condition
on the observability indices restricts the classes of Jordan
structures that are feasible.

However, Theorem 6 can be combined with other partial
results on existence and uniqueness. There are multivariable
problems for which we already know that there is a unique
solution to the interpolation problem, and then existence
and uniquenss of a solution to (46) will follow. A case in
point is when Σ(z) = σ(z)I , where σ(z) is a stable scalar
polynomial [1], [25], in which case the the observability
indices are all equal, as required in Theorem 6. In this
case the analytic interpolation problem will have a unique
solution, and thus, tracing the calculations in Section II
backwards, so will (46). The same is true when Σ(z) =
σ(z)C, where C is full rank [25].

On the other hand, in recent years there have been a
number of results [25], [26], [27], [29], [30] on the question
of existence and uniqueness of the multivariate analytic
interpolation problem, mostly for the covariance extension
problem (m = 0, n0 = n + 1), but there are so far only
partial results and for special structures of the prior (in
our case Σ(z)). Especially the question of uniqueness has
proven elusive. Perhaps, as suggested in [27], this is due
to the Jordan structure, and this could be the reason for the
condition on the observability indices required in Theorem 6.
In any case, as long as our algorithm delivers a solution to
the Covariance Extension Equation, we will have a solution
to the analytic interpolation problem, unique or not. An
advantage of our method is that (50) can be used for model
reduction, as will be illustrated in Section VI-C.

B. Solving CEE by homotopy continuation

We shall provide an algorithm for solving (46) based on
homotopy continuation. We assume from now on that t :=
t1 = t2 = . . . , t` = n. Whenever this algoritm delivers a
solution P , the interpolant is obtained via (48).

When u = 0, T̂ = 0, and hence U = 0. Then the modified
Riccati equation (46) becomes P = Γ(P − PH ′HP )Γ′,
which has the solution P = 0. We would like to make a
continuous deformation of u to go from this trivial solution
to the solution of (46), so we choose u(λ) = λu with
λ ∈ [0, 1]. The corresponding deformation of U is λU , and
T is deformed to λT . Since T = (W − 1

2I)(W + 1
2I)−1, we

have W = (I − T )−1 − 1
2I , and therefore the value matrix

(5) will then vary as

W (λ) = (I − λT )−1 − 1
2I.

It can be shown [35] that W (λ) ∈ W+ for all λ ∈
[0, 1] whenever W ∈ W+. Consequently, W (λ) satisfies
generalized Pick condition (11) along the whole trajectory.

Now, note that equation (47) can be written as

S(A)M(B) + S(B)M(A)

= 2S(Σ)(In+1 ⊗RR′)M(Σ)
(51)

where

S(A) =


I A1 · · · An

I · · · An−1
. . .

...
I

 M(A) =


I
A′1
...
A′n

 .
Moreover it can be shown [35] that

An +Bn = 2NnΣRR′. (52)

Applying (52) and deleting the zero row in (51), it can be
reduced to n`× ` equations[
In` 0n`×`

]
(S(A)M(B) + S(B)M(A))

= 2
[
In` 0n`×`

]
S(Σ)(In+1 ⊗RR′)M(Σ)

Therefore, introducing the n`× ` matrix

p = PH ′, (53)

we use the homotopy

H(p, λ) :=
[
In` 0n`×`

] (
S(A)M(B) + S(B)M(A)

− 2S(Σ)(In+1 ⊗ (I −Hp))M(Σ)
)

= 0,
(54)

where

A = A(p, λ) := Γp+ Σ− λu− λU(Γp+ Σ)

B = B(p, λ) := Γp+ Σ + λu+ λU(Γp+ Σ)
(55)

depend on (p, λ). Then the problem reduces to solving the
differential equation

d

dλ
vec(p(λ)) =

[
∂vec(H(p, λ))

∂vec(p)

]−1
∂vec(H(p, λ))

∂λ

vec(p(0)) = 0

(56)

[36], which has the solution p̂(λ) for 0 ≤ λ ≤ 1. The solution
of (46) is then obtained by finding the unique solution of the
Lyapunov equation

P − ΓPΓ′ = −Γp̂(1)p̂(1)′Γ′

+ (u+ UΓp̂(1) + UΣ)(u+ UΓp̂(1) + UΣ)′.
(57)

VI. SOME SIMPLE ILLUSTRATIVE EXAMPLES

To illustrate our theory we provide a few simulations.

A. Example 1

We consider a problem with the interpolation constraints

F (0) =
1

2

[
1 0
0 1

]
F (0.5) =

[
1 0
0 0.4

]
F (1)(0.5) =

[
2 0.1
0 0.1

]
,

where n = 2, ` = 2. This yields

Z =

0
0.5
1 0.5

 e =

1
1
0

 (58)

Taking Σ(z) of the form

Σ(z) =

[
z2 0
0 z2

]
+ Π(z)Σ (59)
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we have t1 = t2 = 2, and thus

V N =

[
02×4
L

]
, L =


0.5 0.25 0 0
0 0 0.5 0.25
1 1 0 0
0 0 1 1

 ,
where clearly L is nonsingular as required. Then choosing

Σ =


1 0.3

0.2 0.3
0.1 0.4
0.7 0.2

 , (60)

the matrix polynomial (59) is stable, and we can use our
algorithm to obtain

A(z) =

[
z2 0
0 z2

]
+ Π(z)A

B(z) =

[
z2 0
0 z2

]
+ Π(z)B,

(61)

where

A =


0.9467 −0.1737
0.3603 0.3583
−0.0445 1.0925
0.2147 0.7364

 B =


−0.0533 0.2263
−0.3517 −0.2893
−0.2445 0.0925
0.2406 −0.9739


If instead we choose Σ(z) of the form

Σ(z) =

[
z3 0
0 z

]
+ Π(z)Σ,

then t = t1 = 3, t2 = 1, and thus

V N =

[
02×4
L

]
, L =


0.5 0.25 0.125 0
0 0 0 0.5
1 1 0.75 0
0 0 0 1

 ,
where L is singular as anticipated by Lemma 5. Hence the
algorithm cannot be used.

B. Example 2

Next consider the multivariable covariance extension prob-
lem

F (0) = 1
2I2, F (1)(0) = C1, F (2)(0) = C2,

where

C1 =

[
−0.5 0.2
−0.1 −0.5

]
, C2 = 2

[
0.1 −0.6
0.1 −0.3

]
.

In this case

Z =

0
1 0

1 0

 e =

1
0
0


By Lemma 5, we need to choose t1 = t2 = 2 and this yields

V N =

[
02×4
L

]
, L =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

where L is nonsingular. Choosing the Σ(z) in (60), our
algoritm delivers the solution (61) with

A =


0.9467 −0.1737
0.3603 0.3583
−0.0445 1.0925
0.2147 0.7364

 B =


−0.0533 0.2263
−0.3517 −0.2893
−0.2445 0.0925
0.2406 −0.9739

 .
Again the choice t = t1 = 3, t2 = 1 of obsevability indices
does not work (Lemma 5).

C. Model reduction
Consider a system with a 2× 2 transfer function

V (z) = A(z)−1Σ(z) (62)

of dimension 10 and with observability indices t1 = t2 = 5,
where A(z) and Σ(z) are given by (15) repectively (20) with

A =



−0.11 −0.02
−0.08 −0.15
0.05 0.10
−0.05 −0.09
−0.13 −0.09
0.11 0.07
0.09 0.19
−0.03 −0.03
−0.10 −0.13
0.12 0.05


, Σ =



0.1500 0
−0.6900 0
0.1025 0
0.0306 0
−0.0034 0

0 0.1500
0 −0.6900
0 0.1025
0 0.0306
0 −0.0034


.

Here Σ(z) = σ(z)I2, were

σ(z) = (z − 0.1)(z − 0.3)(z − 0.6)(z + 0.2)(z + 0.95).

We pass (normalized) white noise though the system

V(z)white noise y

to obtain the output y0, y2, · · · , yN , and from this output data
we estimate the 2× 2 matrix valued covariance sequence

Ĉk =
1

N − k + 1

N∑
t=k

yty
′
t−k. (63)

Then we solve the problem (2) with ` = 2, m = 0, n0 = 6,
and W0k = Ĉk for k = 0, 2, . . . , 5. This is a matrix-valued
covariance extension problem. The modified Riccati equation
(46) has a solution P with eigenvalues

1.5× 10−6, 2.7× 10−5, 0.0007, 0.0041,

0.0104, 0.0338, 0.1993, 0.3457, 0.6535, 0.7138.

The first four eigenvalues are very small, so we can reduce
the degree of this system from ten to six by choosing the
first four covariance lags Ĉ0, Ĉ1, Ĉ2, Ĉ3 and removing two
zeros of Σ(z). Since the reduced matrix A will be 6×2, we
can only match 12 covariance elements. Consequently we
can only match Ĉj up to j = 3. We choose to remove the
zeros at −0.2 and 0.6. The reduced-order system will have
observability indices t1 = t2 = 3. The singular values of the
true system (62) are shown in the multivariable Bode-type
plot of Fig. 1 together with those of the estimated systems of
degree ten and six, respectively. As can be seen, the reduced-
order system is a good approximation.
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Fig. 1: Estimated singular values and the true ones

VII. CONCLUDING REMARKS

We have extended our previous results [31] for the scalar
case to the matrix case. However, multivariable versions of
analytic interpolation with rationality constraints have been
marred by difficulties to establish existence and, in particular,
uniqueness in the various parameterizations [3], [1], [23],
[24], [25], [26], [27], [29], [30], and we have encountered
similar difficulties here. Our approach attacks these problems
from a different angle and might put new light on these
challenges. Therefore future research efforts will be directed
towards settling these intriguing open questions in the context
of the modified Riccati equation (46).
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