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Abstract— In a series of fundamental papers BK Ghosh re-
duced the simultaneous stabilization problem to a Nevanlinna-
Pick interpolation problem. In this paper we generalize some
of these results allowing for derivative constraints. Moreover,
we apply a method based on a Riccati-type matrix equation,
called the Covariance Extension Equation, which provides a
parameterization of all solutions in terms of a monic Schur
polynomial. The procedure is illustrated by examples.

I. INTRODUCTION

Simultaneous stabilization is the problem of finding a
single controller that stabilizes multiple plants [1], [2]. In this
paper, we consider the following problem. Given a family
pλ(s) of single-input single-output proper transfer functions
of degree nλ, represented as

pλ(s) =
λx1(s) + (1− λ)x0(s)

λy1(s) + (1− λ)y0(s)
(1)

where λ ∈ [0, 1], x0(s), x1(s), y0(s), y1(s) ∈ H , find a
proper compensator k(s) such that the closed-loop systems
pλ(s)(1+k(s)pλ(s))

−1 are stable for all λ ∈ [0, 1]. Here H
is the ring of proper rational functions with real coefficients
with poles in the open left half plane C−.

In [3], [4], BK Ghosh studied the simultaneous partial pole
placement problem, which finds application in the design
of a compensator for a family of linear dynamical systems.
To solve this problem, he proposed an interpolation method,
which provides a new viewpoint to solve such problems.

In the present paper we apply a more general interpolation
strategy based on our previous work on a Riccati-type
approach to analytic interpolation [12], [13], which in turn
is based on algorithms for the partial stochastic realization
problem [7], [8], [9], [10] and on [11]. This allows for more
general class of systems as there is a parameterization of all
solutions with a prescribed interpolation points and derivative
constraints are allowed.

More precisely, we transform the simultaneous stabiliza-
tion problem to an analytic interpolation problem. which
in its most general (scalar) form can be formulated in the
following way. Given m + 1 distinct complex numbers
z0, z1, . . . , zm in the open unit disc D := {z | |z| < 1},
consider the problem to find a real Carathéodory function
mapping the unit disc D to the open right half-plane, i.e., a
real function f that is analytic in D and satisfies Re{f(z)} >
0 there, and which in addition satisfies the interpolation
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conditions

f (k)(zj)

k!
= wjk, j = 0, 1, · · · ,m, (2)

k = 0, · · ·nj − 1

where f (k) is the k:th derivative of f , and the interpolation
values {wjk; j = 0, 1, · · · ,m, k = 0, · · ·nj−1} are complex
numbers that occur in conjugate pairs. In addition we impose
the complexity constraint that the interpolant f is rational of
degree at most

n :=

m∑
j=0

nj − 1. (3)

In general there are infinitely many solutions to this problem,
but, as we shall see in Section IV, they can be completely
parameterized in terms of an arbitrary n-dimensional Schur
polynomial σ(z). Freely choosing σ(z) allows us to tune the
solution to specifications.

The paper is organized as follows. In Section II, we
present necessary and sufficient conditions for a family of
plants to be simultaneous stabilizable. Section III shows how
to transform the simultaneous stabilization problem to an
analytic interpolation problem. Section IV presents how to
solve analytic interpolation problem based on the Covariance
Extension Equation. In Section V, finally, we apply our
method to some problems in simultaneous stabilization.

II. SIMULTANEOUS STABILIZATION PROBLEM

To solve this problem we first collect some results based
on the work of Ghosh [3], [4]. To this end we first consider
a special case: Given a pair of distict plants represented by
coprime factorizations

p0(s) =
x0(s)

y0(s)
, p1(s) =

x1(s)

y1(s)
, (4)

where xi(s), yi(s) ∈ H and yi(s) is proper but not strictly
proper, find a proper compensator which can stabilize p0 and
p1 simultaneously. Let J be set of multiplicative units in H .
That is, an element u of H is a multiplicative unit if there
exists v in H such that vu = uv = 1. Moreover, let C+ be
closed right half of the complex plane including infinity.

Proposition 1: The pair of distinct plants p0, p1 is simul-
taneously stabilized by a proper compensator if and only if
there exists ∆0(s),∆1(s) ∈ J , such that the following holds.

(i) If s1, s2, · · · , st are the zeros of x0y1 − x1y0 in
C+ with multiplicities m1, · · · ,mt, respectively, then s1, s2,
· · · , st must be the zeros of ∆0y1−∆1y0 and ∆1x0−∆0x1

with multiplicities at least m1,m2, · · · ,mt, respectively.
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(ii) If x0y1 − x1y0 = 0 at ∞ with multiplicity m∞,
then ∆1x0 −∆0x1 = 0 at ∞ with multiplicity m∞.

Proof: The main idea of proposition 1 is due to
BK Ghosh [3], [4], and the proof that we now sketch is
an adaptation of his procedure. Let the required proper
compensator be represented by the coprime factorization

k(s) =
xc(s)

yc(s)
, (5)

where xc(s), yc(s) ∈ H and yc(s) is proper but not strictly
proper. Then the transfer function of the closed-loop system
is

Gi(s) =
ni(s)

di(s)
=

xi(s)yc(s)

yi(s)yc(s) + xi(s)xc(s)
, i = 0, 1 (6)

Since xi(s), yi(s), xc(s), yc(s) ∈ H , which means all their
poles are in C−, the poles of ni(s) and di(s) are also in C−.
To stabilize p0(s) and p1(s) simultaneously, we therefore
need to have all zeros of di(s) in C−.

If xi(s)/yi(s) is proper but not strictly proper, then ni(s)
is a nonzero number at infinity. To make Gi(s) a proper
function, di(s) also needs to be a nonzero number at infinity.

If xi(s)/yi(s) is strictly proper, then di(s) will be a
nonzero number at infinity, and Gi(s) will be strictly proper.

Therefore stabilizing p0 and p1 simultaneously relies on
the existence of ∆0,∆1 ∈ J such that

xi(s)xc(s) + yi(s)yc(s) = ∆i(s), i = 0, 1 (7)

Solving (7) for xc and yc, we have

xc(s) = (∆0y1 −∆1y0)/(x0y1 − x1y0)

yc(s) = (∆1x0 −∆0x1)/(x0y1 − x1y0)
(8)

Condition (i) is necessary and sufficient for xc(s), yc(s)
to belong to H . Condition (ii) is necessary and suffi-
cient for yc(s) to be proper but not strictly proper and
xc(∞)/yc(∞) ̸= ∞, which means xc(s)/yc(s) is a proper
rational function.

Next, we consider the more general case. Let (4) be a pair
of distinct plants. Consider

pλ(s) =
xλ(s)

yλ(s)
=

λx1(s) + (1− λ)x0(s)

λy1(s) + (1− λ)y0(s)
(9)

where λ ∈ [0, 1]. Set ηij(s) := xiyj(s) − xjyi(s), i, j ∈
[0, 1].

Proposition 2: The family of plants pλ(s) for λ ∈ [0, 1] is
simultaneously stabilizable by a proper compensator if and
only if there exists ∆0, ∆1,∈ J such that the conditions
(i) and (ii) in Proposition 1 are satisfied together with the
following additional condition:

(iii) ∆1

∆0
does not intersect the nonpositive real axis

including infinity at any point in C+.

Proof: Let (5) be the required compensator. A necessary
and sufficient condition for this compensator to stabilize the
plants (4) simultaneously is given by the conditions (i) and
(ii). Additionally, (5) simultaneously stabilizes every other

plant xλ/yλ if and only if there exist ∆λ ∈ J, λ ∈ (0, 1)
such that

xcxλ + ycyλ = ∆λ. (10)

By combining (7) and (10) we obtain

λ∆1 + (1− λ)∆0 = ∆λ, λ ∈ (0, 1) (11)

Since the poles of ∆0 and ∆1 are in C−, the poles of ∆λ

are in C− as well. In order to have ∆λ in J , we need that
the zeros are in C−. From

λ∆1 + (1− λ)∆0 = ∆λ = 0 (12)

we get

∆1

∆0
= 1− 1

λ
∈ (−∞, 0), for λ ∈ (0, 1) (13)

If ∆1

∆0
intersects (−∞, 0) at C+ (suppose at ŝ), then there

is a λ ∈ (0, 1), such that

∆1

∆0
(ŝ) = 1− 1

λ
(14)

and
∆λ(ŝ) = 0 (15)

which means that ∆λ is not in J which contradicts the result
that all ∆λ ∈ J . It follows that a necessary and sufficient
condition for the existence of ∆λ ∈ J, λ ∈ (0, 1) is given by
the condition (iii) described above.

III. DETERMINING THE INTERPOLATION CONDITIONS

In this section, we reformulate the three condition (i)-(iii)
above as interpolation conditions.

Proposition 3: Let sj be a zero of x0y1 − x1y0 in C+ of
multiplicity n + 1, but not a zero of y0 and y1, or x0 and
x1. Then condition (i) and condition (ii) are equivalent the
i-th derivative of ∆1(s)/∆0(s) satisfying the interpolation
constraint

(
∆1

∆0
)(i)(sj) = (

y1
y0

)(i)(sj) (16)

where ∆1,∆0 ∈ J , i = 0, · · · , n.

Proof: We shall need the Leibniz formula

[u(x)v(x)](n) =

n∑
k=0

Ck
nu

(n−k)(x)v(k)(x), (17)

where (n) is the n-th derivative. Since sj is a zero of x0y1−
x1y0 of multiplicity n+ 1,

(x0y1 − x1y0)
(i)(sj) = 0, i = 0, 1, · · ·n. (18)

By condition (i), we need to have

(∆0y1 −∆1y0)
(i)(sj) = 0, i = 0, 1, · · ·n (19)

which is equivalent to

(y1 −
∆1

∆0
y0)

(i)(sj) = 0, i = 0, 1, · · ·n. (20)



By Leibniz formula, (20) implies

(y1)
(i)(sj)−

i∑
k=0

Ck
i (

∆1

∆0
)(i−k)(sj)y

(k)
0 (sj) = 0 (21)

for i = 0, 1, · · · , n. Thus, if n = 0,

∆1

∆0
(sj) =

y1
y0

(sj), (22)

Suppose that, for i = 0, · · · , n − 1 and multiplicity n, (16)
holds. Then for multiplicity n + 1, we need an additional
constraint

(y1 −
∆1

∆0
y0)

(n)(sj) = 0 (23)

which is

(y1)
(n) −

n∑
k=1

Ck
n(

y1
y0

)(n−k)y
(k)
0 − (

∆1

∆0
)(n)y0 = 0 (24)

at sj . By Leibniz formula,

(y1)
(n) − (y1)

(n) + (
y1
y0

)(n)y0 − (
∆1

∆0
)(n)y0 = 0 (25)

at sj , yielding

(
∆1

∆0
)(n)(sj) = (

y1
y0

)(n)(sj). (26)

Then, by mathematical induction, Proposition 3 follows.
Similarly, (18) means

(
x1

x0
)(i)(sj) = (

y1
y0

)(i)(sj) i = 0, 1, · · · , n, (27)

so
(
∆1

∆0
)(i)(sj) = (

y1
y0

)(i)(sj) = (
x1

x0
)(i)(sj), (28)

for i = 0, 1, · · · , n which concludes the proof

If sj is a zero of y1 and y0 with certain multiplicity, or a
zero of x1 and x0 with certain multiplicity, then we need
adjust the interpolation conditions. For example, let sj be
a zero of x0 and x1, but not a zero of y0 and y1. In this
case, we need that ∆1/∆0 interpolates the pair of numbers
(sj , (y1/y0)(sj)).

Condition (iii) means that ∆1

∆0
maps C+ to the complex

plane excluding the nonpositive real axis. In other words, the
map is C+ → reiθ, r ∈ (0,∞), θ ∈ (−π, π).

Next we formulate the relevant analytic interpolation prob-
lem. Denote

F (s) :=

√
∆1

∆0
(29)

which maps C+ to the open right half plane, i.e., to√
reiθ, r ∈ (0,∞), θ ∈ (−π/2, π/2).
Using the Möbius transformation z = (1 − s)(1 + s)−1,

which maps C+ into the interior of the unit disc, we set

f(z) := F ((1− z)(1 + z)−1) (30)

Then the problem is reduced to finding a Carathéodory
function f(z) that satisfies interpolation constraints. This is
an analytic interpolation problem. Once we have solved for

f(z), we can do the following transformations to get the
compensator k(s):

F (s) = f((1− s)(1 + s)−1) (31)

k(s) =
F 2x0 − x1

y1 − F 2x1
(32)

IV. THE ANALYTIC INTERPOLATION PROBLEM

In this section, we show how to solve the analytic interpo-
lation problem (2) using the Covariance Extension Equation
[12], [13], [14]. To simplify calculations, we normalize the
problem by setting z0 = 0 and f(0) = 1

2 , which can be
achieved through a simple Möbius transformation. Since f
is a real function, f (k)(z̄j)/k! = w̄jk is an interpolation
condition whenever f (k(zj)/k! = wjk is.

If f is a Carathéodory function, then

ϕ+(z) := f(z−1) (33)

is a positive real function. The problem is then reduced to
finding a rational positive real function

ϕ+(z) =
1
2 + c1z

−1 + c2z
−2 + c3z

−3 + · · · , (34)

of degree at most n which satisfies the interpolation con-
straints (2).

Since ϕ+(z) is analytic in DC and ϕ+(∞) = 1
2 , there is

an expansion

ϕ+(z) =
1

2
+ c1z

−1 + c2z
−2 + c3z

−3 + · · · , (35)

and, since ϕ+(z) is positive real,

Φ(z) := ϕ+(z) + ϕ+(z
−1) =

∞∑
k=−∞

ckz
−k > 0 z ∈ T,

(36)
where T is the unit circle {z = eiθ | 0 ≤ θ < 2π}. Hence Φ
is a power spectral density, and therefore there is a minimum-
phase spectral factor v(z) such that

v(z)v(z−1) = Φ(z). (37)

Clearly ϕ+ has a representation

ϕ+(z) =
1

2

b(z)

a(z)
(38)

where
a(z) = zn + a1z

n−1 + · · ·+ an (39a)

b(z) = zn + b1z
n−1 + · · ·+ bn (39b)

are Schur polynomials, i.e., monic polynomials with all roots
in the open unit disc D. Consequently

v(z)v(z−1) =
1

2

[
b(z)

a(z)
+

b(z−1)

a(z−1)

]
, (40)

and therefore
v(z) = ρ

σ(z)

a(z)
, (41)

where ρ > 0 and

σ(z) = zn + σ1z
n−1 + · · ·+ σn (42)



is a Schur polynomial. It follows from (40) and (41) that

a(z)b(z−1) + b(z)a(z−1) = 2ρ2σ(z)σ(z−1). (43)

We shall represent the monic polynomials a(z), b(z)
and σ(z) by the n-vectors a = [a1, a2, · · · , an]′, b =
[b1, b2, · · · , bn]′, σ = [σ1, σ2, · · · , σn]

′.
Following [11] we note that (38) has an observable real-

ization
ϕ+(z) =

1

2
+ h′(zI − F )−1g (44)

where
F = J − ah′, g =

1

2
(b− a), (45a)

h =


1
0
...
0

 , J =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 . (45b)

From stochastic realization theory [5, Chapter 6] it follows
that the minimum-phase spectral factor (41) has a realization

v(z) = ρ+ h′(zI − F )−1k (46)

where

ρ =
√
1− h′Ph, k = ρ−1(g − FPh) (47)

with P being the minimum solution of the algebraic Riccati
equation

P = FPF ′ + (g − FPh)(1− h′Ph)−1(g − FPh)′. (48)

Following the calculations in [10], [11] we now see that

g = ΓPh+ σ − a, k = ρ(σ − a) (49)

and that (48) can be reformulated as

P = Γ(P − Phh′P )Γ′ + gg′ (50)

where Γ is given by

Γ = J − σh′. (51)

The analytic interpolation problem amounts to finding
(a, b) given some interpolation data wjk and a particular
Schur polynomial σ(z).

In [13], we derive the condition for the existence of
solutions of the analytic interpolation problem, which only
depend on the interpolation data (see Proposition 5 in [13]).

If the solution exists, [13] also shows that the Covariance
Extension Equation (CEE)

P = Γ(P − Phh′P )Γ′ + g(P )g(P )′ (52a)

(where ′ denotes transposition) with

g(P ) = u+ Uσ + UΓPh, (52b)

where u and U are totally determined by the interpolaton
data (2), has a unique symmeric solution P ≥ 0 such that

h′Ph < 1. Moreover, for each σ there is a unique solution
of the analytic interpolation problem, and it is given by

a = (I − U)(ΓPh+ σ)− u (53a)

b = (I + U)(ΓPh+ σ) + u (53b)

ρ =
√
1− h′Ph, (53c)

and the degree of f(z) equals the rank of P . To solve
equation (52), a homotopy continuation method can be used,
more details can be found in [13]. From above, we can
easily draw the conclusion that if the interpolation data of the
simultaneous stabilization problem satisfies the condition for
the existence of the solution. Then different choices of Schur
polynomial σ(z) can generate different feasible solutions.

V. COMPUTATIONAL EXAMPLES

A. Example 1

Let us consider a simple case. Given x0, y0, x1, y1 ∈ H
as

x0 =
(s− 15)(s− 6)

(s+ 0.5)(s+ 1.2)
, y0 =

(s− 3)(s− 18)

(s+ 1.5)(s+ 0.3)
(54)

x1 =
(s+ 9)(s− 2)

(s+ 0.7)(s+ 1.1)
, y1 =

(s− 11)(s+ 1)

(s+ 0.9)(s+ 0.4)
(55)

there are unstable poles when λ varies on the interval
(0, 1). To show the poles more clearly, we do the following
transformation:

z =
1 + s

1− s
, (56)

which maps the left half plane to the inside of the unit
circle and maps the right half plane to the outside of the
unit circle. Then a stable system has all poles inside the unit
circle. After transformation (56), we can show all poles of
pλ when λ varies from 0 to 1 at intervals of 0.1 in Fig. 1.
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Fig. 1. The poles of pλ before stabilization

From Fig. 1, we can see there are some systems that are
not stable. Using the method in this paper, we first observe
that x0y1 − x1y0 has two zeros at s0 = 3169/165 and s1 =
1113/250 in C+. To make the systems stable, we therefore
need the interpolation conditions

(
∆1

∆0
)(s0) = (

y1
y0

)(s0), (
∆1

∆0
)(s1) = (

y1
y0

)(s1) (57)

Using the Möbius transformation z = (1 − s)(1 + s)−1,
which maps the open right half plane into the interior of the



unit disc, the problem is reduced to finding a Carathéodory
function f(z) that satisfies

f(
1− s0
1 + s0

) =

√
(
y1
y0

)(s0), f(
1− s1
1 + s1

) =

√
(
y1
y0

)(s1)

(58)
This is a Nevanlinna-Pick interpolation problem, which is a
speical case of the analytic interpolation problem with n0 =
n1 = 1. By Proposition 5 in [13], there exists solutions. Here
we choose σ(z) = z − 0.9. After calculation, we can get

∆1

∆0
=

19.871(s+ 0.1023)2

(s+ 9.988)2
(59)

After stabilization, the poles of pλ, λ ∈ [0, 1] are shown in
Fig. 2. Since all poles are in the open unit disc, all feedback
systems are stable.
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Fig. 2. The poles of pλ after stabilization

To verify that different choices of σ(z) produce different
feasible solutions, let us vary the zero z0 of σ(z) from 0 to 1.
Fig. 3 shows the results with z0 = 0, 0.2, 0.4, 0.6, 0.8, 0.99
respectively. We can see the solution changes with different
σ(z).

B. Example 2

Next we consider more complex systems which includes
derivative constraints, namely

x0 =
(s− 0.2)(s+ 0.5)

(s+ 0.3)(s+ 0.7)
, y0 =

(s− 1)2

(s+ 1.7)(s+ 0.2)
(60)

x1 =
2(s− 0.2)(s+ 1.2)

(s+ 0.4)(s+ 1.4)
, y1 =

(s− 1)2

(s+ 1.1)(s+ 0.6)
(61)

Obviously, when λ varies from 0 to 1, pλ has poles at 1,
which means all systems are unstable.

By calculation, x0y1 − x1y0 has zeros at 1 and 0.2 with
multiplicity 2 and 1 respectively. This means that we need
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(a) z0 = 0

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y 
P

ar
t

(b) z0 = 0.2
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(c) z0 = 0.4
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(d) z0 = 0.6
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(e) z0 = 0.8
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(f) z0 = 0.99

Fig. 3. The poles of the stabilized system with diferent σ(z)

to find ∆0 and ∆1 such that

∆1

∆0
(1) =

x1

x0
(1), (

∆1

∆0
)′(1) = (

x1

x0
)′(1) (62)

∆1

∆0
(0.2) =

y1
y0

(0.2) (63)

Using the Möbius transformation z = (1 − s)(1 + s)−1,
which maps the open right half plane into the interior of the
unit disc, the problem is reduced to finding a Carathéodory
function f(z) that satisfies

f(0) =

√
x1

x0
(1), f ′(0) = −(

x1

x0
)′(1)/f(0) (64)

f(
2

3
) =

√
y1
y0

(0.2) (65)

which is an analytic interpolation problem with derivative
constraint. Here we choose σ(z) = z(z − 0.1). By calcula-



tion, we can get

∆1

∆0
=

0.26463(s+ 5.034)2(s+ 0.1448)2

(s2 + 0.6404s+ 0.9181)2
(66)

Since there are three interpolation constraints, we can get an
f(z) of degree 2 and a ∆1

∆0
of degree 4. The poles of all pλ

with λ changing from 0 to 1 at interval 0.1 are showed in
Fig. 4. Since all poles are in the open unit disc, all systems
are stable.

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y 
P

ar
t

Fig. 4. The poles after stabilization

VI. CONCLUSION

In this paper we have studied the simultaneous stabi-
lization problem to find a feedback compensator which
stabilizes all the SISO systems (1). This leads to an analytic
interpolation problem, which we solve by using a Riccati-
type algebraic matrix equation, the Covariance Extension
Equation. This problem has infinitely many solutions, but
we provide all of them, parameterized by a monic Schur
polynomials. In future work we shall generalized these
results to the MIMO case.

REFERENCES

[1] Vidyasagar M, Viswanadham N. Algebraic design techniques for
reliable stabilization[J]. IEEE Transactions on Automatic Control,
1982, 27(5): 1085-1095.

[2] Youla D C, Bongiorno Jr J J, Lu C N. Single-loop feedback-
stabilization of linear multivariable dynamical plants[J]. Automatica,
1974, 10(2): 159-173.

[3] Ghosh B K. Simultaneous partial pole placement: A new approach to
multimode system design[J]. IEEE transactions on automatic control,
1986, 31(5): 440-443.

[4] Ghosh B K. An approach to simultaneous system design. Part II:
Nonswitching gain and dynamic feedback compensation by algebraic
geometric methods[J]. SIAM journal on control and optimization,
1988, 26(4): 919-963.

[5] Lindquist A and Picci G., Linear stochastic systems: A Geometric
Approach to Modeling, Estimation and Identification, Springer, 2015.

[6] Lindquist A and Picci G. Canonical correlation analysis, approximate
covariance extension, and identification of stationary time series,
Automatica, 1996, 32(5): 709-733.

[7] Byrnes C I, Georgiou T T and Lindquist A, A new approach to spectral
estimation: A tunable high-resolution spectral estimator, IEEE Trans.
Signal Proc., 2000, 48: 3189-3205.

[8] Byrnes C I, Gusev S V, Lindquist A. A convex optimization approach
to the rational covariance extension problem[J]. SIAM Journal on
Control and Optimization, 1998, 37(1): 211-229.

[9] Byrnes C I, Georgiou T T, Lindquist A. A generalized entropy
criterion for Nevanlinna-Pick interpolation with degree constraint[J].
IEEE Transactions on Automatic Control, 2001, 46(6): 822-839.

[10] Byrnes C I, Lindquist A. On the partial stochastic realization prob-
lem[J]. IEEE Transactions on Automatic Control, 1997, 42(8): 1049-
1070.

[11] Lindquist A, Partial Realization Theory and System Identification
Redux, Proc. 11th Asian Control Conference, Gold Coast, Australia,
2017, pp. 1946-1950.

[12] Cui Y, Lindquist A. A modified Riccati approach to analytic inter-
polation with applications to system identification and robust con-
trol[C]//2019 Chinese Control And Decision Conference (CCDC).
IEEE, 2019: 677-684.

[13] Cui Y, Lindquist A. The covariance extension equation: A riccati-type
approach to analytic interpolation[J]. IEEE Transactions on Automatic
Control, 2021, 67(11): 5825-5840.

[14] Cui Y, Lindquist A. Multivariable analytic interpolation with com-
plexity constraints: A modified Riccati approach[C]//2019 IEEE 58th
Conference on Decision and Control (CDC). IEEE, 2019: 764-770.


	Introduction
	Simultaneous stabilization problem
	Determining the interpolation conditions
	The analytic interpolation problem
	 Computational examples
	Example 1
	Example 2

	conclusion
	References

