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Abstract

We study modeling and identification of stationary processes with a spectral density matrix of low rank. Equivalently, we
consider processes having an innovation of reduced dimension for which Prediction Error Methods (PEM) algorithms are not
directly applicable. We show that these processes admit a special feedback structure with a deterministic feedback channel
which can be used to split the identification in two steps, one of which can be based on standard algorithms while the other is
based on a deterministic least squares fit. Identifiability of the feedback system is analyzed and a unique identifiable structure
is characterized. Simulations show that the proposed procedure works well in some simple examples.

Key words: Multivariable system identification, low-rank process identification, feedback representation, rank-reduced
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1 Introduction

Quite often in the identification of large-scale time series
one has to deal with low rank signals which in general,
have a rank deficient spectral density. Such low rank time
series may arise in diverse areas such as control systems,
economics, networked systems, biology and other fields.
Suppose we want to identify an (m + p)-dimensional
vector time series y by modeling it as a weakly stationary
zero-mean purely non deterministic (p.n.d.) process y ≡
{y(t) ; t ∈ Z}, having a rank deficient rational spectral
density Φ(z) of rankm. This spectral density can always
be written in factorized form

Φ(eiθ) = W (eiθ)W (e−iθ)>, (1)

with W an (m+p)×m full rank stable rational spectral
factor. This rank deficiency of the spectrum Φ and con-
sequently of the process y appears in models used in a
variety of applications and is discussed in the literature
from different points of view.

The identification of such singular models has recently
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been addressed in [1], [8], [11], [19], [20], [7] and [10].
Some papers, like [8],[11] propose adaptations of the Pre-
diction Error Method (PEM) identification even if di-
rect application of this principle is not possible due to
the reduced-rank output noise. Singular autoregressive
(AR) or autoregressive moving average (ARMA) mod-
els are an approach discussed in [19], [16]. These mod-
els make contact with factor models and dynamic fac-
tor analysis representations see [17], [9]. Applications to
biological networks reconstruction are discussed in [3],
[25]. Specific engineering examples where identification
of rank-deficient processes is involved are discussed in
[13],[18].
Let the process y be partitioned as

y(t) :=

[
y1(t)

y2(t)

]
, (2)

where y1(t), y2(t) are jointly stationary of dimension m
and p. By properly rearranging the components of y, we
may assume that y1(t) is a process of full rank m. The
spectral density can also be partitioned as

Φ(z) =

[
Φ11(z) Φ12(z)

Φ21(z) Φ22(z)

]
, (3)

where Φ11(z) is full rank.
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In this paper we follow ideas first presented in [21], [23],
[24] and especially in [10]. In [21] it is shown that there
must exist a, in general non-causal, deterministic rela-
tion between the components of a singular vector process
y(t) while in [23], [24] and in [10] these deterministic re-
lations are elucidated and specified by a special feedback
model. In this paper we shall elaborate further on this
special representation and on its use in identification.
We shall show that the low rank structure implies a de-
terministic relation between the variables y1(t) and y2(t)
which is in a sense “dual” of that introduced in [23] and
[24]. We show that this structure is natural and is instru-
mental in the identification of low rank vector processes.

The structure of this paper is as follows. In Section 2 we
introduce feedback models for low-rank processes, and
prove the existence of a deterministic dynamical relation
which reveals the special structure of these processes. In
Section 3 we exploit the special feedback structure for
identification of the deterministic relation and the trans-
fer functions of the white noise representation models.
In Section 4 we study the identifiability of the special
feedback model. This structure is in general not iden-
tifiable and a characterization of all equivalent forward
loop transfer functions is provided based on classical re-
sult of stabilization theory in robust control.

The equivalence of transfer functions in the feedback
loop is discussed in Section 5. There are infinitely many
stable forward transfer functions for a fixed feedback
channel. However a unique stable forward loop repre-
sentation with a white noise error process exists, which
is a causal Wiener filter plus an orthogonal error term.
Identification of this model is briefly discussed.
The identification of processes with an external measur-
able input is considered in Section 6. Several simulation
examples are reported in Section 7. Finally, in Section 8
we come to some conclusions.
Notations: All random processes in this paper are
discrete-time (t ∈ Z), wide sense stationary with zero
mean and finite variance. Most notations comply with
those used in the book [4] and are quite standard in the
system identification literature,. In particular, multipli-
cation by z is the one step ahead shift operator acting
as: zy(t) = y(t+ 1) and y(t) = W (z)u(t) designates the
response of a linear system with transfer function W (z)
to an input function u ≡ {u(t); t ∈ Z}.

2 Feedback models of stationary processes

In this section, we shall first review the definition and
some properties of general feedback models. Then we
will derive a special feedback model for low-rank pro-
cesses and prove the existence of a deterministic relation
between y1(t) and y2(t).

Definition 1 (Feedback Model) A Feedback model

of the process y(t) :=
[
y1(t) y2(t)

]>
of dimension m+p,

is a pair of equations

y1(t) = F (z)y2(t) + v(t), (4a)

y2(t) = H(z)y1(t) + r(t), t ∈ Z (4b)

satisfying the following conditions:

• v and r are jointly stationary uncorrelated processes
called the modeling error and the input noise;

• F (z) andH(z) arem×p, p×m causal transfer function
matrices, one of which is strictly causal, i.e., has at
least one delay;

• the closed loop system mapping [v, r]> to [y1, y2]> is
well-posed and internally stable ;

The block diagram illustrating a feedback representa-
tion is shown in Fig. 1. Note that the transfer functions
F (z) and H(z) are in general not stable, but the overall
feedback configuration needs to be internally stable [5,
Chap. 3.2]. In the sequel, we shall often suppress the ar-
gument z whenever there is no risk of misunderstanding.
The following construction shows that feedback repre-

+
++

+

Fig. 1. Block diagram illustrating a feedback model

sentations of p.n.d. jointly stationary processes always
exist. Let H−t (y1) be the closed span of the past compo-
nents {y11(τ), . . . , y1m(τ)} | τ ≤ t} of the vector process
y1 in an ambient Hilbert space of second order zero-mean
random variables [4] and let H−t (y2) be defined likewise
in terms of {y21(τ), y22(τ), . . . , y2p(τ) | τ ≤ t}. A repre-
sentation similar to (4) may be gotten from the formulas
for causal Wiener filters expressing both y1(t) and y2(t)
as the sum of the best linear estimate based on the past
of the other process plus an error term

y1(t) = E{y1(t) | H−t−1(y2)}+ v(t), (5a)

y2(t) = E{y2(t) | H−t (y1)}+ r(t). (5b)

For a processes with a rational spectral density the
Wiener predictors can be expressed in terms of causal
rational transfer functions F (z) and H(z) as in Fig 1.
Here we choose F (z) to be strictly causal. An alterna-
tive representation with H(z) strictly causal can also
be given, to guarantee well-posedness of the feedback
system. Although the errors v and r obtained by the
procedure (5) may be correlated, in Appendix A we will
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show that there exist feedback model representations
where they are uncorrelated. The following result de-
scribes basic properties of feedback representations. It
has been proven in [23], [10] and is also reported in the
companion paper [24], therefore its proof is omitted.

Theorem 2 The transfer function matrix T (z) from[
v

r

]
to

[
y1

y2

]
of the feedback model is given by

T (z) =

[
P (z) P (z)F (z)

Q(z)H(z) Q(z)

]
, (6a)

with

P (z) = (I − F (z)H(z))−1,

Q(z) = (I −H(z)F (z))−1
(6b)

where the inverses exist. Moreover, T (z) is a full rank
(invertible a.e.) and (strictly) stable function which yields

Φ(z) = T (z)

[
Φv(z) 0

0 Φr(z)

]
T (z)∗, (7)

where Φv(z) and Φr(z) are the spectral densities of v and
r, respectively, and ∗ denotes transpose conjugate.

Since T (eiθ) has full rank a.e., Φ is rank deficient if and
only if at least one of Φv or Φr is. Thus the rank of Φ is
equal to the sum of the ranks of Φv and Φr

Lemma 3 Suppose (FΦrF
∗ + Φv) is positive definite

a.e. on the unit circle. Then

H = Φ21Φ−111 − ΦrF
∗(Φv + FΦrF

∗)−1(I − FH), (8)

that is
H = Φ21Φ−111 (9)

if and only if Φr ≡ 0.

PROOF. From (6) and (7), we have

Φ21 = Q(HΦv + ΦrF
∗)P ∗ = QHΦvP

∗ +QΦrF
∗P ∗,

Φ11 = P (Φv + FΦrF
∗)P ∗,

and using the easily verified relations

PF = FQ, HP = QH.

we get
Φ21 = HPΦvP

∗ +QΦrF
∗P ∗.

Adding and subtracting the term HPFΦrF
∗P ∗ we end

up with

Φ21 = HΦ11 + (Q−QHF )ΦrF
∗P ∗

= HΦ11 + ΦrF
∗P ∗

since Q − QHF = I. Then (9) follows if and only if
Φr = 0 since P is invertible and F times a spectral
density can be identically zero only if the spectral density
is zero as otherwise this would imply that the output
process of a filter with stochastic input would have to be
orthogonal to the input. 2

In the following we specialize to feedback models of rank
deficient processes. We shall show that there are feed-
back model representations where the feedback channel
is described by a deterministic relation between y1 and
y2.

Theorem 4 Let y be an (m+ p)-dimensional process of
rank m. Any full rank m-dimensional subvector process
y1 of y can be represented by a feedback scheme of the
form

y1 = F (z)y2 + v, (10a)

y2 = H(z)y1. (10b)

where the input noise v is of full rank m.

PROOF. Recall that n-tuples of real rational functions
form a vector space Rn(z) where the rank of a rational
matrix is the rank almost everywhere.

The claim is equivalent to the two statements
1. If we have the structure (10), i.e. Φr ≡ 0; then y1 is
of full rank m = rank(Φ).
2. Conversely if y1 is of full rank m = rank(Φ) then
Φr ≡ 0.

Part 1 follows from Lemma 3 since because of (7) then
Φv must have rank m(= rank(Φ)).
Part 2 is not so immediate. One way to show it could be
as follows.

Since Φ(z) has rank m a.e. there must be a full rank
p×(m+p) rational matrix which we write in partitioned
form, such that

[A(z)B(z)]Φ(z) = 0 ⇔ [A(z)B(z)]

[
Φ11(z)

Φ21(z)

]
= 0 (11)

⇔ [A(z)B(z)]

[
y1(t)

y2(t)

]
= 0

3



whereA,B are p×m, p×pmatrices and the last formula
has the usual interpretation.

We claim that B(z) must be of full rank p. One can
prove this using the invertibility of Φ11(z). For, suppose
B(z) is singular, then pick a p-dimensional non-zero
row vector a(z) in the left null space of B(z) and mul-
tiply from the left the second relation by a(z). This
would imply that also a(z)A(z)Φ11(z) = 0 which in
turn implies a(z)A(z) = 0 since Φ11 is full rank. How-
ever a(z)[A(z) B(z)] cannot be zero for the matrix
[A(z) B(z)] is full rank p and hence a(z) must be zero.
So B(z) must be full rank.
Now take any nonsingular p×p rational matrixM(z) and
consider instead M(z)[A(z) B(z)], which provides an
equivalent relation to (11). By choosing M(z) = B(z)−1

we can reduce B(z) to the identity to get

[−H(z) I ]

[
y1(t)

y2(t)

]
= 0

where H(z) is a rational matrix function, so that one
gets the deterministic dynamical relation

y2(t) = H(z)y1(t) .

Substituting in the general feedback model one con-
cludes that y2(t) must then be a functional of only the
noise v since y1(t) is such. Therefore by the uncorrela-
tion of v and r one must conclude that in the second
equation of (4) r must be the zero process i.e. Φr = 0.
Hence a representation like (10) must hold. 2

3 Identification of low rank processes

Suppose we want to identify by a PEM method a model
of an (m+p)-dimensional time series y of rankm. To this
purpose, the model class should be selected to guarantee
identifiablility (i.e. uniqueness) and it is specific of the
PEM method that it should actually be an innovation
representation of y which is well known to be essentially
unique. This representation involves a minimum phase
spectral factor W (z) satisying (1) whereby

y(t) = W (z)e(t), (12)

where e(t) is the m-dimensional normalized innovation
process of y, a white noise of covariance Im.
Consider then the model (12) block-partitioned as in (2),

y(t) =

[
y1(t)

y2(t)

]
:=

[
W1(z)

W2(z)

]
e(t), (13)

where y1 and y2 are described by the special feedback
model (10). From the defining property of y1 and y2 in

our partition,W1(z) must be squarem×m, stable, causal
and non singular (invertible a.e.) and W2(z) stable and
causal.

Proposition 5 The transfer function of the feedback
channel in model (10) is given by the expression

H(z) = W2(z)W1(z)−1 (14)

and is unique. In fact, it depends only on the joint spec-
trum (3). Stability of H holds if and only if W1 is mini-
mum phase.

PROOF. The formula follows from the partition (13)
since both components are driven by the same full rank
process e(t). Formula (9) in Lemma 3, provides the
alternative expression H(z) = Φ21(z)Φ11(z)−1 which
must obviously coincide with (14) since Φ2,1(z) =
W2(z)W1(z)∗ and Φ1(z) = W1(z)W1(z)∗. It is then
clear that H(z) depends only on the joint spectrum (3)
and must therefore be unique for a given partition of the
vector process y. That stability of H holds if and only
if W1 is minimum phase follows since there cannot be
cancellations in forming the quotient (14). It is shown
in Appendix B that if W (z) is minimum phase then
W2(z) and W1(z) cannot have common unstable zeros
which could cancel in forming the product (14). 2

Proposition 5 is in agreement with [24], where it was
shown that H(z), (F in [24]) is unique but in general
not stable by a counterexample in Section V-A. (Also
see its conference version [23].) This answered a question
by Manfred Deistler in the negative. On the contrary we
shall see that there are in general infinitely many transfer
functions F (z) generating y by means of the model (10).

3.1 Estimation of H(z)

Since the relation between y2 and y1 is completely deter-
ministic we can identify H(z) by imposing a determin-
istic transfer function model to the observed data. The
model can be written as A(z−1)y2(t) − B(z−1)y1(t) =
0, t = 1, . . . , N (the minus sign is for convenience) where
A(z−1) and B(z−1) are matrix polynomials in the delay
variable z−1, of dimension p× p and p×m such that

H(z) = A(z−1)−1B(z−1) .

One can always choose A(z−1) monic and parametrize
the matrix polynomial B(z−1) so that the transfer func-
tion corresponds to the difference equation

y2(t) = −
q∑

k=1

Aky2(t−k)+

r∑
k=0

Bky1(t−k), t = 1, . . . , N,

(15)
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where we have written A(z−1) = I +
∑q
k=1Akz

−k and
B(z−1) =

∑r
k=0Bkz

−k. The above equation involves
delayed components of the observed trajectory data of y.
The coefficients can then be estimated by solving a deter-
ministic overdetermined linear system by least squares
and a strongly consistent and unbiased result can be ob-
tained whether the system is stable or not, assuming we
know the true degrees of A and B. See the example in
subsection 7.2.
Then, once W1 is identified, the transfer function W2

can be calculated using the relation

W2(z) = H(z)W1(z). (16)

This procedure however may fail if the true W1(z) in
(12) is not minimum phase and the identification is done
by a time-recursive least squares algorithm. In fact if
W1(z) has unstable zeros then H(z) is unstable and in
this case the noise superimposed to the data may tend
to excite the unstable modes of the system (15) and
cause divergence. To bypass the constraint of minimum
phase of the true system one should rely on algorithms
processing the whole data batch in one shot.

3.2 Identification of W1

Next, since y1 (and W1) is full rank, it seems that one
could easily identify, say an ARMA innovation model
for y1 based only on observations of y1(t) on some large
enough time interval. By this procedure we would ideally
identify an innovation representation for y1, say y1(t) =
G1(z)e1(t) where however the minimum phase transfer
function G1(z) does not necessarily coincide with the
upper block of the joint innovation representation of y.
This would be true only if the upper block W1(z) of the
minimum phase W (z) was also minimum phase, which
in general may not be true (the same clearly holding also
for the lower block). See Appendix B for a discussion
of this point. In other words, the partitioned innovation
representation of the full process y may not necessarily
coincide with the separate innovation representations of
the two components y1 and y2.
Therefore a PEM method applied to measurements of y1
may not lead to a consistent estimate of the upper block
W1(z) of the model (13) since there may be a nontrivial
inner function Q1(z) such that

W1(z) = G1(z)Q1(z) (17)

However it may easily be checked directly that estimat-
ing G1 can nevertheless lead to a consistent estimate of
the joint spectrum.

Proposition 6 Assume that the transfer function H(z)
is estimated as described in the previous subsection, that
is using the data (y1, y2) and asymptotically satisfying
the relation (16). Then, even if the upper block W1(z) of
the joint (minimum phase) transfer function W (z) is not

minimum phase, a consistent estimate of the minimum
phase transfer function G1(z) does nevertheless produce
a consistent estimate of the joint spectral density of the
(joint) process y.

PROOF. The statement is obviously true for the auto
spectral density Φ11(z). Then just recall that the cross
spectral density of y2 and y1 can be expressed as

Φ21(z) = H(z)Φ1(z) = H(z)G1(z)G1(z)∗.

Using the estimate Ĝ1(z) in place of W1(z) in formula

(16) to compute the estimate Ŵ2(z), although Ŵ2(z) :=

Ĥ(z)Ĝ1(z) may be a non-consistent estimate ofW2(z), it
does result in a consistent estimate of the cross spectrum
Φ21(z). A similar argument can be used for Φ22. 2

We may however be able to recover the missing inner
factor Q1 in the outer-inner factorization (17) from the
expression H(z) = W2(z)Q∗1(z)G1(z)−1, that is from

H(z)G1(z) = W2(z)Q∗1(z) = W2(z)Q1(z)−1 . (18)

One can get estimates ofW2 andQ1 by performing a left-
coprime factorization in the rational H∞ space (see e.g.

[14, sect. 5.4]), of the estimated product Ĥ(z)Ĝ1(z) im-
posing that Q1 should be inner (see e.g. [6]). This guar-
antees uniqueness, see again [14, p. 368]. The conjugate
inner function Q∗1 must contain exactly all the unstable
poles of the left member.
Hence we may in principle be able to obtain a consis-
tent estimate of the full minimum phase model W even
when W1 is not minimum phase. The calculations are
easy when W1 is scalar. In the matrix case, one would
need to use coprime factorization algorithms in terms of
state-space realization which we shall not dwell into.

4 Identifiability of the feedback model

The procedure described above does not take into ac-
count the structure of the first equation in model (10).
We shall analyze now the identification of an “internal”
description of y1 involving the transfer functions F, K
and H. Assume that the model (13) is in innovation
form, with the process e(t) the innovation of the joint
process y(t) and let

y1 = F (z)y2 +K(z)e, (19a)

y2 = H(z)y1. (19b)

be the corresponding feedback representation withK(z)
a square spectral factor such that v(t) := K(z)e(t),

5



which we assume minimum phase for identifiability.
From (6) we have

[
W1

W2

]
= T

[
K

0

]
=

[
PK

QHK

]
=

[
PK

HPK

]
, (20)

with both P (z)K(z) and H(z)P (z)K(z) submatrices of
a minimum phase transfer function.
One may ask how one could recover the direct trans-
fer function F (z) from the identified W1(z) and H(z).
This would amount to solving for F the relation W1 =
(I − FH)−1K which, assuming H is given, contains
two unknowns. Hence F (z) and K(z) are not identifi-
able as they do not correspond uniquely to the mini-
mum phase representation (13) and hence do not corre-
spond uniquely to the joint spectral density of y(t). In
other words, there are in general infinitely many pairs
(F (z),K(z)) realizing in feedback form the innovation
representation (13). This actually agrees with the well-
known identifiability analysis of feedback systems which
dates back to [12], see the example in Sect. VI.

4.1 On equivalent feedback structures

In our setting the causal transfer function H(z) of the
feedback channel is uniquely determined by the two com-
ponents of the process y, once the partition is fixed and
known, while there are in general a multitude of pairs
(F,K) yielding the same transfer function W1(z). Note
that each such pair should make W1 stable. In particu-
lar, once H is given, each F should make the feedback
configuration (10) internally stable. Characterizing the
set of such F ’s can be regarded as the “dual” of a sta-
bilization problem in control, which is also discussed in
our companion paper [24] on modeling of low rank vec-
tor processes. Here we have a more limited scope than
[24]; we only want to analyze the identifiability of the
system by explicitly describing all pairs of transfer func-
tions (F,K) which realize the same stable W1. Consider
first the transfer function from v(t) to y1(t) (also called
the sensitivity function):

P (z) = [I − F (z)H(z)]−1 .

Since the feedback system must be internally stable P (z)
needs to be analytic in the complement of the open unit
disk, without unstable pole-zero cancellation between
F (z) and H(z). Assuming for the moment that H(z) is
a proper stable rational function, there is a whole class
of proper rational functions F (z) which accomplish this
job. In the scalar case they are all described by the for-
mula [5, Chapter 5.1],

F (z) =
S(z)

1 + S(z)H(z)
(21)

where S(z) is an arbitrary proper stable rational func-
tion. The corresponding sensitivity function is given by

P (z) = 1 + S(z)H(z)

linearly parametrized by an arbitrary such S(z). All cor-
respondingK(z) are then gotten from the relation (19a),
that is

K(z) = P (z)−1W1(z)

so that all such (F,K) yield the same transfer function
W1(z).
When W1(z) is not minimum phase and H(z) =
W2(z)W1(z)−1 fails to be stable, closed-loop stability
can still be characterized by using a coprime stable
proper-rational factorization of H(z) yielding a more
general parametrization of all F ’s as described in [5,
Sect. 5.4] (involving the so-called Youla parametriza-
tion).

In the matrix case, still assuming a stable H (actually
F in the original setting), there is a parametrization for-
mula similar to (21), see e.g. reference [14]. But for the
unstable case one needs to use matrix coprime factoriza-
tions to obtain the stabilizing F . Reference [24, Sect. VI
and Sect. VIII-D] discusses the general case for low rank
processes, both applicable to stable and unstable H.

5 About stability of F (z)

Note that the transfer function (21) may in general not
be stable. However, as seen from (21), there are infinitely
many possible F (z) and there may be one that is sta-
ble. In this section we shall ask the following question: If
one restricts F to be stable with at least one unit delay,
does there exists a unique feedback representation (19)?
Since the identifiability analysis of the previous section
involves also the transfer function K(z), it is quite evi-
dent that the answer should be negative. The following
example provides in fact a few different pairs (F,K), all
with a strictly causal stable F , which realize the same
transfer function W (z).

Example 1 Let a 2× 1 transfer function W (z) be par-
titioned by two scalar blocks of respective transfer func-
tions

W1(z) =
z3

(z − 0.5)(z + 0.5)(z − 0.2)
, (22a)

W2(z) =
z3

(z − 0.5)(z − 0.2)(z + 0.1)
. (22b)

the corresponding transfer function H being (from (14))

H(z) =
z + 0.5

z + 0.1
.

6



We can provide three different pairs F,K realizing the
system, all three with a stable strictly causal F . The first
being

F1 =
−0.4

z + 0.5
, (23a)

K1 =
z3

(z − 0.5)(z − 0.2)(z + 0.1)
. (23b)

the second,

F2 =
0.4

z + 0.5
, K2 =

z3(z − 0.3)

(z + 0.5)(z − 0.5)(z − 0.2)(z + 0.1)
.

(24a)

and finally

F3 =
(0.2z2 + 0.25z − 0.5)(z + 0.1)

(z + 0.5)z3
, (25a)

K3 =1. (25b)

To check that all three pairs realize the minimum phase
W1 in the example, just calculate the noise transfer func-
tions Ki from Ki = (I − FiH)W1, yielding all Ki to
be minimum phase, and the corresponding Pi = (I −
FiH)−1 = W1K

−1
i being stable.

Choosing K(z) equal to a constant as in the third exam-
ple turns out to provide a remarkable interpretation of
F (z). Indeed, in Proposition 7 below we shall show that
under certain conditions, this will precisely provide the
unique stable causal F .

Proposition 7 Assume that W2 is of full column rank 1

and minimum phase then there is a representation (19)
where F is stable and strictly causal, that is F (z) =
z−1F1(z) with F1(z) analytic in {|z| ≥ 1} and K(z) is
a constant matrix K+. In fact, this F (z) coincides with
the transfer function F+(z) of the causal Wiener filter

F+(z)y2(t) = E{y1(t) | H−t−1(y2)} (26)

and the prediction error ỹ1(t) := y1(t) − F+(z)y2(t) is
equal to K+e1(t) where e1(t) is the innovation of the
process y1. The representation

y1(t) = F+(z)y2(t) +K+e1(t) (27)

is the unique feedback representation of y1(t) in which
v(t) is uncorrelated with the strict past of y2. If W1(z) is

1 Although W1(z) being square and invertible follows from
the defining property of y1 in our partition, W2(z) may gen-
erally be of column rank smaller than m. Although the result
holds also in this circumstance, we shall not deal with this
technical nuisance here as it would obscure the main ideas
of the proof.

also minimum phase then e1 = e and one can substitute
e1 with the joint innovation process e.

PROOF. The statement is a consequence of the or-
thogonal decomposition

y1(t) = G1(z)e1(t) = G1(∞)e1(t) + [G1(z)]+e1(t− 1)
(28)

where e1 is the innovation of y1,W1 = G1Q1 is the outer-
inner factorization of W1 and [·]+ denotes the projection
operator onto z−1H2 yielding the strictly causal part of
a function. Then e1(t) = Q1(z)e(t) and hence

H−t (e1) ⊂ H−t (e) .

However, by our assumptions H−t (e) = H−t (y2) since,
being full column rank, W2 has a left inverse whereby
e(t) = W−L2 (z)y2(t). Hence the last term of (28) be-
longs to H−t−1(y2). But by the subspace inclusion above

e1(t) ⊥ H−t−1(e) = H−t−1(y2). Therefore, by the orthogo-
nal projection lemma [4, p. 27] the last term is the Wiener
predictor. Note that K+ = G1(∞) is non singular.
The proof of uniqueness is just based on the unique-
ness of the orthogonal decomposition of y1(t) as a linear
causal functional of the strict past of y2 plus an orthog-
onal error part. The linear causal functional of the strict
past of y2 must then be the orthogonal projection onto
H−t−1(y2).
If v(t) = K+e(t) with a constant K+, since e(t) is the
innovation of the joint process, it must in particular be
uncorrelated with the strict past H−t−1(y2) of y2. Hence
if F (z) is strictly causal and analytic, F (z)y2(t) in (10)
must coincide with the orthogonal projection E{y1(t) |
y2(s); s < t} by the orthogonal projection lemma [4, p.
27]. Clearly v(t) must then coincide with the prediction
error ỹ1(t). 2

Remark 8 Note that for a general strictly causal F ,
the error process v(t) is given by v(t) = [W1(z) −
F (z)W2(z)]e(t) := K(z)e(t) where K(z) is square ana-
lytic but in general not constant.

In general, we may directly calculate F+ and K+ by the
Wiener filtering formula [4, p. 105]

F+ = [W1W
∗
2G
−∗
2 ]+G

−L
2 . (29)

where G2(z) is the minimum phase spectral factor of

Φ2(z) = W2(z)W2(z−1)>, G−L2 its (Moore-Penrose) left

inverse andG−∗2 is the conjugate ofG−L2 which coincides
with the right inverse of G∗2. If W2 is minimum phase the
above simplifies to

F+(z) = [W1(z)]+W
−L
2 (z) .
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In case W1(∞) is normalized to the identity so is K+,
and from I − F+H = W−11 one gets

F+(z)W2(z) = (I −W1(z)−1)W1(z) = W1(z)− I
(30)

so, when you compute F+(z)y2(t) = F+(z)W2(z)e(t)
you generate a stochastic process which has spectral den-
sity

F+(z)W2(z)W2(z)∗F+(z)∗ = (W1(z)− I)(W1(z)− I)∗

Hence this process is always well-defined. In general one
should really not worry so much about stability of F but
make sure that the process F (z)y2 should have a well
defined spectral density and a finite variance.

Remark 9 The model (27) is called an equation error
model [15, p. 203 ] because of the white error term, which
is unique and hence identifiable, so the Prediction Er-
ror method should be able to identify the transfer func-
tion directly from observed data. One should however
recall that this model leads to a predictor which is a
nonlinear function of the parameters of the denominator
and is moreover constrained by the stability condition on
F+(z). Because of these difficulties one may attempt a
simple least squares estimation method by using matrix-
fraction descriptions and transforming it into a special
ARMAX model. The least squares method however can
be consistent only if F+(z) is a FIR-type transfer func-
tion, that is the denominator of F+(z) is a constant (see
again [15, Sect. 7.3]).
With this proviso, in spite of feedback, a suitably con-
strained PEM method may work anyway [22, p. 416],
[15], see Appendix C.

6 Identification of a low rank model with an ex-
ternal input

Suppose we want to identify a multidimensional system
with an external input u(t), say

y(t) = F (z)u(t) +K(z)e(t) (31)

where e is a white noise process whose dimension is
strictly smaller than the dimension of y and the input u
is completely uncorrelated with e (no feedback). In this
case the model is called low-rank. This problem is dis-
cussed in [8] and [11].

When dim e = dim y and K(z) is square invertible, one
could attack the problem by a standard PEM method.
The method however runs into difficulties when the noise
is of smaller dimension than y since then the predictor
and the prediction error are not well-defined.

Referring to the general feedback model for the joint
process we can always assume F causal and K(∞) full

rank and normalized in some way. Consider then the
prediction error of y(t) given the past history of u. We
have

ỹ(t) := y(t)− E[y(t) | H−t (u)] = K(z)e(t) (32)

since, by causality of F (z), the Wiener predictor is ex-
actly F (z)u(t). Hence ỹ is a low rank time series in the
sense described in the previous sections (now with the
current K(z) playing the role of W (z)). In principle we
could then use the procedure described above for time
series as we could preliminarily estimate F (z) by solving
a deterministic regression of y(t) on the past of u and
hence get ỹ(t). If we choose linear least square methods,
we will obtain a consistent estimation. Then a standard
ARMA identification can be applied to estimate K(z)
in terms of the pre-processed data ỹ(t).

7 Simulation Examples

We shall mostly discuss scalar examples and use the
standard notations

A(z−1) = 1 +

q∑
k=1

akz
−k,

B(z−1) = z−1B1(z−1) = z−1(

r∑
k=0

bkz
−k),

C(z−1) = 1 +

q∑
k=1

ckz
−k.

Note that A and C have the same degree q.

7.1 Example 2

As a first simulation example consider a two-dimensional
process of rank 1 described by

y(t) =

[
W1(z)

W2(z)

]
e(t)

where both W1(z) and W2(z) are minimum phase ratio-
nal transfer functions and e is a scalar Gaussian white
noise of zero mean and variance λ2. By simulation we
produce a sample of two-dimensional data. With these
data we shall:

• Identify a model for y1 and estimate H(z) according
to the first procedure. And do the same for the other
component.

• Estimate F+(z) andK+(z) in (27) using the estimated
value of W1(z) and H(z).

We start by simulating a two-dimensional process y(t)
of rank 1 described by (13) where e is a scalar zero mean

8



Fig. 2. Box plots of â1k for k = 1, 2, 3 in example 2.

white noise of variance λ2 = 1 and choose W1 and W2 as
in (22). These functions are normalized at infinity and
minimum phase rational transfer functions. Note that in
this particular example both y1 and y2 are full rank so
that our procedure would work for both.
We have generated 100 groups of two-dimensional time
series withN = 500 data points {yi(t); t = 1, . . . , N, i =
1, 2} and use the Monte-Carlo simulations in MATLAB.
Box plots are used to show the results of Monte-Carlo
simulations condensing some features of the estimates
distribution.

Assume the orders of W1 and W2 are known. Since the
two AR models of y1 and y2 are of order 3, we just im-
plement two AR identification in MATLAB for models
of the form

yi(t) = −
3∑
k=1

ai,kyi(t− k) + e(t), t = 1, . . . N,

The box plots of the estimated parameters in Ŵ1 and Ŵ2

are shown in Fig. 2 and Fig. 3. 2 In the two box plots,
all median estimated values are close to the real ones,
with the ranges of estimation values acceptable and only
one outlier for â12. We use the average of 100 runs of
Monte-Carlo simulation to estimate the asymptotic co-
variance of the estimated parameters which are of the
order of magnitudes 10−2/100 = 10−4, quite small com-
pared with the magnitude of parameters. The box plots
in Figure 2 and 3 show that our AR estimators work
well.

2 In all box plots, the red horizontal line is the median of
the data, the blue box contains half of the data points, the
horizontal lines are at 25% and 75% level. The black tails
(black horizontal lines) are at the minimum and maximum
values, except for the outliers that are indicated by a red ‘+’
sign.

Fig. 3. Box plots of â2k for k = 1, 2, 3 in example 2.

Next we do least squares estimation of the transfer func-
tion H(z). Since it satisfies the identity

W2(z) = H(z)W1(z), W1(z) = H̄(z)W2(z),

we have the following theoretical formulas for H and H̄:

H(z) =
1 + 0.5z−1

1 + 0.1z−1
, H̄(z) =

1 + 0.1z−1

1 + 0.5z−1
.

which is equivalent to the difference equation

(1 + 0.1z−1)y2(t) = (1 + 0.5z−1)y1(t),

This is just a theoretical model which we keep for com-
parison.
Assuming now that we don’t know the true degrees of
the model polynomials in (15); then we first carry on an
order estimation to choose the appropriate q and r in
the model

y2(t)− y1(t) = −
q∑

k=1

aky2(t− k) +

r∑
k=1

bjy1(t− j),

and then use least square to get estimates of the param-
eters of the model

Ĥ(z) =
1 +

∑r
k=1 b̂kz

−k

1 +
∑q
k=1 âkz

−k .

From a BIC table values we see that when (q, r) = (1, 1)
the BIC index reaches a minimum. So we do least squares
estimation of a first order model

y2(t)− y1(t) = −a1y2(t− 1) + b1y1(t− 1).

All the parameter estimates turn out to be equal to the
true values of the parameters a1 = 0.1, b1 = 0.5, affected
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by extremely small errors. In Monte-Carlo simulations,
the calculated estimated variances are all smaller than
10−29. We don’t show box plots here. For estimating
H̄(z), we obtain very similar results, which are therefore
not presented. Here both H and H̄ are stable functions.
We shall check if our algorithm also works when H is
not stable in the next example.

Next we shall use the previous estimates Ŵ1 and Ĥ to
calculate estimates of F and K. We choose one estimate
from the previous Monte-Carlo simulations, namely

Ŵ1 =
1

1− 0.1627z−1 − 0.2256z−2 + 0.0505z−3
,

Ĥ =
1 + 0.5000z−1

1 + 0.1000z−1
.

From Proposition 7, we know that there is one and only
one pair ofF+ andK+ withF+ the strictly causal Wiener
filter. In our case with W1, W2 are both normalized and
minimum phase, and from (30) we have the estimate of
F+ described by

F̂+ = (1− Ŵ1
−1

)Ĥ−1

=
z−1(0.1627 + 0.2256z−1 − 0.0505z−2)(1 + 0.1000z−1)

1 + 0.5000z−1

and K̂+ the constant part of Ŵ1, i.e.,

K̂+ = Ŵ1(∞) = 1.

The parameters of these functions are very close to the
true values and hence appear to be consistent estimates
of F3, K3 in (25).

In fact, we get K̂+ = 1 each time in different simulations.
What’s more, since we are identifying with true orders
in the previous Monte-Carlo simulations, we have a F̂
with true orders as in (25), i.e.,

F+ =
z−1(0.2 + 0.27z−1 − 0.025z−2 − 0.005z−3)

1 + 0.5z−1

The box plot of the estimated parameters in F̂+,

F̂+ =
z−1(

∑3
k=0 b̂kz

−k)

1 + â1z−1
.

are shown in Figure 4, showing that F̂+ obtained from

Ŵ1 and the calculations in Section 5 is a good estimate
of the true causal Wiener filter F+.

7.2 Example 3

In this subsection, a simple simulation example will be
given to show that our method can identify H well also

Fig. 4. Box plots of the parameters in F̂+ in example 2.

when it is unstable, and can recover the minimum phase
factor when W1 is not minimum phase as discussed in
subsection 3.2.

Consider a two-dimensional process y(t) described by
(13), where e is a zero mean white scalar noise of variance
λ2 = 1, andW has the two blocks with transfer functions

W1 =
z + 2

z − 0.2
, W2 =

z − 2

z − 0.2
.

It is easy to obtain an outer-inner factorization of W1 as
(17), where

G1 =
2z + 1

z − 0.2
=

2 + z−1

1− 0.2z−1
, Q1 =

z + 2

2z + 1
.

And we have the calculated value

H =
1− 2z−1

1 + 2z−1
,

which is not stable.
Here for simplicity, we do not use Monte-Carlo simula-
tions and order estimations. We just generate one group
of data as in Example 2, with e scalar zero mean and
variance 1. Assume the orders of G1 and H are known.

Though G1 is not normalized at infinity, we may still
implement an ARMA estimation first in MATLAB and
obtain an estimated model

y1(t)− 0.1442y1(t− 1) = ê(t) + 0.5666ê(t− 1),

where the variance of the innovation ê is λ̂2 = 4.3127.
Then calculate the corresponding estimate of G1

Ĝ1 =
λ(1 + 0.5666z−1)

1− 0.1442z−1
=

2.077z + 1.177

z − 0.1442
,
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Fig. 5. Bode diagrams of W1 and Ŵ1(z) in example 3.

which is minimum phase.
Next we estimate H by least squares on the model

y1(t) + a1y1(t− 1) = y2(t) + b1y2(t− 1),

and obtain the estimate

Ĥ =
1 + b̂1z

−1

1 + â1z−1
=

1− 2.0000z−1

1 + 2.0000z−1
,

which is practically equal to the true H, with an estima-
tion error variance of 1.0607× 10−29. Simulation results
show that the least squares method works well in iden-
tifying unstable H’s.

Since in this example G1 and W2 are scalar, we do not
need coprime factorization for obtainingQ1. In this case,
Q∗1 is the conjugate inner factor of H of formula (18),
i.e., Q1 is the greatest inner factor of H−1. From

Ĥ−1 =
z + 2.0000

z − 2.0000
=

2.0000z + 1

z − 2.0000
· z + 2.0000

2.0000z + 1
,

we have the estimate,

Q̂1 =
z + 2.0000

2.0000z + 1
.

Hence the estimate of W1 is

Ŵ1 = Ĝ1Q̂1 =
2.077z2 + 5.33z + 2.353

2z2 + 0.7117z − 0.1442
,

whose magnitude Bode graph is compared with the true
W1 in Fig. 5. The Bode diagrams show that we can ob-
tain a consistent estimate of W1 even if it is not min-
imum phase. The correponding estimate of W2 can be
calculate from

Ŵ2 = ĤŴ1 =
1.038z2 − 1.489z − 1.177

z2 + 0.3558z − 0.0721
,

whose Bode diagram is close to that of the true W2. We
omit the graphs due to space limitations. It is easy to
check Ŵ = [Ŵ1 Ŵ2]> is minimum phase.

7.3 Example 4

In this subsection we consider the identification of a two-
dimensional process of rank 1 subjected to an external
input u. We generate a scalar white noise u independent
of e and identify a 2-dimensional process model (31) as
described in the previous section 6.
In this example the true system is described by

F (z) = z−1

[
0.3 + 0.7z−1 + 0.3z−2

0.15 + 0.9z−1 − 0.5z−2

]
,

K(z) =

[
1+0.1z−1+0.4z−2

1+0.3z−1+0.4z−2

1−0.1z−1+0.4z−2

1−0.2z−1+0.1z−2

]
.

(33)

where we have used the same F as in [8] (called G(q)
there). Since the K2 of [8] is not normalized to 1, we use
a different one. Both components of our K(z) here are
normalized and minimum-phase so the overall model is
an innovation model.

From the model (33) we generate 100 groups of two-
dimensional time series of N = 500 data points
{yi(t); t = 1, . . . , N, i = 1, 2}. Monte-Carlo simulations
are run with u and e independent scalar white noises of
variances 2 and 1. Of course here we also measure the
input time series u. Suppose we do not know the orders
of Fi for i = i, 2.

First, letting Fi(z) = zAi(z
−1)−1Bi(z

−1) for i = 1.2,
where the polynomials

A1(z−1) = 1 +

q1∑
k=1

a1,kz
−k, A2(z−1) = 1 +

q2∑
k=1

a2,kz
−k.

B1(z−1) =

r1∑
k=0

b1,kz
−k, B2(z−1) =

r2∑
k=0

b2,kz
−k

correspond to the dynamic relations

Ai(z
−1)yi(t) = Bi(z

−1)u(t−1)+εi(t), t = 1, . . . , N, i = 1, 2

where we have added a small white noise error term. We
do a standard least squares regression on these models,
written in the form,

ŷi(t) = −
qi∑
k=1

ai,kyi(t−k)+

ri∑
k=0

bi,ku(t−1−k), (i = 1, 2).

(34)
where the orders are to be estimated. Order estimation
by minimum BIC leads to choose (q1, r1) = (1, 3) and
(q2, r2) = (2, 4). Although we don’t get the right model
structures, with these orders we get the reasonable box
plots shown in Fig. 6 and Fig. 7, with very few outliers.

11



Fig. 6. Box plots of parameters of F̂1(z) in example 4.

Fig. 7. Box plots of parameters in F̂2(z) in example 4.

Then we estimate K1(z) and K2(z) by an ARMA rou-
tine, this time with true degrees. This may be useful to
test the influence of the wrong model structure used in
estimating F1 and F2. We let Ki = A−1i Ci so that

Ai(z
−1)ỹi(t) = Ci(z

−1)e(t− 1), i = 1, 2

where

Ai(z
−1) = 1 + ai,1z

−1 + ai,2z
−2,

Ci(z
−1) = 1 + ci,1z

−1 + ci,2z
−2.

Box plots of the Monte-Carlo simulations are shown in
Fig. 8 and Fig. 9. The results are reasonable even if we
didn’t use the true model structures when estimating F .
The plots show that these estimated parameters have
however a rather larger variance.

Fig. 8. Box plots of parameters in K̂1(z) in example 4.

Fig. 9. Box plots of parameters in K̂2(z) in example 4.

8 Conclusions

In this paper we have shown that a rank-deficient pro-
cess admits a special feedback representation with a
deterministic feedback channel, which can be used to
split the identification in two steps, one of which can be
based on standard PEM algorithms while the other is
based on a deterministic least squares fit. Identifiability
of these feedback structures is not guaranteed and we
show how to choose an identifiable representative. Simu-
lations show that standard identification algorithms can
be easily applied to identify the transfer functions of the
model.
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[6] Oară C. and Varga A. Minimal degree coprime factorization
of rational matrices. SIAM Journal on Matrix Analysis and
Applications, 21(1):245–278, 1999.

[7] Peña D. and Box G. E. P. Identifying a simplifying
structure in time series. Journal of the American Statistical
Association, 82(399):836–843, 1987.

[8] Van den Hof P., Weerts H., and Dankers A. Prediction
error identification with rank-reduced output noise. In
Proceedings of 2017 American Control Conference, pages
382–387, Seattle, USA, 2017.

[9] Bottegal G. and Picci G. Modeling complex systems by
generalized factor analysis. IEEE Transactions on Automatic
Control, 60(3):759–774, 2015.

[10] Picci G., Cao W., and Lindquist A. Modeling and
identification of low rank vector processes. In Proceedings
of the 2021 IFAC SYSID conference, also in arXiv
:2012.05004v2[eess.SY], pages 631–636, Padova, Italy, 2021.
Science Direct.

[11] Weerts H., Van den Hof P., and Dankers A. Identifiability of
linear dynamic networks. Automatica, 89:247–258, 2018.

[12] Gustavsson I., Ljung L., and Söderström T. Identification of
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A Proof of the existence of models (4) with un-
correlated noises

Consider a feedback model like (5) where the input noises
(r, v) may be correlated and let

r̂(t) := E[r(t) | v(s); s ∈ Z]

be the acausal Winer estimate of r(t) given the whole
history of the process v [4, p. 105]. Since the joint spectral
density is rational there is a rational transfer function
say S(z) by which we can represent r̂ as r̂(t) = S(z)v(t)
(with the usual convention on the symbols). Hence

r(t) = S(z)v(t) + w(t)

where w(t) is a stationary process uncorrelated with the
whole history of v. Now, after substituting into the first
equation, the second equation of (4) can be written

y2(t) = [H(z) + S(z)]y1(t)− S(z)F (z)y2(t) + w(t)

from which

y2(t) = [I + S(z)F (z)]−1[H(z) + S(z)]y1(t)

+ [I + S(z)F (z)]−1w(t) (A.1)

which, after setting r̃(t) := [I+S(z)F (z)]−1w(t) may be

written y2(t) = H̃(z)y1(t)+ r̃(t), of the same form of the
second equation in (4) but now with v and r̃ completely
uncorrelated. 2

B On minimum phase matrix functions

Let W (z) be an (m+p)×m full column rank stable ma-
trix possibly a spectral factor of our (m+ p)× (m+ p)
spectral density matrix Φ(z) of rank m. Minimum phase
functions are called outer in the mathematical literature.
Although our functions are rational it will be convenient
to refer to the general definitions in Hardy spaces of the
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literature. For these we shall use the row-vector conven-
tion of the book [4]. The following is an intuitive defini-
tion which matches that for scalar functions [4, Theorem
4.6.11, p.137].

Definition 10 A rational matrix function W (z) is
minimum-phase, i.e., outer , if and only if it has all its
poles in the open unit disc and all its zeros in the closed
unit disc.

One should refer to the definition of (right) zeros [4, Def-
inition 4.6.10, p.136] for full column rank matrix func-
tions with rows in H2

m. For example, α is a zero of a 2×1
matrix W = [W1,W2]′, if and only if it is a common zero
of both W1 and W2. Equivalently there is a scalar inner
function q(z), a Blaschke product with a zero in α, such

that W (z) = Ŵ (z)q(z) with Ŵ (α) 6= 0. More generally,
we want to consider a partition of W (z)

W (z) =

[
W1(z)

W2(z)

]
(B.1)

where W1(z), W2(z) are m×m, p×m analytic matrix
functions with rows in H2

m. Next we recall the classi-
cal definition of an outer matrix function in the matrix
Hardy space H2

(p+m),m. The matrix function W (z) ∈
H2

(p+m),m is outer, if the row-span

span {φ(z)W (z) ; φ ∈ H∞(p+m)}

is the whole space H2
m. This is equivalent to saying that

in the outer-inner factorization W (z) = Ŵ (z)Q(z), the
inner (matrix) function Q must be a unitary constant,
which we may identify with the the identity Im.

Consider now the outer-inner factorizations

W1(z) = Ŵ1(z)Q1(z), (B.2a)

W2(z) = Ŵ2(z)Q2(z), (B.2b)

where Ŵ1, Ŵ2 are the outer (minimum-phase) factors
andQ1, Q2 are inner (in fact matrix Blaschke products).
The question we want to answer is: if W is outer, does it
follow that any (or both) of the two components W1,W2

should also be outer? We shall see that the answer is in
general negative.
Let us recall the definition of greatest common right in-
ner divisor of two inner functions Q1 and Q2, see [2, p.
188 top] denoted Q1 ∧R Q2. This is the inner function
representative of the closed vector sum H2

mQ1 ∨H2
mQ2.

Theorem 11 Let a full column rank matrix function
W (z) ∈ H2

(p+m),m be partitioned as in (B.1). The W is

outer if and only Q1 and Q2 are right-coprime, equiva-
lently, the greatest common right inner divisor of Q1 and
Q2 is the identity, i.e. Q1 ∧R Q2 = Im.

PROOF. Follows from the identity see [2, p. 188 top].

H2
mQ1 ∨H2

mQ2 = H2
m(Q1 ∧Q2)

HenceW (z) ∈ H2
(p+m),m can be outer even if none of the

two submatrices W1 and W2 is. They just need to have
no (unstable) zeros in common. On the other hand, when
W1 orW2 have no unstable zeros, they are automatically
outer.

C Details of the identification of the predictor
model

Since F+(z) has at least a unit delay we have

F+(z) = z−1F1(z) = A(z−1)−1[z−1B1(z−1)],

and we may write the transfer function of the one-step
predictor as

ŷ1(t | t− 1) = F1(z)y2(t− 1). (C.1)

Without loss of generality we can normalize A(z−1) to
be monic so that K+ = I and the predictor model can
then be written in ARMAX form as

A(z−1)y1(t) = B1(z−1)y2(t− 1) +A(z−1)e(t),

which can be used to compute the prediction error

ε1(t | t− 1) := y1(t)− ŷ1(t | t− 1). (C.2)

Given data from time i = N−T +1 toN , one minimizes

λ̂2 =
1

T

N∑
i=N−T+1

ε1(i | i− 1)2

with respect to the model parameters, by an iterative
descent method. To guarantee viability of the algorithm
at each iteration one should check stability of the es-
timated polynomial A(z−1) and if needed, substitute a
spectrally equivalent version to impose stability of the
estimated F (z). To this end one needs to readjust on line
the estimated parameters of A(z−1).
Note that this procedure does not involve the dynamics
of the ”input” y2 (i.e. no need to know H(z)). If needed,
H(z) can be identified independently as seen in the pre-
vious paragraph.
Assuming parameter identifiability of these representa-
tions, when the true model structure with true (aug-
mented) degrees is in the model set considered in the
minimization, the parameter estimates should converge
to the true parameters with probability 1 when the data
size tends to infinity.
We do not consider here the difficulties connected with
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parameter identifiability of these representations in the
vector case, since this is a theme which has been amply
discussed in the literature.
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