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Abstract

It is known that certain popular stochastic subspace identi�cation methods may fail for theoretical reasons related to
positive realness. In fact, these algorithms are implicitly based on the assumption that the positive and algebraic degrees of
a certain estimated covariance sequence coincide. In this paper, we describe how to generate data with the property that
this condition is not satis�ed. Using these data we show through simulations that several subspace identi�cation algorithms
exhibit massive failure. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [14] it was pointed out that some popular stochas-
tic subspace identi�cation algorithms for time series
[3, 18] are based on an assumption, which may not be
satis�ed, about positive realness of a certain rational
function and therefore may fail for generic data.
In this paper we test some of these algorithms on sta-

tistical data produced by passing white noise through a
stable, rational, time-invariant, linear �lter with prop-
erties to be explained in Section 4. As expected from
the theoretical analysis, the algorithms exhibit massive
failure for certain choices of dimensions. Since these
dimensions cannot be determined easily from generic
data, care has to be exercised when using these algo-
rithms.
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1 This research was supported by the Swedish Research Council

for Engineering Sciences (TFR).

The basic theoretical problem with these stochas-
tic subspace identi�cation methods can be reduced to
the fact that the positive and algebraic degrees of a
partial covariance sequence need not coincide. These
concepts are related to covariance extension, to be
discussed in Section 2. A secondary problem arises
in connection with model reduction, as explained in
Section 3. In Section 4, we construct a partial covari-
ance sequence which has the property that the pos-
itive and algebraic degrees do not agree. From this
sequence we obtain a �lter through which we pass
white noise to generate test data. In Section 5, we
present test results using the stochastic subspace iden-
ti�cation algorithms of [3, 18] on this data. Finally, in
Section 6 we present our conclusions.

2. Theoretical background

System identi�cation in the form studied here
amounts to estimating the matrices (A; B; C; D) in

0167-6911/98/$19.00 c© 1998 Elsevier Science B.V. All rights reserved.
PII: S0167 -6911(98)00020 -6



304 A. Dahl�en et al. / Systems & Control Letters 34 (1998) 303–312

some linear stochastic system

(�)

{
x(t+1)=Ax(t)+Bw(t);

y(t)=Cx(t)+Dw(t);
(2.1)

driven by a (normalized) white noise {w(t)}, from a
data string

{y0; y1; y2; : : : ; yN} (2.2)

of observations of the output process {y(t)}. More
precisely, system (2.1) should be such that {y(t)} is a
(second-order) stationary stochastic process. In partic-
ular, this means that A is a stable matrix, having all its
eigenvalues less than one in modulus. Then the spec-
tral density of {y(t)} is given by�(z)=W (z)W (1=z)′
on the unit circle, where W (z)=C(zI −A)−1B+D
is the stable transfer function of system (2.1).
This estimation problem can be reduced to deter-

mining the spectral density

�(ei�)=
∞∑

k=−∞
�ke−ik�; (2.3)

from the observed data (2.2), where

�k =E{y(t+ k)y(t)′}; k =0; 1; 2; : : : (2.4)

are the covariances of the process. To understand this
matter we develop some auxiliary results which will be
used in the sequel. Since �−k =�′

k ; �(z) may also be
additively decomposed as �(z)=�+(z)+�+(1=z)′,
where

�+(z)= 1
2�0 +�1z

−1 +�2z−2 + · · · : (2.5)

Now, inserting into Eq. (2.4) the output process y as
de�ned by Eq. (2.1), a simple calculation yields

�k =CAk−1 �C′ for k =1; 2; 3; : : : ; (2.6)

where �C =CPA′+DB′, and P :=E{x(0)x(0)′} is
the unique solution of the Lyapunov equation
P=APA′+BB′. Consequently, we obtain from
Eq. (2.5) that

�+(z)=C(zI −A)−1 �C′+ 1
2�0: (2.7)

In the context of system identi�cation, statistical es-
timates are used to approximate the covariances. Such

estimates could be based on the ergodic limit

�k = lim
T→∞

1
T +1

T∑
t=0

yt+ky′t ; (2.8)

which holds almost surely [4]. Implicitly or explicitly
the stochastic subspace identi�cation procedures of
[3, 18] are based on truncated ergodic sums such as

�k ≈ 1
T +1

T∑
t=0

yt+ky′t for k6N −T: (2.9)

If T¡N is su�ciently large, these estimates will
be good provided k is not too large. However, only a
�nite number of covariances

�0; �1; �2; : : : ; �� (2.10)

can be determined from Eq. (2.2) via Eq. (2.9); in
fact we must have �.N . To focus on the essential
questions of this paper, we assume that Eq. (2.10) is a
bona �de partial covariance sequence in the sense that
the (block) Toeplitz matrix of Eq. (2.10) is positive
de�nite.
The key idea of stochastic subspace identi�cation is

now to reconstruct (A; C; �C), appearing in Eq. (2.7),
by solving the equations

�k =CAk−1 �C′ for k =1; 2; : : : ; � (2.11)

for (A; C; �C), where the �k are estimated as in
Eq. (2.9). This is the partial realization problem
[13, 11, 9]. Moreover, Eq. (2.7) is a minimal partial
realization if it has the smallest possible Mc Millan
degree, and yet satis�es Eq. (2.11). We call this the
algebraic degree of Eq. (2.10).
However, for � to be a bona �de coercive spectral

density we must have

�(ei�)¿0 for all real �: (2.12)

This is achieved by requiring that �+(z) is (strictly)
positive real, i.e. �+(z) is analytic for |z|¿1 and sat-
is�es <[�+(z)]¿0 in this region. The partial realiza-
tion problem with the additional constraint that �+(z)
be positive real is called the stochastic partial real-
ization problem [12], and the corresponding minimal
degree is called the positive degree of Eq. (2.10).
In stochastic subspace identi�cation the triplet

(A; C; �C) is determined, either impicitly or explicitly,
by a minimal factorization of a (block) Hankel matrix
Hij of the estimated covariances (2.10). In fact, by
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Eq. (2.11), we have

Hij :=



�1 �2 · · · �j
�2 �3 · · · �j+1
...

...
. . .

...

�i �i+1 · · · �i+j




=




C

CA
...

CAi−1







�C
�CA′

...
�C(A′) j−1




′

; (2.13)

where the indices i; j are chosen so that i+ j= � and
|i− j|61. Then C and �C can be determined directly
as the �rst block row of the left and right factor of
Eq. (2.13), respectively. Likewise, A can be deter-
mined by removing the �rst block row and the last
block row respectively from �i, the left factor of
Eq. (2.13), to obtain �i and � i respectively. Then
�i=� iA, and therefore A=�

†
i�i, where �

†
i is the

pseudo-inverse of � i.
Assume that a positive real �+(z) is obtained from

the identi�ed matrices A; C and �C, and the estimated
zero lag covariance �0. Then, B and D can be deter-
mined from the identi�ed (A; C; �C;�0) by �rst �nding
a P¿0 such that

M (P)=

[
P−APA′ �C′ −APC ′

�C −CPA′ �0−CPC ′

]
¿0; (2.14)

in general by solving an algebraic Riccati equation,
and then factoring M (P) as

M (P)=

[
B

D

][
B

D

]′
: (2.15)

Modulo a model-reduction step to be discussed in
Section 3, all stochastic subspace algorithms are es-
sentially variations of this scheme.
There are, however, several problems with this ap-

proach. In fact, if r is the algebraic and p the positive
degree of Eq. (2.10), we have

rankHij6r6p; (2.16)

where each inequality could be strict. The stochastic
subspace identi�cation procedures brie
y described
above, on which the methods of [3, 18] are based, re-
quire that these quantities are equal in order to guar-
antee the positivity condition mentioned. This is an
assumption that is generally implicit.

Only the �rst equality in Eq. (2.16) is a generic
property. To illustrate this, let us consider the scalar
output case. For the partial covariance sequence
(�0; �1; �2; : : : ; ��) := (1; 0; 0; : : : ; 12 ); rankHij =1,
while r=p= � [9]. This situation is a rare event,
but having strict inequality in the second inequality
of Eq. (2.16) is not. In fact, it is easy to see that the
algebraic degree has the generic value r= [�=2], any
other value being rare. The situation for the positive
degree is much more complex. In fact, it was shown
by Byrnes and Lindquist [7] that, for any integer n
such that [�=2]6n6�, there is a nonempty set of
scalar covariance sequences (2.10) which is open in
R�+1 so that n is the positive degree of Eq. (2.10).
This shows that the positive degree has no generic

value. Also there is no easy way to determine the posi-
tive degree; see [7] for details. The statistical test data,
which will be used in Section 5 to induce failure of
the subspace identi�cation procedures, will have the
property that the algebraic and positive degrees of the
corresponding partial covariance sequence (2.10) dif-
fer for certain �. The result from [7] just stated shows
that such failure is a nonrare event.
The problems show up when determining B and D

from Eq. (2.14). In fact, in order to perform the fac-
torization (2.14) we must have M (P)¿0. However,
by the Kalman–Yakubovich–Popov Lemma (see, e.g.,
[2]), the existence of a positive de�nite P such that
M (P)¿0 is equivalent to �+(z) being positive real.

3. Subspace identi�cation algorithms

In the stochastic subspace identi�cation methods
studied here the factorization of the estimated Hankel
matrix of Eq. (2.13) is performed by singular-value
decomposition, either directly on Hij, as in [3], or on
some weighted version

Ĥ ij =QHijR′; (3.1)

where Q and R are nonsingular matrices, as in [17–
19]. Singular value decomposition is a reliable numer-
ical procedure for determining the numerical rank of
a matrix. Hence when, factoring Eq. (3.1), the numer-
ical rank of Ĥ ij; n, is chosen so that the decreasingly
ordered singular values {�k} are approximately zero
for k ¿ n.
In the basic stochastic subspace identi�cation

method of Van Overschee and De Moor [17–19],
Q and R are chosen to be the inverted Cholesky
factors of the block Toeplitz matrices of Eq. (2.10)
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and �0; �′
1; �

′
2; : : : ; �

′
�, respectively. As explained in

[1] (also see [14]) this choice of weights, to which
we shall refer as the canonical weights, is natural,
since then the singular values {�k} are the canon-
ical correlation coe�cients, i.e. the cosines of the
angles between the spaces spanned by the future and
past observations; see [14]. All canonical correlation
coe�cients are less than one in modulus.
In our context the methods of Van Overschee and

DeMoor [17–19] amount to factoring the square block
Hankel matrix H� obtained by setting i= j= � in Hij.
Two integer parameters need to be chosen when im-
plementing the algorithms: � and the desired dimen-
sion n of the system. The numerical rank determi-
nation discussed above selects n= rankH�, but the
subspace identi�cation procedures allow for choosing
n¡rankH�; we shall refer to this as model reduction.
For model order selection see [10, 21]. In [17–19],
model reduction is done after performing the singular
value decomposition of Ĥ�, by setting some nonzero
singular values equal to zero but keeping the matri-
ces of left and right singular vectors �xed. From this
rank-reduced matrix the system matrices A; C, and �C
are computed, even though it is no longer a Hankel
matrix. Therefore the question whether such model re-
duction preserves positivity has so far no answer; see
[14] for a discussion of this issue. Probably the answer
is negative in general. If Ĥ� is of full rank, a model
reduction step is obligatory, at least if the process y
is scalar. In fact, since i= j= �, the procedure of de-
termining A described in Section 2 requires us to take
n¡�.
In Aoki [3] the model reduction step consists in

setting some of the smallest singular values of H�
equal to zero, which is equivalent to replacing the
triplet (A; C; �C) obtained from the nonreduced H� by a
triplet of “northwest corners” (A11; C1; �C1) in the sense
that

A=

[
A11 A12
A21 A22

]
; C= [C1 C2];

�C = [ �C1 �C2]:

This is called principal subsystem truncation. Since
Aoki is using an unweighted Hankel matrix, i.e.,
Q=R= I in Eq. (3.1), we do not know whether
this reduction procedure preserves positivity either.
However, in Theorem 7 of [14] it was shown that
principal subsystem truncation preserves positivity if

the canonical weights are used, provided {y(t)} has
coercive spectral density and � is su�ciently large.
Consequently, failure of the stochastic subspace

identi�cation procedures may have several causes.
The noncoincidence of positive and algebraic degrees
prior to model reduction is the primary reason, but,
as we have pointed out above, there are secondary
factors, such as those connected to model reduction.
In order to illustrate the primary cause for failure,

we �rst test our data on a modi�ed stochastic subspace
identi�cation procedure with the following properties.
First, we take i= �+1 and j= �, that is we consider a
rectangular matrix H�+1; �. Hence, the choice n= � is
possible. Secondly, we use the canonical weights and
do model reduction by principal subsystem truncation
so that positivity (if it is present in the unreduced so-
lution) is preserved, at least in the limit as N→∞
and �→∞ ([14], Theorem 16). We shall refer to this
algorithm as the modi�ed subspace identi�cation al-
gorithm. Let us stress that this algorithm is not in-
troduced as an alternative to the subspace algorithms
mentioned above, but merely as a means to factor out
the primary cause of failure and to avoid the obliga-
tory model reduction step mentioned above.
Then we shall test the three stochastic subspace al-

gorithms in the book [19] by Van Overschee and De
Moor. Algorithms 1 and 2 di�er in the computation of
the matrices A and C. Algorithm 2 does it exactly as
described in Section 2, while Algorithm 1 does it in
a slightly modi�ed form, which theoretically is essen-
tially equivalent. Algorithm 3 is of a di�erent charac-
ter. An ad hoc modi�cation is made which produces a
positive real solution provided it �rst produces a sta-
ble A. The problem here is not only that it is unclear
what precisely this modi�cation implies for the solu-
tion, but that positivity is not guaranteed, because, as
for any of the subspace algorithms considered here,
there is no guarantee that the identi�ed A will be sta-
ble. In fact, it was shown in [6], that such stability is
not a generic property: there are nonempty open sets
in the parameter space where stability fails.

4. Construction of a test example

Next we construct a scalar covariance sequence,
relevant partial sequences of which have the property
that the positive degree is greater than the algebraic
degree. This construction, which is motivated by the
proof of Theorem 3 in [14] and the underlying theory
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in [8], is based on the degree-one rational function

V (z)=
1
2
z+1+ �
z+1− � ; (4.1)

which is stable, having a pole of modulus less than
one, but is not positive real for any �¿0.
Expanding V (z) as a Laurent series for |z|¿1 we

obtain

V (z)= 1
2c0 + c1z

−1 + c2z−2 + · · · ;

where c0 = 1 and ck = �(�− 1)k−1 for k¿0. Now, it is
well-known [1] that c0; c1; : : : ; c� is a bona �de partial
covariance sequence of some purely nondeterministic
random sequence if and only if

|
k |¡1; k =0; 1; 2; : : : ; �− 1; (4.2)

where 
0; 
1; 
2; : : : are its Schur parameters. Obvi-
ously, since V (z) is not positive real, this is not the
case for all �. It can be shown [8, 14] that these Schur
parameters can be generated by the nonlinear dynam-
ical system

�t+1 =
�t

1− 
2t
; �0 = 1;


t+1 =
− 
t�t
1− 
2t

; 
0 = �;
(4.3)

which evolves along the curve 1− 
2t =(2=�− �t)�t ,
where �=2=(2− �2). Hence 
t can be eliminated in
the �rst of the equations (4.3) to yield

�t+1 =
�

2− ��t ; �0 = 1; (4.4)

Setting �t = vt=ut , Eq. (4.4) can be replaced by the
linear system

[
ut+1
vt+1

]
=

[
2=� −1
1 0

][
ut
vt

]
;

[
u0
v0

]
=

[
1

1

]
: (4.5)

Since � is greater than one in modulus, the coe�cient
matrix of Eq. (4.5) has complex eigenvalues and is

thus, modulo a constant scalar factor, similar to[
cos � sin �

− sin � cos �

]
;

where � := arctan
√
�2− 1 is small if � is small. Hence

�t is the slope of a line through the origin in R2 which
rotates counter-clockwise with the constant angle �,
so that arctan �t+1 = arctan �t + �.
Sooner or later, therefore, the slope �t will either

change sign or become in�nite at which time condition
(4.2) will fail, as can be seen from the �rst of equa-
tions (4.3). Supposing that � is chosen so that �nite
escape does not occur, and let � be the last step prior
to the slope changing sign. Then c0; c1; : : : ; c� will be
a partial covariance sequence, but c0; c1; : : : ; c�+1 will
not. Clearly, however, � can be made arbitrarily large
by just choosing � small enough.
Let ’�(z)= z�+’�1z�−1 + · · ·+’�� be the Szeg�o

polynomial determined from 
0; 
1; : : : ; 
�−1 via the
Szeg�o–Levinson recursion

’t+1(z)= z’t(z)− 
tz t’∗
t (z

−1); ’0(z)= 1;

and set r� :=
∏�−1
k=0 (1− 
2k ). Then the maximum-

entropy �lter

W (z)=
√
r�

’�(z)
(4.6)

is stable and minimum phase [5, 20]. Let �+(z) be
the positive real part of the spectral density �(z) :=
W (z)W (z−1), and de�ne the in�nite covariance se-
quence �0; �1; �2; : : : via the Laurent expansion (2.5).
Clearly this is a covariance extension of c0; c1; : : : ; c�.
In fact, �k = ck for k =0; 1; 2; : : : ; �.
Now let us consider the algebraic degree r and the

positive degree p of the partial sequence

�0; �1; �2; : : : ; �k (4.7)

as k varies. In this context, recall that the sub-
space algorithms studied here implicitly require that
p= r. In our example, by construction, p¿r for
26k62(�− 1). For k¿2�− 1, we always have
r=p. Note that we can choose � arbitrarily large and
thus construct an arbitrarily long interval for which
the condition p= r will fail.
In Fig. 1 we show a typical situation for �=5, de-

picting p (marked by (×)) and r (marked by (•)) as
a function of k.
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Fig. 1. The positive (×) and algebraic degrees (•) for the case �=5.

5. Simulations

To obtain data we pass white noise through a �lter

white noise−→ W (z) −→output process;

with the transfer function (4.6) constructed in
Section 4.
The experiments will be carried out in the following

manner. In each of the algorithms to be tested there
are two integer parameters to be chosen: the size � of
the approximate Hankel matrix, as de�ned previously
for each algorithm, and the desired dimension n of the
resulting system. To choose n is to choose which sin-
gular values will be set equal to zero. For each choice
of � and n, we make 100 simulations and apply the
subspace algorithms to each of these sets of data. The
number of failures are recorded in tables. By failure
we mean that the estimated triplet (A; C; �C) is such
that Eq. (2.7) fails to be positive real.
We begin by testing the modi�ed subspace identi�-

cation algorithm introduced in Section 3 as a means to
illustrate more precisely the failures anticipated from
the analysis in Section 4. Thus, in particular, the most
important secondary reason for failure – that the model
reduction phase may not preserve positivity – has been
removed. The index k in Eq. (4.7) needed for the ap-
propriate Hankel matrix of size � is precisely k =2�.
First, to illustrate the behavior expected from

Fig. 1, we consider a very simple example for which
�=5, which corresponds to the choice �=0:25 in
Eq. (4.1). Table 1 shows the percentage of failure for
di�erent choices of � and n.

Table 1
Percentage of failures for modi�ed algorithm when �=5

n 1 2 3 4 5 6 7
�: 1 100

2 99 100
3 78 98 100
4 58 100 100 100
5 0 0 0 0 0
6 0 0 0 0 0 41
7 0 0 0 0 0 28 69

The dimension of the system generating this data
is �ve. From the theoretical considerations reported
above, we expect the algorithm to succeed for �¿5 as
long as n65. This agrees with the experiment as can
be seen from the zeros in the table. We also see that the
algorithm has an almost massive failure rate in the area
where positive and algebraic degrees do not match, as
explained in Section 4. Finally, we have large failure
rate when n¿5; in these cases, the transfer functions
of the systems may have approximate common factors
in the numerators and the denominators, likely to be
unstable in approximately half of the runs.
This is a very simple example, but it exhibits all

the characteristics of a larger example. In fact, the
corresponding result for �=15, obtained by setting
�=0:097, is depicted in Table 2. It shows massive
failure for �614, which agrees with theory. Similarly,
the algorithm has complete success for �¿15 as long
as n615.
Next, for the case �=15, we test the three stochas-

tic subspace identi�cation methods of Van Overschee
and De Moor [19] with canonical weights. These
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Table 2
Percentage of failures for modi�ed algorithm when �=15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
�: 1 85

2 86 95
3 97 96 100
4 93 99 98 99
5 99 100 99 100 100
6 97 99 100 99 100 100
7 96 98 100 100 100 100 100
8 60 99 100 100 100 100 100 100
9 47 97 100 100 100 100 100 100 100
10 45 97 98 98 98 98 100 100 100 100
11 48 88 96 95 96 96 96 96 100 100 100
12 43 91 97 97 97 97 97 97 97 97 100 100
13 42 90 95 95 97 97 98 98 98 98 98 98 100
14 53 93 100 100 100 100 100 100 100 100 100 100 100 100
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 67

Table 3
Percentage of failures for Algorithm 1 when �=15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
�: 2 91

3 100 96
4 100 100 100
5 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100 100
8 100 100 100 100 100 100 100
9 0 100 99 100 100 100 100 100
10 0 0 96 97 98 100 100 100 100
11 0 0 37 87 87 93 100 100 100 100
12 0 0 0 58 50 84 78 98 100 100 100
13 0 0 0 0 7 67 47 84 76 97 99 100
14 0 0 0 0 0 1 11 72 75 84 85 100 100
15 0 1 100 0 0 0 0 0 21 55 86 98 100 100
16 100 100 100 100 100 100 100 100 100 100 100 100 100 93 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46
18 0 0 0 0 0 0 10 1 32 4 42 24 33 17 0 38 56

algorithms operate in a setting which in our notation
corresponds to a square Hankel matrix H� :=H�; �, so
the index k in Eq. (4.7) is k =2�− 1. Algorithm 2
in [19] uses the procedure described in Section 2 to
determine A, and the other algorithms use an equiv-
alent shift strategy. Consequently, as pointed out in
Section 3, we must take n¡�, and hence we cannot
allow for the case that H� is full rank and there is no
model reduction.
The simulations for Algorithm 1 and Algorithm 2

are reported in Tables 3 and 4, respectively, which

show the percentage of failure for di�erent choices
of � and n. As before the dimension of the system
generating the data is 15. Since we have at least one
model reduction step, we expect the algorithm to suc-
ceed for �¿16 as long as n615. The adherence to this
pattern is not as good as for the modi�ed algorithm,
and this is probably due to the secondary e�ects dis-
cussed in Section 3. We get massive failure not only in
the area where positive and algebraic degrees do not
match, but also in certain cases when they do agree.
We stress that data producing failure for �¡� can
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Table 4
Percentage of failures for Algorithm 2 when �=15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
�: 2 94

3 100 99
4 100 100 99
5 100 100 99 100
6 100 99 100 100 100
7 100 100 100 100 100 100
8 100 100 100 100 100 100 100
9 100 100 98 99 99 100 100 100
10 100 45 99 95 99 100 100 100 100
11 100 12 99 71 100 92 99 100 100 100
12 100 50 73 24 98 78 92 99 99 100 100
13 100 89 19 4 28 37 92 84 89 95 99 100
14 94 100 100 0 18 1 8 38 91 98 100 100 100
15 62 100 100 4 100 0 2 0 1 3 10 21 54 97
16 100 100 100 100 100 100 100 100 100 100 100 100 100 90 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43
18 21 77 13 56 48 6 66 11 78 23 57 31 33 18 0 40 60

Table 5
Percentage of failures for Algorithm 3 when �=15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
�: 2 20

3 11 55
4 8 31 63
5 6 24 46 79
6 2 15 42 65 89
7 0 26 49 65 77 97
8 0 22 29 48 67 84 92
9 0 15 91 100 100 100 100 100
10 0 0 96 91 95 98 99 100 100
11 0 0 36 58 80 90 99 100 100 100
12 0 0 0 7 48 49 67 92 99 100 100
13 0 0 0 0 6 11 47 62 68 94 99 100
14 0 0 0 0 0 0 11 23 70 50 77 98 100
15 0 0 100 0 0 0 0 0 19 18 68 82 100 100
16 0 7 100 1 94 0 62 0 1 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 56

be constructed for arbitrarily large �, as explained in
Section 4.
The corresponding simulations for Algorithm 3, re-

ported in Table 5, show failure which is due to un-
stability of A. This is in complete agreement with the
theory since stability is not automatic unless p= r;
see [6]. The failure in the critical region is not as mas-
sive, but on the other hand the meaning of the solution
is not entirely clear, since the modi�cation needed is
quite ad hoc.
Finally, we test Aoki’s method [3]. As seen in

Table 6, a similar pattern as in the modi�ed subspace

algorithm occurs, except that sporadic failures may
also occur in the ‘good region’, as expected from the
manner in which model reduction is performed. On
the other hand, the algorithm is likely to succeed if n
is chosen much smaller than �.

6. Conclusions

In [14] it was pointed out that there is no guarantee
that some popular stochastic subspace identi�ca-
tion algorithms will actually work for generic data,
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Table 6
Percentage of failures for Aoki’s method when �=15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
�: 1 80

2 97 96
3 100 100 98
4 100 99 98 100
5 100 100 100 100 100
6 100 100 100 100 100 100
7 100 100 100 100 100 100 100
8 99 87 98 100 100 100 100 100
9 0 0 45 90 96 100 100 100 100
10 0 0 0 0 70 91 100 100 100 100
11 0 0 0 0 0 0 57 95 99 100 100
12 0 0 0 0 0 0 0 6 61 97 99 100
13 0 0 0 0 0 0 0 0 1 98 62 95 100
14 0 0 0 0 0 0 0 0 0 0 0 100 66 100
15 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0
16 0 4 0 0 0 0 0 0 1 3 4 4 9 15 21 48
17 0 0 0 0 4 3 11 7 6 4 8 11 20 29 34 56 68

and theoretical evidence for this fact was
provided.
In this paper we constructed statistical data for

which said identi�cation algorithms exhibit massive
failure. These data were produced by passing white
noise through a �lter which was constructed in such
a way that the corresponding partial covariance se-
quences of the output process do not ful�ll the re-
quirement of stochastic subspace identi�cation that
the positive and algebraic degrees coincide.
Failure can also occur if the dimension of the

identi�ed system is chosen too high, so that almost
cancellations of unstable factors occur between the
numerator and the denominator of the transfer func-
tions.
Consequently some care has to be exercised when

using these stochastic subspace identi�cationmethods.
In [15] possible remedies are discussed, and in [16] the
authors present an alternative identi�cation procedure
which overcomes these di�culties.
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