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Abstract

Antoulas and Sorensen have recently proposed a passivity-preserving model-reduction method of linear
systems based on Krylov projections. The idea is to approximate a positive-real rational transfer function
with one of lower degree. The method is based on an observation by Antoulas (in the single-input/single-
output case) that if the approximant is preserving a subset of the spectral zeros and takes the same values
as the original transfer function in the mirror points of the preserved spectral zeros, then the approximant is
also positive real. However, this turns out to be a special solution in the theory of analytic interpolation with
degree constraint developed by Byrnes, Georgiou and Lindquist, namely the maximum-entropy (central)
solution. By tuning the interpolation points and the spectral zeros, as prescribed by this theory, one is able
to obtain considerably better reduced-order models. We also show that, in the multi-input/multi-output case,
Sorensen’s algorithm actually amounts to tangential Nevanlinna–Pick interpolation.
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1. Introduction

Consider a time-invariant linear system

�

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1.1)

wherex(t) ∈ Rn,u(t) ∈ Rm,y(t) ∈ Rm, and the constant matricesA,B,C andD have compatible
dimensions with the properties that the eigenvalues of A all lie in the open left half of the complex
plane, C−, (A, B) is reachable, (C, A) is observable and D + DT is positive definite. Moreover,
suppose that the transfer function

G(s) = C(sI − A)−1B + D (1.2)

is positive real; i.e.,

G(iω) + G(−iω)T � 0, ω ∈ R. (1.3)

Such systems � are passive; i.e.,∫ T

0
u(t)Ty(t) dt � 0

for all T > 0 and all square-integrable inputs u. In physical terms, such a system produces no
energy internally. Passive systems are important in many applications, such as, for example, in
VLSI design and stochastic systems theory. In fact,

�(s) :=G(s) + G(−s)T (1.4)

can be interpreted as a spectral density, and there are rational functions W(s), called spectral
factors, such that

G(s) + G(−s)T = W(s)W(−s)T. (1.5)

Often passive systems are too large for analysis and synthesis.
The problem considered in this paper is to find a passive reduced-order system

�̂

{ ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + Du(t),
(1.6)

where x̂(t) ∈ Rk , k < n, and ŷ(t) ∈ Rm; i.e., the transfer function

Ĝ(s) = Ĉ(sI − Â)−1B̂ + D (1.7)

has a lower degree but has retained the positive-real property.
Such model reduction is often performed by some projection method that determines matrices

U, V ∈ Rn×k such that UTV = Ik and

Â = UTAV, B̂ = UTB, Ĉ = CV. (1.8)

The most popular such model reduction methods preserving positive-realness is stochastically
balanced truncation (or positive-real balanced truncation), originally proposed by Desai and Pal
[17,18] in the context of stochastic realization theory [2,20,32]. Some early contributions to this
topic include [28,36,40]. For an explanation in terms of stochastic realization theory, see [33].
Stochastically balanced model reduction has the advantage that it comes with easily computed
bounds; see, e.g., [28,40].
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In this paper, we shall consider another class of model reduction procedures based on inter-
polation, in which the transfer function Ĝ of the reduced-order system satisfies the interpolation
conditions

Ĝ(sj ) = G(sj ), j = 1, 2, . . . , k (1.9)

for some suitable points s1, s2, . . . , sk in the open right half C+ of the complex plane. In the scalar
case, m = 1, Antoulas [4] has recently observed that, if the interpolation points s1, s2, . . . , sk are
mirror images of some spectral zeros of G, i.e., zeros of (1.4), and these zeros are also the spectral
zeros of Ĝ, then Ĝ is positive real. Sorensen [38] has developed an efficient algorithm based on
Antoulas’ idea [4] that does not explicitly use spectral zeros but also works in the case m > 1.
We shall demonstrate that Sorensen’s solution amounts to tangential interpolation rather than
matricial interpolation involving the condition (1.9).

However, Antoulas’ observation does not come as great surprise to us, since the concept of
spectral zeros is a key ingredient in a theory of analytic interpolation developed over the last
decades by Byrnes, Georgiou, Lindquist and their coworkers [6–16,19,22–27,29,30,35]. Indeed,
given k + 1 interpolation points and corresponding interpolation values, the class of all analytic
interpolants of McMillan degree at most k are completely parameterized by the stable spectral
zeros. Moreover, given a specific choice of such spectral zeros, there is a pair of dual convex
optimization problems determining the unique corresponding interpolant. We shall demonstrate
that Antoulas’ solution is essentially the central solution or the maximum entropy solution in this
theory. This opens up the questions of whether the full power of the theory of analytic interpolation
with degree constraint can be used to obtain better approximations. We shall provide numerical
examples showing that this is indeed the case. Model reduction from selected spectral zeros has
previously been performed in [16] in the context of covariance extension.

2. Spectral zeros

The quadruple (A, B, C, D) in (1.2) is often called a minimal realization of G(s), and we shall
denote it

G(s) ∼
[
A B

C D

]
.

In particular, the zeros of G(s) are precisely the complex numbers λ for which(
A − λI B

C D

)
is singular.

In the context of passive systems, we are interested in the spectral zeros of G(s); i.e., the zeros
of (1.4). Since

G(−s)T ∼
[−AT −CT

BT DT

]
it readily follows that

G(s) + G(−s)T ∼
⎡⎢⎣A B

−AT −CT

C BT D + DT

⎤⎥⎦ ,

i.e., the spectral zeros are the λ for which the matrix A − λE is singular, where
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A :=
⎡⎣A B

−AT −CT

C BT D + DT

⎤⎦ , E =
⎡⎣In

In

0m

⎤⎦ . (2.1)

Consequently, the spectral zeros are the generalized eigenvalues of (A,E).
For simplicity of presentation, from now on, we make the same assumption as in [4,38], namely

that the spectral zeros are distinct.

3. The Antoulas–Sorensen approach

The starting point in Sorensen’s algorithm is a partial real Schur decomposition

AQ = EQR (3.1)

for the pair (A,E), where QTQ = Ik and R is real and quasi-upper triangular. Clearly, the eigen-
values of R are generalized eigenvalues of (A,E); i.e., (selected) spectral zeros, and we obtain
one decomposition (3.1) for each choice of k spectral zeros. Setting QT = (XT, Y T, ZT), we have⎡⎣A B

−AT −CT

C BT D + DT

⎤⎦ ⎡⎣X

Y

Z

⎤⎦ =
⎡⎣X

Y

0

⎤⎦R. (3.2)

Eliminating Z in these block equations yields

H

[
X

Y

]
=
[
X

Y

]
R, (3.3)

where

H :=
[
A − B(D + DT)−1C −B(D + DT)−1BT

−CT(D + DT)−1C −[A − B(D + DT)−1C)]T
]

(3.4)

It is straight-forward to check that H is a Hamiltonian matrix; i.e.,

(JH)T = JH, where J :=
[

0 In

−In 0

]
, (3.5)

and consequently it follows from (3.3) that

(XTY − Y TX)R = [XT Y T]JH
[
X

Y

]
= RT(Y TX − XTY ). (3.6)

To clarify the connections between observability, reachability and nondegeneracy of
solutions – a topic to which we shall return below – we now restate Lemmas 1 and 2 in [38] in a
slightly more general form and with a more streamlined proof, based on standard constructions;
see, e.g., [31].

Lemma 1. Suppose that k � n and that R has no pair (λ, μ) of eigenvalues such that λ = −μ̄.

Then X has full rank if (A, B) is reachable, and Y has full rank if (C, A) is observable. Moreover
XTY = Y TX.

Proof. We begin with the last statement (Lemma 1 in [38]). Since the linear map L(P ) :=PR +
RTP , sending symmetric k × k matrices P to symmetric k × k matrices PR + RTP , is regular
if and only if R has no pair (λ, μ) of eigenvalues such that λ = −μ̄ [21, p. 225], it follows from
(3.6) that P :=XTY − Y TX = 0, as claimed. Then it also follows from (3.6) that
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M(X, Y ) :=[−Y T XT]H
[
X

Y

]
= 0. (3.7)

Next, from (3.7) we have that, for any a ∈ ker Y ,

aTM(X, Y )a = aTXTCT(D + DT)−1CXa = 0;
that is, Xa ∈ ker C for all a ∈ ker Y . Moreover, by (3.3),

H

[
Xa

0

]
=
[
X

Y

]
Ra,

from which we have AXa = XRa and YRa = 0. Consequently, Ra ∈ ker Y and AX ker Y ⊂
X ker Y , which, in turn, implies that

AjX ker Y ⊂ X ker Y ⊂ ker C, j = 0, 1, 2, . . . .

Consequently, ∩∞
j=0CAjXa = 0 for all a ∈ ker Y . Therefore, if (C, A) is observable, we must

have Xa = 0. However, if Xa = Ya = 0, then, from the last block equation of (3.2), Za = 0; i.e.,
Qa = 0. Hence, since Q := (XT, Y T, ZT)T has full rank, we must have a = 0. This establishes
that Y has full rank.

To show that X has full rank if (A, B) is reachable, we take a ∈ ker X, aTM(X, Y )a = 0, and
proceed as above to show that a must be zero if (A, B) is reachable. �

In particular the requirements on R in Lemma 1 are satisfied if all eigenvalues of R are located
in C− or in C+.

It is now instructive to observe the connections to stochastically balanced truncation. Taking
k = n and the spectral zeros (eigenvalues of R) to be those in C− and C+, respectively, we obtain
the solutions X−, Y− and X+, Y+, respectively, of (3.3). It is well known that P− :=X−Y−1− and
P+ :=X+Y−1+ are the minimal and maximal solutions respectively (in the ordering of positive
definite matrices) of the algebraic Riccati equation

AP + PAT − (B + PCT)(D + DT)−1(B + PCT)T = 0, (3.8)

standard in stochastic realization theory [2,20,32]. Stochastic balancing amounts to finding a
linear regular transformation T such that

T P−T T = � = T −TP −1+ T −1,

where � is the diagonal matrix with the diagonal elements being the singular values of P−P −1+ =
Y−T− XT−X+Y−1+ , ordered by size. Positive-real balanced truncation is then a projection method
where the matrices (1.8) are chosen as

UT = [Ik 0]T , V = T −1
[
Ik

0

]
.

In Sorensen’s algorithm one takes instead the partial real Schur decomposition (3.1) cor-
responding to k selected spectral zeros in C− and performs singular value decomposition on
XTY . More precisely, this amounts to determining unitary k × k matrices Qx and Qy such that
Qx�2QT

y = XTY is the singular value decomposition of XTY , and setting

V :=XQx�
−1, U :=YQy�

−1. (3.9)

In [38] Sorensen proves, using the Positive Real Lemma, that the reduced-order transfer function
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Ĝ(s) ∼
[
Â B̂

Ĉ D

]
(3.10)

obtained by taking V, U defined by (3.9) in (1.8) is positive real. We shall now prove that, in
addition, a tangential interpolation condition with interpolation points at the selected spectral
zeros also holds, (as we shall see, only partly) in harmony with Antoulas’ result [4].

Proposition 2. Given a minimal realization (1.2) of G, let {sj }kj=1 ⊂ C+ be k arbitrary (distinct)
spectral zeros of G, and let (3.9) be the projection matrices determined by Sorensen’s algorithm.

Then the reduced-order Ĝ obtained by the projection (1.8) satisfies the right tangential interpo-
lation conditions

Ĝ(sj )zj = G(sj )zj , j = 1, . . . , k, (3.11)

where zj :=Zrj /= 0 for k = 1, 2, . . . , k, and rj is the right eigenvector of R corresponding to
the eigenvalue sj .

In addition, Ĝ satisfies the left tangential interpolation condition

zT
j Ĝ(−sj ) = zT

j G(−sj ) (3.12)

for each j = 1, 2, . . . , k such that (−sj Ik − Â) is invertible. In particular, if (3.10) is a minimal
realization, (3.12) holds for all j = 1, 2, . . . , k.

Proof. We begin by verifying the interpolation condition (3.11). To this end, we use (1.8) and
(3.9) to obtain

Ĝ(sj )zj = Ĉ(sj Ik − Â)−1B̂zj + Dzj

= CX(Y T(sj In − A)X)−1Y TBzj + Dzj (3.13)

for j = 1, 2, . . . , k. In fact, since Ĝ is positive real, Â has all its eigenvalues in C−, and therefore
sj Ik − Â is invertible. Moreover, since Y TX = Qy�2Qx and QT

yQy = Ik = QxQ
T
x ,

sj Ik − Â = �−1QT
y Y T(sj In − A)XQT

x�−1,

and hence Y T(sj In − A)X is also invertible. From the first block equation in (3.2) we obtain, for
j = 1, 2, . . . , k,

(sj In − A)Xrj = Bzj , (3.14)

where rj the right eigenvector of R corresponding to the eigenvalue sj and zj :=Zrj . Since
sj ∈ C+ and A has all its eigenvalues in the left half plane, (sj In − A) is invertible, and hence

Xrj = (sj In − A)−1Bzj . (3.15)

Moreover, Y T(sj In − A)Xrj = Y TBzj ; i.e.,

(Y T(sj In − A)X)−1Y TBzj = rj ,

which inserted into (3.13) yields

Ĝ(sj )zj = CXrj + Dzj , j = 1, 2, . . . , k.

In view if of (3.15), this is the same as (3.11). Clearly, zj /= 0, because otherwise, by (3.15),
Xrj = 0, which would contradict the fact that X has full rank (Lemma 1).
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For the second statement, first note that AT cannot have an eigenvalue in −sj , because then
there would be a cancellation in the spectral factor W in (1.5) so that deg W < n. This would
imply that deg G < n, which contradicts the assumption that (1.2) is a minimal realization. Hence
(−sj In − AT) is invertible. For the same reason, (−sj In − ÂT) is invertible if (3.10) is minimal.
Given that (−sj In − ÂT) is invertible, the second statement can be proven analogously as above.
To this end, we form

zT
j Ĝ(−sj ) = zT

j CX(Y T(−sj In − A)X)−1Y TB + zT
j D. (3.16)

From the second block equation in (3.2) we have

(−sj In − AT)Y rj = CTzj . (3.17)

Since (−sj In − AT) is invertible,

Yrj = (−sj In − AT)−1CTzj . (3.18)

Moreover, XT(−sj In − AT)Y rj = XTCTzj ; i.e.,

zT
j CX(Y T(−sj In − A)X)−1 = rT

j ,

which inserted into (3.16), together with (3.18), yields (3.12). �

Consequently, in the scalar case, the Antoulas–Sorensen reduced-order transfer function Ĝ

interpolates in the unstable spectral zeros. If the reduced-order realization (3.10) is minimal, it
also interpolates in the stable spectral zeros. The minimality of (3.10) is important, so we pause
to consider some consequences of this.

A basic question, raised by Antoulas in [4], is when a rational function G satisfying both the
interpolation conditions

G(sj ) = wj , j = 1, 2, . . . , k

and the corresponding “mirror-image” interpolation conditions

G(−s̄j ) = −w̄j , j = 1, 2, . . . , k

is positive real. In [4] it is claimed that all minimum-degree interpolants are positive real [4, Lemma
3.1]. This is not correct. A simple first-order counterexample is obtained by taking (s1, w1) =
(1, 1). A function satisfying both G(1) = 1 and G(−1) = −1 cannot be of degree zero, so the
claim in [4, Lemma 3.1] is that any degree-one function satisfying both G(1) = 1 and G(−1) =
−1 is positive real. A counterexample is G(s) = (1 − 2s)/(s − 2), which is not even analytic in
C+, let alone positive real.

There could be a mistake in transferring the statement of Lemma 3.1 in [4] from that in Theorem
4.2 in the previous paper [5], co-authored by the same author, where there is one less mirror-image
interpolation condition. This is more natural, since, in general, 2k − 1 linear equations are required
to determine a rational function of degree k − 1.

However, the statement of Theorem 4.2 in [5] is also incorrect. In fact, transferred into the
setting of positive real functions in the right half plane, this theorem implies the following: given
(sj , wj ), j = 1, . . . , k, such that the Pick matrix

P̃ :=
[
wi + w̄j

si + s̄j

]k

i,j=1

is positive definite, there exists a unique rational function f of degree less or equal to k − 1 such
that f (sj ) = wj , j = 1, . . . , k and f (−s̄j ) = −w̄j , j = 1, . . . , k − 1, and this rational function
is positive real.
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It is true that there exists a positive real function f of degree � k − 1 which satisfies f (sj ) =
wj , j = 1, . . . , k. If P̃ is positive definite, all such solutions are parameterized by Theorem 4.
However, there does not necessarily exist an interpolant of degree at most k − 1 which also
satisfies the mirror interpolation conditions. In fact, the following is a simple counterexample. If
wj = 1 for j = 1, . . . , k, there is a unique function of degree at most k − 1 satisfying G(sj ) = wj

for j = 1, 2, . . . , k, namely G ≡ 1. However, this function does not satisfy the mirror condi-
tions G(−s̄j ) = −1, j = 1, 2, . . . , k − 1. Hence any function satisfying the 2k − 1 interpolation
conditions must have a degree no smaller than k.

The following numerical example further elucidates this point.

Example 3. Consider the second-order positive real transfer function

G(s) = 6s2 + 22s + 9

6s2 + 15s + 16
, (3.19)

for which

A =
[

0 1
− 8

3 − 5
2

]
, B =

[
0
1

]
, C = [− 7

6
7
6

]
, D = 1

is a minimal realization, and s = ±1 and s = ±2 are the spectral zeros.
First, we compute the first-order transfer function Ĝ with the stable spectral zero at s1 = −2.

The corresponding solution of (3.3) is

X =
[−0.0266
−0.0533

]
, Y =

[
0.6887
0.6524

]
, R = 2,

which, by (3.9), yields

V =
[−0.1156
−0.2312

]
, U =

[−2.9890
−2.8316

]
.

Then from (1.8), we obtain

(Â, B̂, Ĉ, D) = (−1.8182, −2.8316, −0.1348, 1),

which clearly is both observable and reachable and hence minimal. The reduced-degree function
Ĝ is positive real, and both the interpolation conditions Ĝ(−2) = G(−2) and Ĝ(2) = G(2) hold.

Next, we compute the first-order transfer function Ĝ with the stable spectral zero at s1 = −1.
Then

X =
[−0.0343
−0.0343

]
, Y =

[
0.8801
0.4224

]
, R = 1,

and

V =
[−0.1622
−0.1622

]
, U =

[−4.1667
−2.0000

]
.

This yields

(Â, B̂, Ĉ, D) = (−1, −2, 0, 1),

which is not observable and hence not minimal. The reduced-degree transfer function is

Ĝ ≡ 1,

which is clearly positive real, and satisfies Ĝ(1) = G(1) = 1, but not Ĝ(−1) = G(−1).
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4. Analytic interpolation with degree constraint

In [38] Sorensen verifies the stability and passivity of the reduced-order model of Section 3
using the Positive Real Lemma. However, the reason why this particular choice of interpolation
points lead to a positive real reduced-order model is no coincidence. In fact, in the next section
we shall demonstrate that the Antoulas–Sorensen solution can be interpreted in the context of
the theory of analytic interpolation with degree constraint developed by Byrnes, Georgiou and
Lindquist.

To this end, we now restate some basic results from this theory in the continuous-time setting.
For consistency with the setting in [4] we confine the initial analysis real, scalar interpolants,
although, strictly speaking, this is not necessary. Given a set of self-conjugate pairs of complex
numbers

{(sj , wj ) : sj ∈ C+}kj=0,
si /= sj if i /= j, s0 real,
wi = w̄j if si = s̄j ,

(4.1)

find all functions f with real coefficients that satisfy the following three conditions:

(1) Positive real property: the function f is analytic in C+, and

Ref (s) � 0, ∀s ∈ C+. (4.2)

(2) Interpolation conditions:

f (sj ) = wj , j = 0, 1, . . . , k. (4.3)

(3) Degree constraint: f is real rational and

deg f � k. (4.4)

A necessary and sufficient condition for the existence of f satisfying these three conditions is
the positive semidefiniteness of the Pick matrix

P :=
[
wi + w̄j

si + s̄j

]k

i,j=0
. (4.5)

Theorem 4. Suppose that the Pick matrix (4.5) constructed from the interpolation data (4.1) is
positive definite. Let {λj }kj=1 ⊂ C− be an arbitrary self-conjugate set of k spectral zeros, and

define σ(s) := ∏k
j=1(s − λj ). Then, there exists a unique (modulo sign) pair of real Hurwitz

polynomials (α, β) of degree k such that

(i) f :=β/α is positive real,
(ii) f (sj ) = wj , j = 0, 1, . . . , k, and
(iii) α(s)β(−s) + α(−s)β(s) = σ(s)σ (−s).

Conversely, any pair of real polynomials (α, β) of degree k satisfying (i) and (ii) determines, via
(iii), a unique (modulo sign) Hurwitz polynomial σ of degree k, and the map σ 
→ (α, β) is a
diffeomorphism. Moreover, setting

�(iω) :=
∣∣∣∣σ(iω)

τ(iω)

∣∣∣∣2 , where τ(s) :=
k∏

j=1

(s + sj ) (4.6)
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and

I�(f ) := 1

2π

∫ ∞

−∞
�(iω) log[f (iω) + f (−iω)] dω

ω2 + s2
0

, (4.7)

the optimization problem

max I�(f ) subject to f (sj ) = wj , j = 0, 1, . . . , k, (4.8)

where the maximization is over all positive real functions, has a unique solution f that is precisely
the unique f satisfying the conditions (i), (ii) and (iii). Finally, if (α, β) is the corresponding
pair of polynomials,

Q(iω) :=|a(iω)|2, where a(s) = α(s)

τ (s)
, (4.9)

is the unique solution to the convex optimization problem

min
Q∈Q J�(Q), (4.10)

where

J�(Q) := 1

2π

∫ ∞

−∞
{[w(iω) + w(−iω)]Q(iω) − �(iω) log Q(iω)} dω

ω2 + s2
0

, (4.11)

Q is the class of all rational functions of the form (4.9) with α free to vary over all stable
polynomials of degree at most k, and w is any proper, stable (not necessarily positive real) real,
rational function satisfying the interpolation condition (ii).

The statements of the theorem have been proven in the discrete time setting in various places:
the first part in [8,25] (also, see [12,10], and, as for existence only, the early work [22,23,24]), the
diffeomorphism result in [15], and the optimization results (in various versions) in [13,11,8,14,10].
Transferring this results to the continuous-time setting is quite straight-forward.

Proof. The results can be transferred from the discrete-time setting to the continuous-time setting
via the Möbius transformation

s ∈ C+ 
→ z = s0 − s

s0 + s
∈ D (4.12)

and its inverse

z ∈ D 
→ s = s0
1 − z

1 + z
∈ C+. (4.13)

In particular, the unit circle {z = eiθ |θ ∈ [−π, π ]} is mapped to the imaginary axis {s = iω|ω ∈
(−∞, ∞)}, and

dθ = −2s0

ω2 + s2
0

dω. (4.14)

Transforming (4.6) via the Möbius transformation (4.13), we obtain

�̂(z) :=�

(
s0

1 − z

1 + z

)
= σ̂ (z)σ̂ (z−1)

τ̂ (z)τ̂ (z−1)
,

where �̂ is also a rational function with numerator polynomial σ̂ and denominator polynomial τ̂

that are both Hurwitz polynomials. Moreover, define the sequence
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zj := s0 − sj

s0 + sj
, j = 0, 1, . . . , k.

Then, it was shown in [8,10] that there is a unique (modulo sign) pair of Schur polynomials (α̂, β̂)

of degree k such that

(i)′ f̂ := β̂/α̂ is positive real,
(ii)′ f̂ (sj ) = wj , j = 0, 1, . . . , k, and
(iii)′ α̂(z)β̂(z−1) + β̂(z)α̂(z−1) = σ̂ (z)σ̂ (z−1),

and that this f̂ is the unique solution of the optimization problem

max Î�̂(f̂ ) subject to f̂ (zj ) = wj , j = 0, 1, . . . , k, (4.15)

where

Î�̂(f̂ ) := 1

2π

∫ π

−π

�̂(eiθ ) log[f̂ (eiθ ) + f̂ (e−iθ )]dθ. (4.16)

It was also shown in [8,9] that this optimization problem has a dual, namely the problem to
minimize the strictly convex functional

Ĵ�̂(Q̂) := 1

2π

∫ π

−π

{[ŵ(eiθ ) + ŵ(e−iθ )]Q̂(eiθ ) − �̂(eiθ ) log Q̂(eiθ )}dθ, (4.17)

where ŵ is any stable (not necessarily positive real) real function satisfying the interpolation
condition (ii)′, over the class of rational functions

Q̂ :=
{
Q̂|Q̂(eiθ ) = |â(eiθ )|2, â(z) = α̂(z)

τ̂ (z)
, α̂ Schur polynomial of degree k

}
.

It was also shown that the optimal Q̂ corresponds to α̂ in (i)′–(iii)′ above.
Now, via the Möbius transformation (4.12), (i)–(iii) is seen to be equivalent to (i)′–(iii)′, and,

also appealing to (4.14), the two discrete-time optimization problems are seen to be equivalent to
the two continuous-time ones in the statement of the theorem. �

This theorem yields a complete smooth parameterization of the whole class of positive real
interpolants of degree at most n, where tuning can be done via the k spectral zeros. For each
choice of spectral zeros, the interpolant f can be obtained via convex optimization [8] or non-
linear equations [6]. In particular, if we choose the k spectral zeros at the mirror images of the
interpolation points, as suggested by Antoulas and Sorensen,

λj = −s̄j , j = 1, . . . , k, (4.18)

then � ≡ 1, and the interpolant maximizes the entropy gain

I1(f ) := 1

2π

∫ ∞

−∞
log[f (iω) + f (−iω)] dω

ω2 + s2
0

. (4.19)

This is the central or maximum entropy solution, the determination of which can be reduced
to a system of linear equations; also see [34].

Corollary 5. Let P be the Pick matrix (4.5), where s0 is real, let τ(s) be the Hurwitz polynomial
defined in (4.6), and set
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�(s) :=
[

1,
s + s0

s + s1
,
s + s0

s + s2
, . . . ,

s + s0

s + sk

]
.

Moreover, suppose that P > 0. Then the maximum entropy solution is

f (s) = �(s)b

�(s)a
,

where a := (a0, a1, . . . , ak)
T is given by

a = 1√
2s0�(s0)P −1�(s0)∗

P −1�(s0)
∗, (4.20)

and b := (b0, b1, . . . , bk)
T is uniquely determined via the linear system of equations

a(s)b(−s) + a(−s)b(s) = 1 (4.21)

with a(s) :=�(s)a and b(s) :=�(s)b. Equivalently,

f (s) = β(s)

α(s)
,

where α(s) and β(s) are real Hurwitz polynomials such that a(s) = α(s)/τ(s), b(s) = β(s)/τ(s),

and

α(s)β(−s) + α(−s)β(s) = τ(s)τ (−s). (4.22)

In particular,

2Re{f (iω)} = 2s0�(s0)P
−1�(s0)

∗

�(s0)P −1�∗(iω)�(iω)P −1�(s0)∗
, (4.23)

where �∗(s) = �(−s̄)
T

for functions, and where M∗ = M
T; i.e., the Hermitian transpose, for

any matrix M.

Proof. From (4.9) and (4.11) we obtain

J1(Q) := 1

2π

∫ ∞

−∞
a(iω)∗[w(iω) + w(iω)∗]a(iω)

dω

ω2 + s2
0

− 1

2π

∫ ∞

−∞
2 log |a(iω)| dω

ω2 + s2
0

. (4.24)

Since a(s) :=�(s)a, the first term in (4.24) can written a∗Pa, where

P := 1

2π

∫ ∞

−∞
�(iω)∗[w(iω) + w(iω)∗]�(iω)

dω

ω2 + s2
0

, (4.25)

which is actually the Pick matrix (4.5). To see this, first note that P = Pw + P ∗
w, where Pw is

the matrix obtained with only the term w(iω) within the square brackets in (4.25). Clearly, by
Cauchy’s Theorem,

(Pw)j
 = 1

2π i

∮
1

s − sj

w(s)

s + s̄

ds,

where we integrate counter-clockwise along a closed contour consisting of the interval (−ir, ir)
and the half-circle in C+ with center zero and radius r that encircles the point s = sj . In fact,
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s 
→ w(s)/(s + s̄
) is analytic inside the contour, and the integral along the half-circle tends to
zero as r → ∞. However, by Cauchy’s integral formula, this equals

(Pw)j
 = wj

sj + s̄

,

which added to P ∗
w establishes that (4.25) is the Pick matrix (4.5).

To evaluate the second term in (4.24), we first observe that, since the real, rational function a

is outer in C+, the real, rational function â, obtained from a via the Möbius transform (4.12), is
outer in D. Therefore, by Jensen’s formula [1, p. 184],

1

2π

∫ π

−π

log |â(eiθ )|dθ = log |â(0)|,
which, via the inverse Möbius transform (4.13), can be written

1

2π

∫ ∞

−∞
log |a(iω)| 2s0dω

ω2 + s2
0

= log |a(s0)|.

Consequently, minimizing (4.24) is equivalent to minimizing

J1(a) = a∗Pa − 1

2s0
log a(s0)

∗a(s0) (4.26)

over all a ∈ Rk+1. Since P > 0 and a(s0) = �(s0)a, the minimizer is given by

a = 1

2s0a(s0)
P −1�(s0)

∗.

Therefore, a(s0) = √�(s0)P −1�(s0)∗/2s0, and hence (4.20) follows. By Theorem 4, the nu-
merator b(s) has the form �(s)b. Moreover, since a(s) is a Hurwitz polynomial, (4.21) is a
linear systems of equations with unique solution. Finally, (4.23) is obtained by inserting (4.20) in
2Re{f (iω)} = 1/|a(iω)|2. �

Theorem 4 can be generalized to tangential Nevanlinna–Pick interpolation, as established in
[30]. Hence, in view of Proposition 2, the theory of analytic interpolation with degree constraint
could also be applied in the multivariable case (m > 1). However, for clarity of presentation, in
the sequel we will restrict our attention to the singe-input/single-output case (m = 1).

5. The Antoulas–Sorensen method as the maximum entropy solution

In the Antoulas–Sorensen approach, one interpolates not only at the unstable spectral zeros
s1, s2, . . . , sk but also at s0 :=∞. More specifically,

Ĝ(∞) = D = G(∞). (5.1)

However, s0 :=∞ lies on the boundary of the analyticity region C+ – a situation to which Corollary
5 and Theorem 4 do not immediately apply. Therefore, next we demonstrate that choosing the
interpolation point s0 to be a positive number, sufficiently large for the Pick matrix (4.5) to be
positive definite, determining the corresponding central solution, and then taking the limit as
s0 → ∞, results precisely in the Antoulas–Sorensen solution.

Theorem 6. Let G be a scalar, positive real function with spectral zeros in {sj }kj=1 and let Ĝ be
the reduced order interpolant constructed by the method of Antoulas–Sorensen. Set wj :=G(sj )
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and w0 :=D = G(∞). For s0 > 0 sufficiently large, let fs0 be the central solution corresponding
to the interpolation conditions

fs0(s0) = w0,

fs0(sj ) = wj , j = 1, . . . , k;
i.e., the positive real function maximizing the entropy functional (4.19) subject to the interpolation
constraints. Then, as s0 → ∞, fs0 → Ĝ pointwise except in the poles of Ĝ. Moreover, setting

� :=

⎡⎢⎢⎢⎣
s1

s2
. . .

sk

⎤⎥⎥⎥⎦ , P̃ =
[
wj + w̄


sj + s̄


]k

j,
=1
,

w := (w1 − w0, w2 − w0, . . . , wk − w0)
T and h := (1, 1, . . . , 1)T ∈ Rk, we have

Ĝ(s) = Ĉ(sI − Â)−1B̂ + D (5.2)

with (Â, B̂, Ĉ) given by

Â = −� + hĈ, (5.3)

B̂ = 2w0(QĈ∗ + h), (5.4)

Ĉ = (P̃ −1w)T, (5.5)

where Â has all it eigenvalues in the open left half plane, and where Q is the unique solution of
the Lyapunov equation

ÂQ + QÂ∗ + hh∗ = 0. (5.6)

Proof. By Corollary 5,

�s0(s) :=fs0(s) + fs0(−s) = 1

as0(s)as0(−s)
= τ(s)τ (−s)

αs0(s)αs0(−s)
, (5.7)

where fs0(s), as0(s) and αs0(s) are as defined in Corollary 5 with an subscript added to denote
the dependence on s0.

We begin by showing that as0(s) tends to a limit a(s) as s0 → ∞ pointwise, except at the poles
of a(s), and that consequently αs0(s) tends to a limit α(s). To this end, we take the inverse of the
Pick matrix (4.5) to obtain

P −1 = adjP

det P
= diag(det P̃ , 0, . . . , 0) + O(s−1

0 )

w0
s0

det P̃ + O(s−2
0 )

= s0

w0
diag(1, 0, . . . , 0) + O(1),

from which it follows that

lim
s0→∞

�(s0)P
−1�(s0)

∗

2s0
= 1

2w0
.

Moreover, since

�(s) = [1 hT
]
⎡⎢⎢⎢⎢⎣

s+s0
s+s0

s+s0
s+s1

. . .
s+s0
s+sk

⎤⎥⎥⎥⎥⎦ ,
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we have

�(s)P −1�(s0)
∗

2s0
= [1 hT]

([
(s + s
)(wj + w̄
)(s0 + s̄j )

(s + s0)(sj + s̄
)

]k

j,
=0

)−1 [
1
h

]
.

Therefore taking the limit, we obtain, with w̃ := (w1 + w0, w2 + w0, . . . , wk + w0)
T,

lim
s0→∞

�(s)P −1�(s0)
∗

2s0
= [1 hT]

[
2w0 0
w̃ P̃ (sI + �)

]−1 [
1
h

]
= [1 hT]

[
(2w0)

−1 0
−(2w0)

−1(sI + �)−1P̃ −1w̃ (sI + �)−1P̃ −1

] [
1
h

]
= 1

2w0
[1 − hT(sI + �)−1P̃ −1w].

Transposing this, it follows from Corollary 5 that

a(s) = lim
s0→∞ as0(s) = 1√

2w0
[1 − Ĉ(sI + �)−1h] = α(s)

τ (s)
, (5.8)

where Ĉ is given by (5.5) and α(s) = lims0→∞ αs0(s).
For each s0, all the roots of αs0(s) lie in the open left half plane. We want to show that the

same is true for the limit polynomial α(s); i.e., that α(s) has no root on the imaginary axis. To
this end, first observe that, in view of (4.22),

αs0(s)βs0(−s) + αs0(−s)βs0(s) = τ(s)τ (−s)

has no zeros on the imaginary axis, for τ(s) has none. Therefore, by continuity, nor does

α(s)βs0(−s) + α(−s)βs0(s)

for sufficiently large s0. However, then α(s) cannot have a root on the imaginary axis, because,
since α(s) is real, α(−iω) = 0 whenever α(iω) = 0. Consequently, the limit polynomial α(s)

is a Hurwitz polynomial, as claimed. Consequently, given this α(s), the corresponding equation
(4.22) has a unique solution β(s), which can be seen to be Hurwitz in the same way. Moreover, fs0

tends to f (s) :=β(s)/α(s) pointwise as s0 → ∞ except in the poles of f . Since fs0(sj ) = wj ,
j = 1, 2, . . . , k, for each s0, then f (sj ) = wj , j = 1, 2, . . . , k. Moreover, f (∞) = D.

Next we demonstrate that

f (s) = Ĉ(sI − Â)−1B̂ + D, (5.9)

where Â, B̂, Ĉ are given by (5.3)–(5.5). To this end, note that f has all its poles and zeros in the
open left half plane and

f (s) + f (−s) = 1

a(s)a(−s)
.

Hence f is positive real. From (5.8) we have

1

a(s)
= √2w0[1 + Ĉ(sI − Â)−1h], (5.10)

and consequently (5.9) follows from the Positive-Real-Lemma equations [2,20]. Indeed, since
α(s) is a Hurwitz polynomial, Â has all its eigenvalues in the open left half plane.

It remains to prove that the limit interpolant f is indeed equal to the Antoulas–Sorensen solution
Ĝ. The rational functions f and Ĝ satisfy the same interpolation conditions. More specifically,
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(Ĝ − f )(∞) = 0, (Ĝ − f )(sj ) = 0, j = 1, 2, . . . , k; (5.11)

i.e., Ĝ − f has the k + 1 zeros s1, . . . , sk and ∞. Moreover, the spectral densities Ĝ(s) + Ĝ(−s)

and f (s) + f (−s) can have zeros only at the spectral zeros {±s1, ±s2, . . . ,±sk}.
Clearly, m := deg f � k and m̂ := deg Ĝ � k. To show that f ≡ Ĝ, we use the fact that any

rational function of degree � 
 with more than 
 zeros must be identically equal to zero. Consider
two cases. First, suppose that deg Ĝ + deg f � k. Then, in view of (5.11), Ĝ − f is identically
zero. Next, suppose that deg Ĝ + deg f = m̂ + m = k + p > k. Since f (s) = −f (−s) for m

points in {sj }kj=1, and Ĝ(s) = −Ĝ(−s) for m̂ points in {sj }kj=1, there are p points in {sj }kj=1 for

which f (−s) = Ĝ(−s). Therefore, f − Ĝ has k + 1 + p zeros. But, since it is only of degree
k + p, Ĝ ≡ f . �

Example 7. Consider a positive real function

G(s) = 1/3s + 1

(s + 1)(s + 2)
+ 1

with stable spectral zeros

λ1 = −√
3, λ2 = −√

2.

This is the transfer function of second-order passive system with a minimal realization

A =
[

0 1
−2 −3

]
, B =

[
0
1

]
, C = [1 1/3], D = 1.

Applying the Antoulas–Sorensen method to approximate this system by a first-order passive
system having a transfer function Ĝ with spectral zeros ±√

3 yields

Ĝ(s) = 2s + 4

2s + 3
, (5.12)

which clearly satisfies the interpolation conditions

Ĝ(∞) = G(∞), Ĝ(±√
3) = G(±√

3).

On the other hand, the maximum entropy solution fME with interpolation conditions

fME(∞) = G(∞), fME(
√

3) = G(
√

3)

can be determined as in Theorem 6. In fact, w0 = 1, w = (2
√

3 − 3)/3, P̃ = 2/3, and � = √
3,

and hence Ĉ = √
3 − 3/2 and Â = −3/2. Solving the Lyapunov equation (5.6), we have Q =

1/3, and hence B̂ = 2
√

3/3 + 1. Inserting this into (5.9), we have

fME(s) = 2s + 4

2s + 3
, (5.13)

which is the same as (5.12).

Note that the purpose of this example is not to provide an alternative algorithm for the Antoulas–
Sorensen method but to illustrate Theorem 6.

6. Tuning both interpolation points and spectral zeros

We have thus established that the reduced-order model computed by the Antoulas–Sorensen
method coincides (in the limit) with the central (maximum-entropy) Nevanlinna-Pick interpolant
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with interpolation points in the mirror-image of the selected spectral zeros. However, the central
solution is quite special, and an important question is whether better approximants can be obtained
by using the full power of the theory of analytic interpolation with degree constraints.

Let us first stress that we do not need to strictly enforce the interpolation condition f (∞) = D.
For all practical purposes we may exchange this condition with f (s0) = D, where s0 is a
very large real number. For the bounded real case and for strictly proper interpolants, we
have an alternative strategy to avoid interpolation at infinity, as we shall discuss in detail in
Section 7.

In the two examples presented below, we have used the solver proposed in [6]. Although the
code can be rewritten for the continuous-time case studied in this paper, the formulation in [6]
is for the discrete-time case, and hence the appropriate linear fractional transformation has been
applied.

A key point in applying this algorithm for tuning is the appropriate choice of spectral zeros
and interpolation points. In the examples below we have used the following criteria. The spectral
zeros are placed at frequencies where the original spectrum has valleys, the deeper the valley the
closer to the imaginary axis. The interpolation points are selected close to the imaginary axis in
regions where god fit is required. The closer interpolation points are to the imaginary axis, the
more accurate is the fit, but it is also more localized to a smaller part of the spectrum.

All of this requires manual tuning of the type characteristic for engineering practice. An
alternative way would be to use the procedure introduced in [29]. Instead of contractive functions,
considered there, we will here describe briefly the analogous procedure for positive real functions.
Given a (rational) function f , the idea is to find a function � such that f is precisely the unique
minimizer of

I�(g) subject to g(sj ) = wj , j = 0, 1, . . . , k,

where wj = f (sj ) are values of the given function. We refer to this as the inverse problem of
analytic interpolation. Such a function � exists, even if deg f > n, but in general it is not of the
form ⎧⎨⎩�|�(iω) =

∣∣∣∣σ(iω)

τ(iω)

∣∣∣∣2 , where deg σ = k, τ (s) =
k∏

j=1

(s + sj )

⎫⎬⎭ . (6.1)

Instead, � is in general a rational function of higher order. Given such a �, which can be computed
using the theory developed in [26], the spectral zeros of the reduced order system can be selected
as the zeros of �̂, where �̂ is the function in the class (6.1) closest to �. More precisely, �̂ is the
minimizer in the class (6.1) of∥∥∥∥∥1 − �̂(iω)

�(iω)

∥∥∥∥∥∞
.

This can be written as a convex problem with infinitely many linear constraints and can be solved
by method of convex optimization; see, e.g., [7]. The model-reduced interpolant is then taken to
be the unique minimizer f̂ of

I�̂(g) subject to g(sj ) = wj , j = 0, 1, . . . , k.

Even though this is a systematic procedure for selecting spectral zeros, there is presently no
quantitative bounds in the positive real case on the error between the original system and the
degree reduced system. This is a subject for further research.
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Example 8. Consider the benchmark problem to approximate

G(s) = s5 + 3s4 + 6s3 + 9s2 + 7s + 3

s5 + 7s4 + 14s3 + 21s2 + 23s + 7
(6.2)

taken from [3, p. 359] and [38]. The stable spectral zeros of G are

λ1 = −1.8355, λ2 = −1.3018, λ3 = −0.7943, λ4,5 = −1.833 ± 1.5430i.

Choosing the interpolation points s1 = −λ1, s2 = −λ2 and s3 = −λ3, the Antoulas–Sorensen
method yields a third-order passive system with transfer function

Ĝ(s) = s3 + 2.553s2 + 2.906s + 1.173

s3 + 6.681s2 + 8.459s + 3.07
, (6.3)

which is positive real and has spectral zeros also in λ1, λ2, λ3.
Next, using the freedom in the choice of the interpolation points and spectral zeros, offered by

the theory of analytic interpolation with degree constraint, a system of degree three is computed.
We specify interpolation points at1

s0 ≈ ∞, s1,2 = 0.2038 ± 0.9029i, s3 = 0.1010,

and the corresponding interpolation values at

wj = G(sj ), j = 0, 1, 2, 3.

Then, choosing three stable spectral zeros at

λ1,2 = −0.4150 ± 0.4596i, λ3 = −3,

we obtain the positive real function

f (s) = 1.002s3 + 2.84s2 + 1.927s + 0.8978

s3 + 7.298s2 + 6.084s + 2.099
. (6.4)

In Fig. 6.1, the singular value of the original system (6.2) of degree five is plotted together with
the third-order systems with transfer functions (6.3) and (6.4), respectively. For comparison, we
also include the corresponding third-order model obtained by stochastically balanced truncation.
One can see that the reduced-order model computed by the Antoulas–Sorensen method is close
to the original one at high frequencies. Instead, by an appropriate choice of the interpolation
points and the spectral zeros, the corresponding system (6.4) matches the original one quite well
at both low and high frequencies. The DC gain matching is due to the interpolation point s3 which
is close to the origin, while the matching at high frequencies is guaranteed by the interpolation
condition close to infinity (s0). The modeling of the “valley” has been done by placing the spectral
zeros λ1,2 appropriately. Stochastically balanced truncation gives a good approximation for high
frequencies but not for low frequencies.

7. A large-scale numerical example: CD player model

Next, using a high-order model of a portable CD player taken from [39], we will compare
reduced-order models computed by the Sorensen algorithm and analytic interpolation with degree
constraint. The full-order model, the transfer function of which is denoted by F , is a single-input

1 The point s0 is approximated by a large number to avoid a boundary interpolation condition.
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Fig. 6.1. Singular values of the frequency response of the original system of degree five, together with the third-order
systems computed with the Antoulas–Sorensen method, analytic interpolation with degree constraint, and stochastically
balanced truncation.

single-output, continuous-time, linear time-invariant, and stable model of order 120 and of relative
degree two. We aim at reducing the model order to k = 12, as well as maintaining the stability
and the uniform upper bound ρ = 80 (≈ 38dB) of the gain of F .

The model F can be regarded as a function which is analytic in the right half-plane C+
and maps C+ into ρD. In other words, F is a bounded-real function in continuous-time. To be
consistent with the problem setting in this paper, we will introduce a positive real function G in
continuous-time by a bilinear transformation:

G(s) := ρ − F(s)

ρ + F(s)
.

After computing the positive real reduced-order model Ĝ of G, we will obtain the bounded real
reduced-order model F̂ of F by the inverse transformation

F̂ (s) :=ρ
1 − Ĝ(s)

1 + Ĝ(s)
.

Model reduction by the Antoulas–Sorensen method

We use the algorithm suggested by Sorensen in [38]. This algorithm is based on the Implicitly
Restart Arnoldi (IRA) method [37], and computes automatically the reduced-order system Ĝ

without an explicit computation of all the spectral zeros of G. Following Sorensen, we select
k :=12 spectral zeros of the system G by determining k eigenvalues of the matrix

Cμ := (μE − A)−1(μE + A), (7.1)
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where μ � 0 has to be chosen properly, and A and E are defined by (2.1) in terms of a minimal
realization of the 120th degree positive-real function G.

These eigenvalues can be computed with the Matlab command eigs, which implements the
IRA method, and allows us to select k eigenvalues in various ways; for example, with

• largest or smallest magnitude,
• largest or smallest real part,
• largest or smallest complex part.

Using this algorithm, we have freedom in choosing μ and the criteria of selecting the eigen-
values of (7.1). In this example, we have tried four different scenarios:

(1) μ = 260 and 12 eigenvalues of largest magnitude; see Fig. 7.1.
(2) μ = 20 and 12 eigenvalues of largest magnitude; see Fig. 7.2.
(3) μ = 260 and 6 eigenvalues of largest magnitude and 6 of smallest magnitude; see Fig. 7.3.
(4) μ = 20 and 6 eigenvalues of largest magnitude and 6 of smallest magnitude; see Fig. 7.4.

In Figs. 7.1–7.4, the frequency response of the original bounded real system F is compared
with that of the reduced-order systems F̂ corresponding to the four scenarios. As these figures
show, the frequency responses of the reduced-order models match the original model only in some
frequency bands. This is due to the restriction that interpolation points may only be placed at the
mirror images of the spectral zeros. Moreover, the solution depends crucially on the choice of μ

and on the eigenvalues selection criteria, choices that are highly nontrival as pointed out in [38].
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Fig. 7.1. Scenario 1.
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Fig. 7.2. Scenario 2.

Model reduction by analytic interpolation with degree constraint

Applying the theory of Section 4, we may choose the twelve spectral zeros and interpolation
points arbitrarily. For comparison with the Antoulas–Sorensen method, which requires an inter-
polation condition F(∞) = 0, we impose the same interpolation condition on the reduced-order
system F̂ . Since F has relative degree two, it can be factored as F = F1F2, where F2 is of relative
degree two and F1 is of degree 118. In the present example,

F2 = 1

(s − p)(s − p̄)
, p = −12.2708 + 306.5398i,

where p is a pole of F close to the frequency peak ω = 300 rad/s. Hence we can restate the problem
of reducing the order of F to k = 12 as the problem of determining a 10th order approximant F̂1
of F1 and setting F̂ := F̂1F2.

To reduce the order of F1 with the methods of Section 4, we need 11 interpolation conditions

F̂1(sj ) = F(sj )

F2(sj )
j = 0, . . . , 10,

which we choose at the points

s0 = 199, s1,2 = 10−5 ± 0.1i, s3,4 = 0.2 ± i, s5,6 = 0.01 ± 74i,

s7,8 = 0.01 ± 1.3250 · 104i, s9,10 = 0.005 ± 9.9900 · 104i;
and a uniform upper bound on the gain, which we take to be ρ1 = 3.9811 · 107(≈ 140 dB). In
the family of all such interpolants F̂1, we select the one that has spectral zeros at

λ1,2 = −0.0612 ± 2.3749i, λ3 = −175.0542, λ4 = −351.5899,
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Fig. 7.3. Scenario 3.

λ5,6 = −7.4080 ± 70.4606i, λ7,8 = −570.1525 ± 2.5448 · 104i,

λ9,10 = −1.6436 · 104 ± 7.5527 · 103i.

In Fig. 7.5, the interpolation points and the spectral zeros of F̂ are plotted together with the
reduced-order system F̂ and the original system F . One can see that F̂ matches the peak around
ω = 300 rad/s and that it also matches the original system quite well at high and low frequencies.
Moreover, it matches the ripple around ω = 104 rad/s.

Remark 9. The factorization of the bounded real system F (positive real system G) and the
model reduction of the bounded real system F1 (positive real system G1) is related to another
entropy functional, introduced in [27] in the discrete-time setting, namely∫ ∞

−∞
�(iω) log

⎛⎝1 −
∣∣∣∣∣ F̂ (iω)

F2(iω)

∣∣∣∣∣
2
⎞⎠ dω

s2
0 + ω2

,

which forces the interpolant to satisfy |F̂ | � |F2| on iR and is useful for imposing bounds on the
interpolant. Here we have used it for placing zeros on the unit circle.

Combining the methods

Clearly, for reduced-order models of relatively large order, the appropriate choice of the inter-
polation points and spectral zeros becomes more intricate. To take advantage of the strengths of
the different methods, a possible avenue could be a two-step procedure by which the large-order
system is first reduced by the numerical reliable Sorensen algorithm, described in Section 3, and
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Fig. 7.4. Scenario 4.

then fine-tuned by the more flexible method of Section 4. In the last step, interpolation points
s :={s1, s2, . . . , sk} and spectral zeros � :={λ1, λ2, . . . , λk} could be chosen so as to minimize

min
�,s

‖G − f (�, s)‖, (7.2)

in line with [19,35], or

min
�,s

‖G + G∗ − f (�, s) − f ∗(�, s)‖, (7.3)

where G∗(s) :=G(−s), and ‖ · ‖ denotes some suitable norm. Such minimization problems are
in general nonconvex. However, local minimizers may be found numerically starting at the
interpolation points and the spectral zeros obtained in the first step.

We believe that this procedure can give reasonable results in most examples and that it provides
insight into the question posed by Sorensen in [38], namely what is the best choice of interpolation
points. This is the topic of a future study.

8. Conclusions

Over the last decades a quite complete and comprehensive theory of analytic interpolation with
degree constraint has been developed. Given a set of n + 1 interpolation points and n + 1 interpo-
lation values, it provides a complete smooth parameterization of all positive-real interpolants of
degree at most n in terms of spectral zeros, as well as a pair of dual convex optimization problems
for determining any such interpolant. In particular, if the spectral zeros are chosen in the mirror
image of the interpolation points, the problem is linear. The corresponding solution is the central
(maximum-entropy) solution.
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Fig. 7.5. Left: singular values of the frequency response of the original system F and the reduced-order system F̂ . Right:
spectral zeros and the inter-polation points.

We have demonstrated that the passivity-preserving model reduction method proposed by
Antoulas and Sorensen can be identified with the central solution. By applying the theory of
analytic interpolation with degree constraint, we have demonstrated that it is possible to obtain
better approximants by choosing interpolation points that are placed more strategically; i.e., not
restricted to the mirror image of the spectral zeros.

It should be noted, however, that the implementation of the central solution provided by
Sorensen’s algorithm, in which spectral zeros do not have to be determined explicitly, is nu-
merically very efficient, and therefore, for very large problems, preferable even to stochastically
balanced truncation, for which there are H∞ bounds.

Except for the central solution, determining positive-real interpolants with degree constant is
a nonlinear problem, and numerically quite a bit more demanding. Therefore, we propose that the
high-order model first be reduced by the Sorensen algorithm, and then fine-tuned by moving the
interpolation points and spectral zeros to improve the approximation.

In the multi-variable case, the Sorensen algorithm interpolates tangentially in the mirror images
of the selected spectral zeros. A generalization of the theory of analytic interpolation with degree
constraint to this case is presented in [30] and could be applied to this situation.
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