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Abstract— Passivity-preserving model reduction for linear
time-invariant systems amounts to approximating a positive-
real rational transfer function with one of lower degree.
Recently Antoulas and Sorensen have proposed such a model-
reduction method based on Krylov projections. The method is
based on an observation by Antoulas (in the single-input/single-
output case) that if the approximant is preserving a subset of the
spectral zeros and takes the same values as the original transfer
function in the mirror points of the preserved spectral zeros,
then the approximant is also positive real. However, this turns
out to be a special solution in the theory of analytic interpolation
with degree constraint developed by Byrnes, Georgiou and
Lindquist, namely the maximum-entropy (central) solution.
By tuning the interpolation points and the spectral zeros, as
prescribed by this theory, one is able to obtain considerably
better reduced-order models.

I. I NTRODUCTION

Consider a time-invariant, continuous-time linear system

u−→ G(s)
y−→

with a real transfer function

G(s) = C(sI − A)−1B + D ∼
[

A B

C D

]

(1)

of McMillan degreen such that all eigenvalues ofA lie
in the open left half of the complex plane,C−, (A, B)
is reachable,(C, A) is observable andD + D′ is positive
definite. Moreover suppose that the dimension of the inputu
equals the dimensionm of the outputy and that the system
is passive in the sense that

∫ T

0

u(t)′y(t)dt ≥ 0

for all T > 0 and all square-integrable inputsu. In physical
terms, such a system produces no energy internally. Passive
systems are important in many applications, such as, for
example, in VLSI design and stochastic systems theory.

To say that the system is passive is to say that them×m
transfer functionG(s) is positive real; i.e.,

G(iω) + G(−iω)′ ≥ 0, ω ∈ R. (2)

ThenG(s)+G(−s)′ can be interpreted as a spectral density,
and there are rational functionsW (s), calledspectral factors,
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such that

G(s) + G(−s)′ = W (s)W (−s)′. (3)

Therefore, the zeros ofG(s)+G(−s)′ are called thespectral
zeros of G(s). Since

G(s) + G(−s)′ ∼





A B
−A′ −C′

C B′ D + D′



 ,

the spectral zeros are precisely theλ for which the matrix
A− λE is singular, where

A =





A B
−A′ −C′

C B′ D + D′



 , E =





I
I

0



 . (4)

Consequently, the spectral zeros are the generalized eigen-
values of(A, E).

The problem considered in this paper is to find a passive
reduced-order system that approximates the original system
and whose transfer function

Ĝ(s) = Ĉ(sI − Â)−1B̂ + D ∼
[

Â B̂

Ĉ D

]

(5)

has a lower degreek < n but retains the positive-real
property.

Such model reduction is often performed by some projec-
tion method that determines matricesU, V ∈ Rn×k such that
U ′V = Ik and

Â = U ′AV, B̂ = U ′B, Ĉ = CV. (6)

The most popular such model reductition methods preserving
positive-realness isstochastically balanced truncation (or
positive-real balanced truncation), originally proposed by
Desai and Pal [13] in the context of stochastic realization
theory. Stochastically balanced model reduction has the
advantage that it comes with easily computed bounds; see,
e.g., [22].

In this paper, we shall consider another class of model
reduction procedures based on interpolation, in which the
transfer functionĜ of the reduced-order system satisfies the
interpolation conditions

Ĝ(sj) = G(sj), j = 1, 2, . . . , k, (7)

for some suitable pointss1, s2, . . . , sk in the open right half
C+ of the complex plane. In the scalar case,m = 1, Antoulas
[1] has recently observed that, if the interpolation points
s1, s2, . . . , sk are mirror images of stable spectral zeros of
G, thenĜ is positive real. Sorensen [28] has developed an
efficient algorithm based on Antoulas’ idea [1] that does not



explicitly use spectral zeros but also works in the casem >
1. In [15] we demonstrated that Sorensen’s solution amounts
to tangential interpolation rather than matricial interpolation
involving the condition (7).

However, Antoulas’ observation does not come as great
surprise to us, since the concept of spectral zeros is a key in-
gredient in a theory of analytic interpolation developed over
the last decades by Byrnes, Georgiou, Lindquist and their
coworkers [3]–[12],[14]–[21],[23],[24],[26]. Indeed, given
k + 1 interpolation points and corresponding interpolation
values, the class of all analytic interpolants of McMillan
degree at mostk is completely parameterized by the stable
spectral zeros. Moreover, given a specific choice of such
spectral zeros, there is a pair of dual convex optimization
problems determining the unique corresponding interpolant.
We shall demonstrate that Antoulas’ solution is essentially
the central solution or the maximum entropy solution in this
theory. This opens up the questions of whether the full power
of the theory of analytic interpolation with degree constraint
can be used to obtain better approximations. We shall provide
numerical examples showing that this is indeed the case.
This is aglobal analysis approach, in which one considers a
complete class of solutions as a whole rather than a particular
solution, and in which one designs smooth tuning strategies
to approximate to specifications.

For simplicity of presentation, from now on, we make the
same assumption as in [1], [28], namely thatthe spectral
zeros are distinct.

II. T HE ANTOULAS-SORENSEN APPROACH

The starting point in Sorensen’s algorithm is a partial real
Schur decomposition

AQ = EQR (8)

for the pair (A, E), where Q′Q = Ik and R is real and
quasi-upper triangular. Clearly, the eigenvalues ofR are
generalized eigenvalues of(A, E); i.e., (selected) spectral
zeros. SettingQ′ = (X ′, Y ′, Z ′), we have





A B
−A′ −C′

C B′ D + D′









X
Y
Z



 =





X
Y
0



R. (9)

Here we take the decomposition corresponding tok selected
spectral zeros inC−. It can be shown that, in this case,X
has full rank if(A, B) is reachable,Y has full rank if(C, A)
is observable, andX ′Y = Y ′X ; see [28, Lemmas 1 and 2]
and also [15, Lemma 1] for a more general statement.

Given this partial real Schur decomposition, in Sorensen’s
algorithm one performs singular value decomposition on
X ′Y . More precisely, this amounts to determining unitary
k×k matricesQx andQy such thatQxΣ2Q′

y = X ′Y is the
singular value decomposition ofX ′Y , and setting

V := XQxΣ−1, U := Y QyΣ−1. (10)

In [28] Sorensen proves, using the Positive Real Lemma,
that the reduced-order transfer functionĜ obtained by taking
V, U defined by (10) in (6) is positve real.

In [15] we demonstrated that̂G satisfies the right tangen-
tial interpolation conditions

Ĝ(sj)zj = G(sj)zj, j = 1, . . . , k, (11)

where zj := Zrj 6= 0 for k = 1, 2, . . . , k, and rj is the
right eigenvector ofR corresponding to the eigenvaluesj . In
addition,Ĝ satisfies the left tangential interpolation condition

z′jĜ(−sj) = z′jG(−sj) (12)

for eachj = 1, 2, . . . , k such that(−sjIk − Â) is invertible.
In particular, if (5) is a minimal realization, (12) holds for
all j = 1, 2, . . . , k [15].

This is only partly in harmony with Antoulas’ result [1].
In fact, in the scalar case, the Antoulas-Sorensen reduced-
order transfer function̂G interpolates in theunstable spectral
zeros. If the reduced-order realization (5) is minimal, it also
interpolates in the stable spectral zeros. The minimality of
(5) is important, so we pause to consider some consequences
of this.

A basic question, raised by Antoulas in [1], is when a ra-
tional functionG satisfying both the interpolation conditions

G(sj) = wj , j = 1, 2, . . . , k

and the corresponding “mirror-image” interpolation condi-
tions

G(−s̄j) = −w̄j , j = 1, 2, . . . , k

is positive real. In [1] it is claimed that all minimum-
degree interpolants are positive real [1, Lemma 3.1]. This is
not correct. A simple first-order counterexample is obtained
by taking (s1, w1) = (1, 1). A function satisfying both
G(1) = 1 andG(−1) = −1 cannot be of degree zero, so the
claim in [1, Lemma 3.1] implies that any degree-one function
satisfying bothG(1) = 1 andG(−1) = −1 is positive real.
A counterexample isG(s) = (1− 2s)/(s− 2), which is not
even analytic inC+, let alone positive real.

There could be a mistake in transferring the statement of
Lemma 3.1 in [1] from that in Theorem 4.2 in the previous
paper [2], co-authored by the same author, where there is
one less mirror-image interpolation condition. This is more
natural, since, in general,2k−1 linear equations are required
to determine a rational function of degreek−1. Transferred
into the setting of positive real functions in the right half
plane, Theorem 4.2 in [2] implies that, given(sj , wj) for
j = 1, . . . , k such that the Pick matrix

P̃ :=

[

wi + w̄j

si + s̄j

]k

i,j=1

(13)

is positive definite, there exists a unique rational function
f of degree less or equal tok − 1 such thatf(sj) = wj ,
j = 1, . . . , k andf(−s̄j) = −w̄j , j = 1, . . . , k− 1, and that
this rational function is positive real.

It is true that there exists a positive real functionf of
degree≤ k − 1 which satisfiesf(sj) = wj , j = 1, . . . , k. If
P̃ is positive definite, all such solutions are parameterized
by Theorem 1 in Section III. However, there does not
necessarily exist an interpolant of degree at mostk − 1



which also satisfies the mirror interpolation conditions. In
fact, the following is a simple counterexample. Ifwj = 1 for
j = 1, . . . , k, there is a unique function of degree at most
k − 1 satisfying G(sj) = wj for j = 1, 2, . . . , k, namely
G ≡ 1. However, this function does not satisfy the mirror
conditionsG(−s̄j) = −1, j = 1, 2, . . . , k−1. The following
numerical example further elucidates this point.

Example 1: Consider the second-order positive real trans-
fer function

G(s) =
6s2 + 22s + 9

6s2 + 15s + 16
, (14)

for which s = ±1 ands = ±2 are the spectral zeros.
First, we computing the first-order transfer functionĜ with

the stable spectral zero ats1 = −2, we obtain

(Â, B̂, Ĉ, D) = (−1.8182,−2.8316,−0.1348, 1),

which clearly is minimal. The reduced-degree functionĜ is
positive real, and both the interpolation conditionsĜ(−2) =
G(−2) and Ĝ(2) = G(2) hold.

Next, we computing the first-order transfer function̂G
with the stable spectral zero ats1 = −1, we have

(Â, B̂, Ĉ, D) = (−1,−2, 0, 1),

which is not minimal. The reduced-degree transfer function
is Ĝ ≡ 1, which is clearly positive real, and satisfiesĜ(1) =
G(1) = 1, but not Ĝ(−1) = G(−1).

III. A NALYTIC INTERPOLATION WITH DEGREE

CONSTRAINT

The reason why the particular choice of interpolation
points in the Antoulas-Sorensen solution lead to a positive
real reduced-order model is no coincidence. In fact, in the
next section we shall demonstrate that this can be inter-
preted in the context of the theory of analytic interpolation
with degree constraint developed by Byrnes, Georgiou and
Lindquist.

To this end, we now restate some basic results from this
theory in the continuous-time setting. For consistency with
the setting in [1] we confine the initial analysis real, scalar
interpolants, although, strictly speaking, this is not necessary.
Given a set of self-conjugate pairs of complex numbers

{(sj , wj) : sj ∈ C+}k

j=0
,

si 6= sj if i 6= j, s0 real,
wi = w̄j if si = s̄j ,

(15)

find all functionsf with real coefficients that satisfy the
following three conditions:

1) Positive real property: the functionf is analytic inC+,
and

Ref(s) ≥ 0, ∀s ∈ C+. (16)

2) Interpolation conditions:

f(sj) = wj , j = 0, 1, . . . , k. (17)

3) Degree constraint: f is real rational and

deg f ≤ k. (18)

A necessary and sufficient condition for the existence of
f satisfying these three conditions is the positive semidefi-
niteness of the Pick matrix

P :=

[

wi + w̄j

si + s̄j

]k

i,j=0

. (19)

Theorem 1: Suppose that the Pick matrix (19) constructed
from the interpolation data (15) is positive definite. Let
{λj}k

j=1
⊂ C− be an arbitrary self-conjugate, and define

σ(s) :=
∏k

j=1
(s− λj). Then, there exists a unique (modulo

sign) pair of real Hurwitz polynomials(α, β) of degreek
such that

(i) f := β/α is positive real,
(ii) f(sj) = wj , j = 0, 1, . . . , k, and
(iii) α(s)β(−s) + α(−s)β(s) = σ(s)σ(−s).

Conversely, any pair of real polynomials(α, β) of degreek
satisfying (i) and(ii) determines, via(iii), a unique (modulo
sign) Hurwitz polynomialσ of degreek, and the mapσ 7→
(α, β) is a diffeomorphism. Moreover, setting

Ψ(iω) :=

∣

∣

∣

∣

σ(iω)

τ(iω)

∣

∣

∣

∣

2

, whereτ(s) :=

k
∏

j=1

(s + sj), (20)

the problem to maximize

IΨ(f) :=
1

2π

∫

∞

−∞

Ψ(iω) log[f(iω) + f(−iω)]
dω

ω2 + s2
0

,

(21)
over all positive real functionsf satisfying (17), has a
unique solution that is precisely the uniquef satisfying
the conditions (i), (ii) and (iii). Finally, if (α, β) is the
corresponding pair of polynomials,

Q(iω) := |a(iω)|2, where a(s) =
α(s)

τ(s)
, (22)

is the unique solution to the convex optimization problem to
minimize

JΨ(Q) :=
1

2π

∫

∞

−∞

{[w(iω) + w(−iω)]Q(iω)

− Ψ(iω) logQ(iω)} dω

ω2 + s2
0

, (23)

over all Q in the classQ of all rational functions of the
form (22) with α free to vary over all stable polynomials
of degree at mostk, and w is any proper, stable (not
necessarily positive real) real, rational function satisfying the
interpolation condition (ii).

The statements of the theorem have been proven in the
discrete time setting in various places: the first part in [4],
[19] (also, see [8], [6], and, as for existence only, the early
work [16], [17], [18]), the diffeomorphism result in [11],
and the optimization results (in various versions) in [9], [7],
[4], [10], [6]. Transferring this results to the continuous-time
setting via the Möbius transformation

s ∈ C+ 7→ z =
s0 − s

s0 + s
∈ D (24)

is quite straight-forward.



This theorem yields a complete smooth parameterization
of the whole class of positive real interpolants of degree at
mostn, where tuning can be done via thek spectral zeros.
In particular, if we choose thek spectral zeros at the mirror
images of the interpolation points, as suggested by Antoulas
and Sorensen,

λj = −s̄j, j = 1, . . . , k, (25)

thenΨ ≡ 1, and the interpolant maximizes the entropy gain

I1(f) :=
1

2π

∫

∞

−∞

log[f(iω) + f(−iω)]
dω

ω2 + s2
0

. (26)

This is the central or maximum entropy solution, the de-
termination of which can be reduced to a system of linear
equations; also see [25]. The proof of the following corollary
can be found in [15].

Corollary 1: Let P be the Pick matrix (19), wheres0 is
real, letτ(s) be the Hurwitz polynomial defined in (20), and
set

Π(s) :=

[

1,
s + s0

s + s1

,
s + s0

s + s2

, . . . ,
s + s0

s + sk

]

.

Moreover, suppose thatP > 0. Then the maximum entropy
solution is

f(s) =
Π(s)b

Π(s)a
,

wherea := (a0, a1, . . . , ak)′ is given by

a =
1

√

2s0Π(s0)P−1Π(s0)∗
P−1Π(s0)

∗, (27)

and b := (b0, b1, . . . , bk)′ is uniquely determined via the
linear system of equations

a(s)b(−s) + a(−s)b(s) = 1 (28)

with a(s) := Π(s)a andb(s) := Π(s)b.
Theorem 1 can be generalized to tangential Nevanlinna-

Pick interpolation, as established in [24]. Hence, the theory
of analytic interpolation with degree constraint could also be
applied in the multivarible case (m > 1).

IV. T HE ANTOULAS-SORENSEN METHOD AS THE

MAXIMUM ENTROPY SOLUTION

In the Antoulas-Sorensen approach, one interpolates not
only at the unstable spectral zeross1, s2, . . . , sk but also at
s0 := ∞. More specifically,

Ĝ(∞) = D = G(∞). (29)

However,s0 := ∞ lies on the boundary of the analyticity
regionC+ – a situation to which Corollary 1 and Theorem 1
do not immediately apply. However, choosing the interpola-
tion point s0 to be a positive number, sufficiently large for
the Pick matrix (19) to be positive definite, determining the
corresponding central solution, and then taking the limit as
s0 → ∞, results precisely in the Antoulas-Sorensen solution.
The proof of the following results (Lemma 1 and Theorem 2)
can be found in [15].

Lemma 1: Let fs0
be the maximum-entropy solution cor-

responding to the interpolation conditions (17). Moreover,
defineD := w0;

Ĉ := (P̃−1w)′, (30)

wherew := (w1 −w0, w2 −w0, . . . , wk −w0)
′ andP̃ is the

reduced Pick matrix (13);

Â := −Λ + hĈ, (31)

whereΛ := diag(s1, s2, . . . , sk) and h := (1, 1, . . . , 1)′ ∈
Rk; and

B̂ := 2D(QĈ∗ + h), (32)

whereQ is the unique solution of the Lyapunov equation

ÂQ + QÂ∗ + hh∗ = 0. (33)

Then, ass0 → ∞ while all other interpolation data is fixed,
fs0

(s) tends to

fME(s) = Ĉ(sI − Â)−1B̂ + D (34)

pointwise except in the poles offME . Finally, Â has all its
eigenvalues in the open left half plane.

Example 2: Consider a positive real function

G(s) =
1/3s + 1

(s + 1)(s + 2)
+ 1

with stable spectral zerosλ1 = −
√

3, λ2 = −
√

2. Applying
the Antoulas-Sorensen method to approximate this system
by a first-order passive system having a transfer functionĜ
with spectral zeros±

√
3 yields

Ĝ(s) =
2s + 4

2s + 3
. (35)

On the other hand, the maximum entropy solutionfME with
interpolation conditionsfME(∞) = G(∞), fME(

√
3) =

G(
√

3) can be determined as in Lemma 1. In fact,w0 = 1,
w = (2

√
3 − 3)/3, P̃ = 2/3, and Λ =

√
3, and hence

Ĉ =
√

3 − 3/2 and Â = −3/2. Solving the Lyapunov
equation (33), we haveQ = 1/3, and hencêB = 2

√
3/3+1.

Inserting this into (34), we have

fME(s) =
2s + 4

2s + 3
, (36)

which is the same as (35).
Theorem 2: Let G be a scalar, positive real function

with spectral zeros in{sj}k
j=1, and setwj := G(sj) and

w0 := D = G(∞). Then the reduced order interpolant
Ĝ constructed from these spectral zeros by the method of
Antoulas-Sorensen equals the limit functionfME defined in
Lemma 1.

V. A LARGE-SCALE NUMERICAL EXAMPLE: A CD
PLAYER MODEL

We have thus established that the reduced-order model
computed by the Antoulas-Sorenson method coincides (in
the limit) with the central (maximum-entropy) Nevanlinna-
Pick interpolant with interpolation points in the mirror-image
of the selected spectral zeros. However, the central solution



is quite special, and one would expect to obtain a better
approximant by tuning the solution by the global analysis
approach described above.

We shall illustrate point by using a high-order model of a
portable CD player taken from [29]. The full-order model,
the transfer function of which is denoted byF , is a single-
input single-output, continuous-time, linear time-invariant,
and stable model of order 120 and of relative degree two.
We aim at reducing the model order tok = 12, as well
as maintaining the stability and the uniform upper bound
ρ = 80 (≈ 38dB) of the gain ofF .

The modelF can be regarded as a function which is
analytic in the right half-planeC+ and mapsC+ into ρD.
In other words,F is a bounded-real function in continuous-
time. To be consistent with the problem setting in this paper,
we will introduce a positive real functionG in continuous-
time by a bilinear transformation:

G(s) :=
ρ − F (s)

ρ + F (s)
.

After computing the positive real reduced-order modelĜ of
G, we will obtain the bounded real reduced-order modelF̂
of F by the inverse transformation

F̂ (s) := ρ
1 − Ĝ(s)

1 + Ĝ(s)
.

We first use the algorithm suggested by Sorensen in [28].
This algorithm is based on the Implicitly Restart Arnoldi
(IRA) method [27], and computes automatically the reduced-
order systemĜ without an explicit computation of all the
spectral zeros ofG. Following Sorenson, we selectk := 12
spectral zeros of the systemG by determiningk eigenvalues
of the matrix

Cµ := (µE − A)−1(µE − A), (37)

whereµ ≥ 0 has to be chosen properly, andA and E are
defined by (4) in terms of a minimal realization of the120th
degree positive-real functionG.

Using this algorithm, we have freedom in choosingµ
and the criteria of selecting the eigenvalues of (37). In
this example, we have chosen the 12 eigenvalues of largest
magnitude and two differentµ, namelyµ = 260 (see Fig. 1)
and µ = 20 (see Fig. 2). As one can see in these figures,
the frequency responce of the reduced-order model matches
the original model only in some frequency bands, due to the
restriction of placing the interpolation points at the spectral
zeros. Moreover, it crucially depends on the choice ofµ and
of the eigenvalues selection criteria. However, as pointedout
in [28], these choices are not trivial.

Instead, applying the theory of Section III, we may choose
the twelve spectral zeros and interpolation points arbitrarily.
For comparison with the Antoulas-Sorenson method, which
requires an interpolation conditionF (∞) = 0, we would like
to impose the same interpolation condition on the reduced-
order systemF̂ . SinceF has relative degree two, it can be
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Fig. 1. Model reduction withµ = 260.
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Fig. 2. Model reduction withµ = 20.

factored asF = F1F2, whereF2 is of relative degree two
andF1 is of degree118. In this example

F2 =
1

(s − p)(s − p̄)
, p = −12.2708 + 306.5398i,

wherep is a pole ofF close to the frequency peakω = 300
rad/s. Hence we can restate the problem of reducing the order
of F to k = 12 as the problem of reducing the order ofF1

to t = 10.
To reduce the order ofF1 with the methods of Section III,

we need11 interpolation conditions

F̂1(sj) =
F (sj)

F2(sj)
, j = 0, . . . 10,

which we choose at the pointss0 = 199, s1,2 = 10−5 ±
0.1i, s3,4 = 0.2± i, s5,6 = 0.01±74i, s7,8 = 0.01±1.3250 ·
104i, s9,10 = 0.005 ± 9.9900 · 104i; and an uniform upper
bound on the gain, which we take to beρ1 = 3.9811 ·
107(≈ 140 dB). In the family of all such interpolantŝF1, we
select the one that has spectral zeros atλ1,2 = −0.0612 ±
2.3749i, λ3 = −175.0542, λ4 = −351.5899, λ5,6 =
−7.4080 ± 70.4606i, λ7,8 = −570.1525 ± 2.5448 ·
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104i, λ9,10 = −1.6436 · 104 ± 7.5527 · 103i. In Fig. 3, the
interpolation points and the spectral zeros ofF̂ are plotted
together with the reduced-order system̂F and the original
systemF . One can see that̂F matches the peak around
ω = 300rad/s, overlaps the original system at high and low
frequencies. Moreover, it matches the ripple aroundω = 104

rad/s.

VI. CONCLUSIONS

Over the last decades a global analysis approach for
analytic interpolation has been developed. It is based on a
complete smooth parameterization of all positive-real inter-
polants of degree less than the number interpolation pointsin
terms of spectral zeros. In particular, if the spectral zeros are
chosen in the mirror image of the interpolation points, the
problem is linear. The corresponding solution is the central
(maximum-entropy) solution.

We have demonstrated that the passivity-preserving model
reduction method proposed by Antoulas and Sorensen can be
identified with the central solution. By applying the global
analysis approach, we have demonstrated that it is possibleto
obtain better approximants by choosing interpolation points
that are placed more strategically; i.e., not restricted tothe
mirror image of the spectral zeros.

It should be noted, however, that the implementation of
the central solution provided by Sorensen’s algorithm, in
which spectral zeros do not have to be determined explicitly,
is numerically very efficient, and therefore, for very large
problems, preferable even to stochastically balanced trunca-
tion, for which there areH∞ bounds. Therefore, we propose
that the high-order model first be reduced by the Sorenson
algorithm, and then fine-tuned by moving the interpolation
points and spectral zeros to improve the approximation.
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