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Abstract— Passivity-preserving model reduction for linear such that
time-invariant systems amounts to approximating a positie-
real rational transfer function with one of lower degree. G(s) + G(—s) = W(s)W(-s)" ©))
Recently Antoulas and Sorensen have proposed such a model- ,
reduction method based on Krylov projections. The method is 1herefore, the zeros @¥(s)+G(—s)’ are called thespectral
based on an observation by Antoulas (in the single-input/sigle-  zeros of G(s). Since
output case) that if the approximant is preserving a subsetfithe

spectral zeros and takes the same values as the original trafer , A B
function in the mirror points of the preserved spectral zercs, G(s)+G(—s) ~ A =C ,
then the approximant is also positive real. However, this tins C B | D+ D

out to be a special solution in the theory of analytic interpdation ] ) )
with degree constraint developed by Byrnes, Georgiou and the spectral zeros are precisely thedor which the matrix
Lindquist, namely the maximum-entropy (central) solution. A — A& is singular, where

By tuning the interpolation points and the spectral zeros, a

prescribed by this theory, one is able to obtain consideralyl A B I
better reduced-order models. A= -A = , €= 1 . @
C B D+D 0

I. INTRODUCTION ) )
. S _ S Consequently, the spectral zeros are the generalized-eigen
Consider a time-invariant, continuous-time linear systemyg|yes of(A4, &).
The problem considered in this paper is to find a passive
reduced-order system that approximates the original syste
and whose transfer function

LN G(s) Y,

with a real transfer function

G(s)=C(sI —A)'B+D ~ [%%] 1) G(s) =C(sI = A) "B+ D ~ [%%] )

has a lower degre¢ < n but retains the positive-real

of McMillan degreen such that all eigenvalues ol lie property.

in the open left half of the complex planéj_,, (4, B) Such model reduction is often performed by some projec-
is reachable(C, A) is observable and) + D’ is positive {5 method that determines matridgsV’ € R"<* such that
definite. Moreover suppose that the dimension of the input U'V = I, and

equals the dimensiom of the outputy and that the system ) A .
is passive in the sense that A=U'AV, B=U'B, C=CV. (6)

T , The most popular such model reductition methods preserving
/ u(t)'y(t)dt > 0 positive-realness istochastically balanced truncation (or
0 .- . ..
torall T > 0 and all int ble inbuis In phvsical positive-real balanced truncation), originally proposed by
ora >h and a squarg—m egrable Inpuis In p |3|IS|ca Desai and Pal [13] in the context of stochastic realization
terms, such a system produces no energy internally. Passmgory. Stochastically balanced model reduction has the

systems are important in many appli_cations, such as, f%lvantage that it comes with easily computed bounds; see,
example, in VLSI design and stochastic systems theory. e.q., [22]

To say that the system is passive is to say thatithe m

: . o) X In this paper, we shall consider another class of model
transfer functionG(s) is positive real; i.e.,

reduction procedures based on interpolation, in which the

G(iw) + G(—iw) >0, weR. (2) transfer function’y of the reduced-order system satisfies the
N interpolation conditions
ThenG(s)+G(—s)’ can be interpreted as a spectral density, A ,
and there are rational functiolg (s), calledspectral factors, Glsj) = Glsj), J=12,.. .k, (7)
for some suitable pointsy, so, ..., sx in the open right half
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explicitly use spectral zeros but also works in the case In [15] we demonstrated that satisfies the right tangen-

1. In [15] we demonstrated that Sorensen’s solution amountisl interpolation conditions

to tangential interpolation rather than matricial intdgtion - .

involving the condition (7). Gsj)z = Gls;)2, J=1,....k, (11)
However, Antoulas’ observation does not come as greatherez; := Zr; # 0 for k = 1,2,...,k, andr; is the

surprise to us, since the concept of spectral zeros is a key iight eigenvector of? corresponding to the eigenvalug In

gredient in a theory of analytic interpolation developeérv addition,G satisfies the left tangential interpolation condition

the last decades by Byrnes, Georgiou, Lindquist and their A ,

coworkers [3]-[12],[14]-[21],[23],[24],[26]. Indeed, \gn 2jG(=s5) = z;G(=s;) (12)

k + 1 interpolation points and corresponding interpolatioRor eachj = 1,2, ...,k such that(—s; I, — A) is invertible.

values, the class of all analytic interpolants of McMillaniy particular, if (5) is a minimal realization, (12) holdsrfo

degree at most is completely parameterized by the stabley ; — 1,2, ... K [15].

spectral zeros. Moreover, given a specific choice of such Tpjs js only partly in harmony with Antoulas’ result [1].

spectral zeros, there is a pair of dual convex optimizatiop, fact, in the scalar case, the Antoulas-Sorensen reduced-

problems determining the unique corresponding interfolanyder transfer function” interpolates in thenstable spectral

We shall demonstrate that Antoulas’ solution is essegtiall;ergs, If the reduced-order realization (5) is minimal,léoa

the central solution or the maximum entropy solution in thigyierpolates in the stable spectral zeros. The minimality o

theory. This opens up the questions of whether the full powgs) js important, so we pause to consider some consequences
of the theory of analytic interpolation with degree conisita f this.

can be used to obtain better approximations. We shall peovid A pasic question, raised by Antoulas in [1], is when a ra-

numerical examples showing that this is indeed the casgonal functionG satisfying both the interpolation conditions
This is aglobal analysis approach, in which one considers a

complete class of solutions as a whole rather than a paaticul G(sj) =wj, j=12,....k
solution, and in which one designs smooth tuning strategies,q the corresponding “mirror-image” interpolation condi
to approximate to specifications. tions
For S|mpI|C|ty_ of pres_entatlon, from now on, we make the G(—5;) = —w;, j=1,2,...k
same assumption as in [1], [28], namely thiag¢ spectral
zeros are distinct. is positive real. In [1] it is claimed that all minimum-
degree interpolants are positive real [1, Lemma 3.1]. This i
Il. THE ANTOULAS-SORENSEN APPROACH not correct. A simple first-order counterexample is obtdine
The starting point in Sorensen’s algorithm is a partial reddy taking (s1,w;) = (1,1). A function satisfying both
Schur decomposition G(1) = 1 andG(—1) = —1 cannot be of degree zero, so the
claim in [1, Lemma 3.1] implies that any degree-one function
AQ = EQR (®) [ limp y deg

satisfying bothG(1) = 1 andG(—1) = —1 is positive real.

for the pair (A4,€), whereQ'Q = I, and R is real and A counterexample i€:(s) = (1 — 2s)/(s — 2), which is not
quasi-upper triangular. Clearly, the eigenvaluesbfare even analytic inC., let alone positive real.

generalized eigenvalues @f4, €); i.e., (selected) spectral There could be a mistake in transferring the statement of
zeros. Setting)’ = (X', Y’, Z’), we have Lemma 3.1 in [1] from that in Theorem 4.2 in the previous
paper [2], co-authored by the same author, where there is

A W %, )}f B )}f R (g ON€ less mirror-image interpolation condition. This is mor
o T - ) natural, since, in generalk —1 linear equations are required
C B D+D Z 0

to determine a rational function of degrke- 1. Transferred
Here we take the decomposition corresponding selected into the setting of positive real functions in the right half
spectral zeros ifC_. It can be shown that, in this cas¥, plane, Theorem 4.2 in [2] implies that, giver;,w,;) for
has full rank if(A, B) is reachableY” has full rank if(C, A)  j =1,...,k such that the Pick matrix
is observable, an&’Y = Y'X; see [28, Lemmas 1 and 2] _ 1k
and also [15, Lemma 1] for a more general statement. P = {M] (13)
Given this partial real Schur decomposition, in Sorensen’s Si+ 85 14 =1
algorithm one performs singular value decomposition ofs positive definite, there exists a unique rational functio
X'Y. More precisely, this amounts to determining unitaryf of degree less or equal to — 1 such thatf(s;) = wy,
k x k matricesQ,, andQ, such thaQ,>*Q; = X'Y isthe j—=1,... kandf(—5;) = —w;, j=1,...,k—1, and that
singular value decomposition of'Y’, and setting this rational function is positive real.
L —1 L 1 It is true that there exists a positive real functignof
Vi=XQu2, Ui=YQ,x (10) degree< k — 1 which satisfiesf(s;) = wj, 5 =1,...,k. If
In [28] Sorensen proves, using the Positive Real Lemma is positive definite, all such solutions are parameterized
that the reduced-order transfer functiGrobtained by taking by Theorem 1 in Section Ill. However, there does not
V,U defined by (10) in (6) is positve real. necessarily exist an interpolant of degree at most 1



which also satisfies the mirror interpolation conditions. | A necessary and sufficient condition for the existence of
fact, the following is a simple counterexampleulf = 1 for  f satisfying these three conditions is the positive semidefi-

j =1,...,k, there is a unique function of degree at moshiteness of the Pick matrix
k — 1 satisfying G(s;) = w; for j = 1,2,...,k, namely wi + w51
G = 1. However, this function does not satisfy the mirror P = [17_]} . (29)
conditionsG(—5;) = —1, j = 1,2,...,k—1. The following Si+ 55 Jij=o
numerical example further elucidates this point. Theorem 1: Suppose that the Pick matrix (19) constructed
Example 1: Consider the second-order positive real transfrom the interpolation data (15) is positive definite. Let
fer function ) {)\j}ll C C_ be an arbitrary self-conjugate, and define
652 + 225+ 9 Tk - ;
G(s) = —5———0, (14)  o(s) :==[[;=1(s — Aj). Then, there exists a unique (modulo
65 + 155 + 16 sign) pair of real Hurwitz polynomialga, ) of degreek
for which s = +1 ands = +2 are the spectral zeros. such that
First, we computing the first-order transfer functiGwith (i) f:= B/« is positive real,
the stable spectral zero af = —2, we obtain (i) f(s;)=wj, j=0,1,....k and
(A, B,C, D) = (~1.8182, —2.8316, —0.1348, 1), (i) o(s)3(=s) + a(=5)B(s) = o(s)o(=s).

A Conversely, any pair of real polynomials, 3) of degreek
which cIearIy is minimal. The reduced-degree fynct'(én's satisfying (|) an(Kii) determines, Vidiii), a unique (modulo
positive reali and both the interpolation conditighi§—2) = sign) Hurwitz polynomialr of degreek, and the map —
G(-2) andG(2) = G(2) hold. _ (a, B) is a diffeomorphism. Moreover, setting

Next, we computing the first-order transfer functich

. 2 k
with the stable spectral zero at = —1, we have

. wherer(s) := [[(s +s,), (20)

J=1

(AaBa éaD) = (_11 _2107 1)1

D - . the problem to maximize
which is not minimal. The reduced-degree transfer function P

is G = 1, which is clearly positive real, and satisfié§1) = | _ L /OO Tl 1 , . dw
G(1) = 1, butnot G(—1) = G(—1). v =g | W) losl i) + A Z”)]w2+s§2’)
1
I1l. ANALYTIC INTERPOLATION WITH DEGREE over all positive real functionsf satisfying (17), has a
CONSTRAINT unigue solution that is precisely the uniqyfe satisfying

The reason why the particular choice of interpolatiodl® conditions (i), (i) and (iii). Finally, if(a, 5) is the
points in the Antoulas-Sorensen solution lead to a positive"responding pair of polynomials,
real reduced-order model is no coincidence. In fact, in the

Qliw) = |a(iw)?, wherea(s) = 2 (22)

next section we shall demonstrate that this can be inter- 7(s)’
preted in the context of the theory of analytic interpolatio . the uniaue solution to the convex optimization problem to
with degree constraint developed by Byrnes, Georgiou arfg. "€ uniq P P
: . minimize
Lindquist. -
To this end, we now restate some basic results from this . (9) .= i/ {[w(iw) + w(—iw)]Q(iw)
theory in the continuous-time setting. For consistencyhwit 2m J oo
the setting in [1] we confine the initial analysis real, scala , , dw
interpolants, although, strictly speaking, this is notewsary. W (iw) log Qi) } w2+ 83’ (23)

Given a set of self-conjugate pairs of complex numbers over all @ in the classQ of all rational functions of the

s; # s; if i # j, so real (15) form (22) with o free to vary over all stable polynomials
3 of degree at mosk, and w is any proper, stable (not
necessarily positive real) real, rational function sgtigj the
interpolation condition (ii).
The statements of the theorem have been proven in the
1) Positivereal property: the functionf is analytic inC,  discrete time setting in various places: the first part in [4]
and [19] (also, see [8], [6], and, as for existence only, theyearl
Ref(s) >0, Vs € Cy. (16)  work [16], [17], [18]), the diffeomorphism result in [11],
and the optimization results (in various versions) in [9], [
[4], [10], [6]. Transferring this results to the continuetime

. . k
{(SJ,’LUJ) 185 € (CJr}j:oa w; = 1w, if s; = 55,

find all functions f with real coefficients that satisfy the
following three conditions:

2) Interpolation conditions:

f(s))=w;, j=0,1,... k. (17) setting via the Mobius transformation
3) Degree constraint: f is real rational and seCyr—z= 20 J_rz eD (24)
0

deg f < k. (18) s quite straight-forward.



This theorem yields a complete smooth parameterization Lemma 1. Let f;, be the maximum-entropy solution cor-
of the whole class of positive real interpolants of degree aesponding to the interpolation conditions (17). Moregver
mostn, where tuning can be done via tthespectral zeros. define D := wy;

In particular, if we choose thg spectral zeros at the mirror C = (Pflw)’, (30)

images of the interpolation points, as suggested by Ansoula .
anngorensen P P 99 y wherew := (w; — wo, wa — wy, . .., w —wp)’ and P is the

reduced Pick matrix (13);

Aj:—gj, ]:1,,/€, (25) A:—A—Fhé, (31)
then¥ = 1, and the interpolant maximizes the entropy gain bere A = diag(sy, s2,...,s5) andh = (1,1,...,1) €
1 [ _ _ dw R*; and

This is thecentral or maximum entropy solution, the de- whereQ is the unique solution of the Lyapunov equation

termination of which can be reduced to a system of linear i N .

equations; also see [25]. The proof of the following conglla Q+ QA"+ hh” =0. (33)

can be found in [15]. Then, assy — oo while all other interpolation data is fixed,
Corollary 1: Let P be the Pick matrix (19), whergy is 7, (s) tends to

real, letr(s) be the Hurwitz polynomial defined in (20), and . S
set f]ME(S) = C(SI — A)_ B+ D (34)

s+5sy s+ s s+ s . . . . P .
I(s) == |1, - 0 - o .., - o, pointwise except in the poles df,x. Finally, A has all its
S8 ST 52 5 Sk eigenvalues in the open left half plane.
Moreover, suppose tha > 0. Then the maximum entropy  Example 2. Consider a positive real function
solution is

I1(s)b oy M35t
f(S):mv () (s+1)(s+2)
wherea := (ag, a1, ..,as) is given by with stable spectral zeros = —+/3, A2 = —/2. Applying
the Antoulas-Sorensen method to approximate this system
a= ! ~MI(s0)*, (27) by a first-order passive system having a transfer funation
/25011 (s0) P~ (s0)* with spectral zeros-/3 yields
and b := (bg,b1,...,b;) is uniquely determined via the A 25+ 4
. i G(s) = . (35)
linear system of equations 2s+3
_ On the other hand, the maximum entropy solutfagn: with
b(— —s)b(s) =1 28
a(s)b(=s) + a(=s)bls) (28) interpolation conditionsfasz(c0) = G(o0), fare(V3) =
with a(s) := TI(s)a and b(s) := II(s)b. G(+/3) can be determined as in Lemma 1. In faet, = 1,

Theorem 1 can be generalized to tangential Nevanlinna: = (2v/3 — 3)/3, PA: 2/3, and A = /3, and hence
Pick interpolation, as established in [24]. Hence, themeoC' = /3 — 3/2 and A = —3/2. Solving the Lyapunov
of analytic interpolation with degree constraint coulcba® equation (33), we hav® = 1/3, and hence3 = 21/3/3+1.

applied in the multivarible caser( > 1). Inserting this into (34), we have
IV. THE ANTOULAS-SORENSEN METHOD AS THE fuEe(s) = M, (36)
MAXIMUM ENTROPY SOLUTION 2543

pich is the same as (35).

Theorem 2: Let G be a scalar, positive real function
with spectral zeros ir’{sj};?:l, and setw; := G(s;) and

wo = D = G(c0). Then the reduced order interpolant
é(oo) =D = G(0). (29) G constructed from these spectral zeros by the method of

) ~Antoulas-Sorensen equals the limit functigy z defined in
However, sy := oo lies on the boundary of the analyticity | emma 1.

regionC, — a situation to which Corollary 1 and Theorem 1

do not immediately apply. However, choosing the interpola- V. A LARGE-SCALE NUMERICAL EXAMPLE: A CD

tion point sy to be a positive number, sufficiently large for PLAYER MODEL

the Pick matrix (19) to be positive definite, determining the We have thus established that the reduced-order model
corresponding central solution, and then taking the linsit acomputed by the Antoulas-Sorenson method coincides (in
s0 — 00, results precisely in the Antoulas-Sorensen solutionthe limit) with the central (maximum-entropy) Nevanlinna-
The proof of the following results (Lemma 1 and Theorem 2pijck interpolant with interpolation points in the mirronage

can be found in [15]. of the selected spectral zeros. However, the central soluti

In the Antoulas-Sorensen approach, one interpolates no
only at the unstable spectral zeres so, . .., s; but also at
sp := oo. More specifically,



40 T T 800

is quite special, and one would expect to obtain a better
approximant by tuning the solution by the global analysis 200
approach described above.

We shall illustrate point by using a high-order model of a
portable CD player taken from [29]. The full-order model, -20f
the transfer function of which is denoted I, is a single-
input single-output, continuous-time, linear time-iraat,
and stable model of order 120 and of relative degree two. -
We aim at reducing the model order to= 12, as well | N
as maintaining the stability and the uniform upper bound ol
p = 80 (=~ 38dB) of the gain ofF". ~oor . °o

The model F can be regarded as a function which is | R
analytic in the right half-plan€, and mapsC, into pD. [ et e amaues et
In other words,F' is a bounded-real function in continuous- ™y P % 0 a0 300 4o
time. To be consistent with the problem setting in this paper Freauene/adised
we will introduce a positive real functio& in continuous- Fig. 1. Model reduction withu = 260.
time by a bilinear transformation:

_r—F(s)
o p+F(s)

Singular Value(dB)

40 T T 800

G(s)

600 -
After computing the positive real reduced-order maﬁed{f or
G, we will obtain the bounded real reduced-order mogdel
of F' by the inverse transformation

200

0

. 1-G(s)
P& =)

Singular Value(dB)

-200

—-400 -

We first use the algorithm suggested by Sorensen in [28]. -0}
This algorithm is based on the Implicitly Restart Arnoldi

120 1 -600 -

(IRA) method [27], and computes automatically the reduced- ‘ - original system

~ . L. R reduced model by Antoulas et al
order system without an explicit computation of all the o e 00—
spectral zeros ofs. Following Sorenson, we selegt:= 12 Frequency(racisec)

spectral zeros of the systefh by determiningt eigenvalues

. Fig. 2. Model reduction withy = 20.
of the matrix 9 "

R —1
Cu = (n€ = A)~ (u€ — A), (37)  factored asF = F\ F,, whereF, is of relative degree two

where > 0 has to be chosen properly, antland £ are and £ is of degreel18. In this example

defined by (4) in terms of a minimal realization of th20th F = 1 p = —12.2708 + 306.5398i

—\ )

degree positive-real functiof. ~ (s—=p)(s—D)
Using this algorithm, we have freedom in choosing wherep is a pole ofF close to the frequency peak= 300

and the criteria of selecting the eigenvalues of (37). Ipad/s. Hence we can restate the problem of reducing the order

this example, we have chosen the 12 eigenvalues of large$tf to & = 12 as the problem of reducing the order Bf

magnitude and two different, namelyy = 260 (see Fig. 1) to ¢ = 10.

and . = 20 (see Fig. 2). As one can see in these figures, To reduce the order af; with the methods of Section Ill,

the frequency responce of the reduced-order model matchge needi1 interpolation conditions

the original model only in some frequency bands, due to the

restriction of placing the interpolation points at the spac 2 (s;) = F(s;) , =0,...10,

zeros. Moreover, it crucially depends on the choice@nd Fa(s;)

of the eigenvalues selection criteria. However, as poioted which we choose at the points = 199,s15 = 1075 £
in [28], these choices are not trivial. 0.1¢,s34 = 0.2+17, 556 = 0.01 £ 74¢, 57,5 = 0.01 £1.3250 -

Instead, applying the theory of Section Ill, we may choosg0%i, sg 10 = 0.005 & 9.9900 - 10%; and an uniform upper
the twelve spectral zeros and interpolation points antigrza bound on the gain, which we take to ke = 3.9811 -
For comparison with the Antoulas-Sorenson method, whichd?(= 140 dB). In the family of all such interpolants;, we
requires an interpolation conditidni(co) = 0, we would like  select the one that has spectral zerosat = —0.0612 +
to impose the same interpolation condition on the reduce@-3749:i, A3 = —175.0542,\s = —351.5899,\55 =
order systeml3“. SinceF' has relative degree two, it can be—7.4080 £ 70.4606¢, Ay s = —570.1525 + 2.5448 -



[3]
[4]
o | 5]

(6]

Singular Value(dB)

80}

(7]

-100

(8]

-120r

12th-order system by Anal. Interp.

+ original system

_140 - E— 1
10 10 o

o spectral zeros
* interpolation points
I I I I

2000 4000 6000 8000 10000

Frequency(rad/sec)

El

Fig. 3. Solution tuned by the global analysis approach.
[10]

10%, Mg.10 = —1.6436 - 10* + 7.5527 - 10%i. In Fig. 3, the
interpolation points and the spectral zerosfofare plotted
together with the reduced-order systémand the original
systemF. One can see thaf’ matches the peak around
w = 300rad/s, overlaps the original system at high and low
frequencies. Moreover, it matches the ripple arownd 10*
rad/s.

[11]

[12]

[13]

VI. CONCLUSIONS [14]

Over the last decades a global analysis approach for
analytic interpolation has been developed. It is based on;g;
complete smooth parameterization of all positive-reatrint
polants of degree less than the number interpolation points
terms of spectral zeros. In particular, if the spectral gene
chosen in the mirror image of the interpolation points, thél7]
problem is linear. The corresponding solution is the céntra
(maximum-entropy) solution. (18]

We have demonstrated that the passivity-preserving model
reduction method proposed by Antoulas and Sorensen canb¥
identified with the central solution. By applying the globaljg;
analysis approach, we have demonstrated that it is pogsible
obtain better approximants by choosing interpolation pzoin[21]
that are placed more strategically; i.e., not restrictetht®
mirror image of the spectral zeros.

It should be noted, however, that the implementation d#2l
the central solution provided by Sorensen’s algorithm, ifpg
which spectral zeros do not have to be determined explicitly
is numerically very efficient, and therefore, for very largd?4l
problems, preferable even to stochastically balancecc&un (55
tion, for which there aré?°>° bounds. Therefore, we propose
that the high-order model first be reduced by the Sorensd#f!
algorithm, and then fine-tuned by moving the interpolation
points and spectral zeros to improve the approximation. [27]

[16]
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