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The Separation Principle in Stochastic Control, Redux
Tryphon T. Georgiou, Fellow, IEEE, and Anders Lindquist, Life Fellow, IEEE

Abstract—Over the last 50 years, a steady stream of accounts
have been written on the separation principle of stochastic control.
Even in the context of the linear-quadratic regulator in continuous
timewithGaussian white noise, subtle difficulties arise, unexpected
by many, that are often overlooked. In this paper we propose a
new framework for establishing the separation principle. This ap-
proach takes the viewpoint that stochastic systems are well-defined
maps between sample paths rather than stochastic processes per se
and allows us to extend the separation principle to systems driven
by martingales with possible jumps. While the approach is more
in line with “real-life” engineering thinking where signals travel
around the feedback loop, it is unconventional from a probabilistic
point of view in that control laws for which the feedback equa-
tions are satisfied almost surely, and not deterministically for every
sample path, are excluded.

Index Terms—Certainty equivalence, separation principle, sto-
chastic control.

I. INTRODUCTION

O NE OF THE fundamental principles of feedback theory
is that the problems of optimal control and state estima-

tion can be decoupled in certain cases [30]. This is known as the
separation principle. The concept was coined early on in [17],
[32] and is closely connected to the idea of certainty equiva-
lence; see, e.g., [38]. In studying the literature on the separation
principle of stochastic control, one is struck by the level of so-
phistication and technical complexity. The source of the diffi-
culties can be traced to the circular dependence between control
and observations. The goal of this paper is to present a rigorous
approach to the separation principle in continuous time which
is rooted in the engineering view of systems as maps between
signal spaces.
The most basic setting begins with a linear system

(1)

with a state process , an output process and a control , where
is a vector-valued Wiener process, is a zero-mean

Gaussian random vector independent of , , and
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, , , , are matrix-valued functions of compatible di-
mensions, which we take to be continuous of bounded variation.
Moreover, is nonsingular on the interval , and if we
want the noise processes in the state and output equations to be
independent, as often is assumed but not required here, we take

. All random variables and processes are defined over
a common complete probability space .
The control problem is to design an output feedback law

(2)

over the window which maps the observation process
to the control input , in a nonanticipatory manner, so that the
value of the functional

(3)

is minimized, where and are continuous matrix functions
of bounded variation, is positive semi-definite and is
positive definite for all . How to choose the admissible class of
control laws has been the subject of much discussion in the
literature [27]. The conclusion, under varying conditions, has
been that can be chosen to be linear in the data and, more
specifically, in the form

(4)

where is the Kalman estimate of the state vector ob-
tained from the Kalman filter

(5)

and the gains and computed by solving to a pair of dual
Riccati equations.
A result of this kind is far from obvious, and the early litera-

ture was marred by treatments of the separation principle where
the non-Gaussian element introduced by an a priori nonlinear
control law was overlooked. The subtlety lies in excluding the
possibility that a nonlinear controller extracts more information
from the data than it is otherwise possible. This point will be ex-
plained in detail in Section II, where a brief historical account
of the problem will be given. Early expositions of the separation
principle often fall in one of two categories: either the subtle is-
sues are overlooked and inadmissible shortcuts are taken; or the
treatment is mathematically quite sophisticated and technically
very demanding. The short survey in Section II will thus serve
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Fig. 1. A feedback interconnection.

the purpose of introducing the theoretical challenges at hand, as
well as setting up notation.
In this paper we take the point of view that feedback laws (2)

should act on sample paths of the stochastic process rather
than on the process itself. This is motivated by engineering
thinking where systems and feedback loops process signals.
Thus, our key assumption on admissible control laws (2) is that
the resulting feedback loop is deterministically well-posed in
the sense that the feedback equations admit a unique solution
that causally depends on the input for each input sample path.
For this class of control laws we prove that the separation
principle stated above holds and moreover that it extends to
systems driven by general martingale noise. More precisely,
in this non-Gaussian situation the Wiener process in (1) is
replaced by an arbitrary (square-integrable) martingale process
with possible jumps such as a Poisson process martingale; see,
e.g., [19, p. 87]. Then, we only need to exchange the (linear)
Kalman estimate by the strict sense conditional mean

(6)

where

(7)

is the filtration generated by the output process; i.e., the family
of increasing sigma fields representing the data as it is produced.
The estimate needs to be defined with care so that it consti-
tutes a sufficiently regular stochastic process and realized by a
map acting on observations [2, page 17], [11]. Unfortunately,
the results in the present paper come at a cost since our key as-
sumption of well-posedness excludes control laws for which the
feedback system fails to be defined sample-wise. Existence of
strong solutions of the feedback equations is not enough to en-
sure well-posedness in our sense as we will discuss below. In
addition, the condition of deterministic well-posedness is often
difficult to verify. Yet, besides the fact that we prove the sep-
aration principle for general martingale noise, the sample-wise
viewpoint provides a simple explanation of why the separation
principle may hold in the first place.
Before proceeding we recast the system model (1) in an in-

tegrated form which allows similar conclusions for more gen-
eral linear systems in a unified setting. To this end, let

. System (1) can now be expressed in the form

(8)

where is the process obtained by setting and is
a Volterra kernel. This integrated form encompasses a consid-
erably wider class of controlled linear systems including delay-
differential equations, following [26], [27], which will be taken
up in Section VI. The corresponding feedback configuration is
shown in Fig. 1 where

(9)

is a Volterra operator and is a constant matrix. As usual, Fig. 1
is a graphical representation of the algebraic relationship

(10)

For the particular model in (1), , but in general
could be any matrix or linear system. Setting and
we obtain the special case of complete state information.
In a stochastic setting, the feedback (10) is said to have a

unique strong solution if there exists a non-anticipating func-
tion such that satisfies (10) with probability one
and all other solutions coincide with with probability one. It
is important to note that in our sample-wise setting we require
more, namely that such a unique solution exists and that (10)
holds for all , not only “almost all.” Consequences of this re-
quirement will be further elaborated upon below.
The outline of the paper is as follows. In Section II we begin

by reviewing the standard quadratic regulator problem and
pointing out subtleties created by a possible nonlinear control
law. We then review several strategies in the literature to
establish a separation principle, chiefly restricting the class of
admissible controls. Section III defines notions of signals and
systems used in our framework, and in Section IV we establish
necessary conditions for a feedback loop to make sense and
deduce a basic fact about propagation of information in the loop
through linear components. It Section V we state and prove
our main results on the separation principle for linear-quadric
regulator problems, allowing also for more general martingale
noise. Finally, in Section VI we prove a separation theorem for
delay systems with Gaussian martingale noise.

II. HISTORICAL REMARKS

A common approach to establishing the basic separation prin-
ciple stated at the beginning of Section I is a completion-of-
squares argument similar to the one used in deterministic linear-
quadratic-regulator theory; see e.g., [1]. For ease of reference,
we briefly review this construction. Given the system (1) and
the solution of the matrix Riccati equation

(11a)

Itô’s differential rule (see, e.g., [19], [31]) yields

where denotes the trace of the matrix . Then from (1)
and (11a) it readily follows that
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where

(11b)

Integrating this from 0 to and taking mathematical expec-
tation, we obtain the following expression for the cost func-
tional (3):

(12)

To ensure that has zero expectation, we need to
check that the integrand is square integrable. It is clear that
is square integrable for otherwise . Then the state
process

(13)

is square integrable as well. Here is the (square integrable)
state process corresponding to , and is the transition
matrix function of the system (1).
Now, if we had complete state information with (1) replaced

by

(14)

we could immediately conclude that the feedback law

(15)

is optimal, because the last term in (12) does not depend on the
control. However, when we have incomplete state information
with the control being a function of the observed process

, things become more complicated. Math-
ematically we formalize this by having any control process
adapted to the filtration (7); i.e., having -measurable for
each . Then, with given by (6), setting

(16)

we have , and therefore

(17)

where is the error covariance matrix function

(18)

A common mistake in the early literature on the separation prin-
ciple is to assume without further investigation that does not
depend on the choice of control. Indeed, if this were the case,
it would follow directly that (12) is minimized by choosing the
control as (4), and the proof of the separation principle would be

Fig. 2. A stochastic open loop (SOL) configuration.

immediate. (Of course, in the end this will be the case under suit-
able conditions, but this has to be proven.) This mistake prob-
ably originates from the observation that the control term in (13)
cancels when forming (16) so that

(19)

where

(20)

However, in this analysis, we have not ruled out that depends
on the control or, what would follow from this, that the filtra-
tion (7) does. A detailed discussion of this conundrum can be
found in [27]. In fact, since the control process is in general
a nonlinear function of the data and thus non-Gaussian, then so
is the output process .1 Consequently, the conditional expec-
tation (20) might not in general coincide with the wide sense
conditional expectation obtained by projections of the compo-
nents of onto the closed linear span of the components of

, and therefore, a priori, it could happen that
is not generated by the Kalman filter (5).
To avoid these problems one might begin by uncoupling the

feedback loop as in Fig. 2, and determine an optimal control
process in the class of stochastic processes that are adapted to
the family of sigma fields

(21)

i.e., for each , is a function of .
This problem, where one optimizes over the class of all control
processes adapted to a fixed filtration, was called a stochastic
open loop (SOL) problem in [27]. It is not uncommon in the
literature to assume from the outset that the control is adapted
to ; see, e.g., [6, Section 2.3], [16], [40].
In [27] it was suggested how to embed the class of admis-

sible controls in various SOL classes in a problem-dependent
manner, and then construct the corresponding feedback law.
More precisely, in the present context, the class of admissible
feedback laws was taken to consist of the nonanticipatory func-
tions such that the feedback loop

(22)

has a unique solution and is adapted to .
Next, we shall give a few examples of specific classes of feed-
back laws that belong to this general class.

1However, the model is conditionally Gaussian given the filtration ; see
Remark 6.
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Example 1: It is common to restrict the admissible class of
control laws to contain only linear ones; see, e.g., [12]. In a more
general direction, let be the class

(23)

where is a deterministic function and is an kernel. In
this way, the Gaussian property will be preserved, and will be
generated by the Kalman filter (5). Then it follows from (1) and
(5) that is generated by

which is clearly independent of the choice of control. Then so is
the error covariance (18), as desired. Even in the more general
setting described by (8), it was shown in [26, pp. 95–96] that

(24)

for any , where (21) is the filtration generated by the
uncontrolled output process obtained by setting in (8).
Example 2: In his influential paper [41], Wonham proposed

the class of control laws

(25)

in terms of the state estimate (6), where is Lipschitz
continuous in . For pedagogical reasons, we first highlight a
somewhat more restrictive construction due to Kushner [21].
Let

be the Kalman state estimate of the uncontrolled system

(26)

Here we use the notation to distinguish it from , defined
by (20), which a priori might depend on the control. Then the
Kalman filter takes the form

where the innovation process

generates the same filtration, , as ; i.e., for
. This is well-known, but a simple proof is given in

Section VI in a more general setting; see (64). Now, along the
lines of (13), define

where the control is chosen as

(27)

Since is Lipschitz, is the unique strong solution of the sto-
chastic differential equation

(28)

and it is thus adapted to and hence to ; see, e.g., [19,
p. 120]. Hence the selection (27) of control law forces to be
adapted to , and hence, due to

(29)

obtained from (13), for . However, since the
control-dependent terms cancel,

which inserted into (28) yields a stochastic differential equa-
tion, obeying the appropriate Lipschitz condition, driven by
and having as a strong solution. Therefore, is adapted to

, and hence, by (27), so is . Consequently, (29) implies
that for so that actually (24) holds. Finally,
this implies that , and thus is given by (25). However, it
should be noted that the class of control laws (27) is a subclass
of (25) as it has been constructed to make a priori adapted
to . Therefore, the relevance of these results, presented in
[21], for the proof in [22, page 348] is unclear. In their popular
textbook [20], widely used as a reference source for the validity
of the separation principle over a general class of admissible (in-
cluding nonlinear) controls, Kwakernaak and Sivan prove the
separation principle over a class of linear laws but claim with
reference to [21], [22] that it holds “without qualification” in
general [20, p. 390]. (However, see Remark 6 below.)
In his pioneering paper [41] Wonham proved the separation

theorem for controls in the class (25) even with a more gen-
eral cost functional than (3). However, the proof is far from
simple and marred by many technical assumptions. A case in
point is the assumption that is square and has a determinant
bounded away from zero, which is a serious restriction. A later
proof by Fleming and Rishel [15] is considerably simpler. They
also prove the separation theorem with quadratic cost functional
(3) for a class of Lipschitz continuous feedback laws, namely

(30)

where is a nonanticipatory function
of which is Lipschitz continuous in this argument.
Example 3: It is interesting to note that if there is a delay in

the processing of the observed data so that, for each , is
a function of ; , then (24) holds. To see
this, let be a positive integer, and suppose that for

. Since is -measurable on , it is
at the same time as well as -measurable. Then, since

it follows that for . Since
for , (24) follows by induction.



GEORGIOU AND LINDQUIST: SEPARATION PRINCIPLE IN STOCHASTIC CONTROL, REDUX 2485

Remark 4: Example 3 highlights the reason why the problem
with possibly control-dependent sigma fields does not occur in
the usual discrete-time formulation. Indeed, in this setting, the
error covariance (18) will not depend on the control, while, as
we have mentioned, some more analysis is needed to rule out
that its continuous-time counterpart does. This invalidates a pro-
cedure used in several textbooks (see, e.g., [36]) in which the
continuous-time is constructed as the limit of finite differ-
ence quotients of the discrete-time , which, as we have seen in
Example 3, does not depend on the control, and which simply
is the solution of a discrete-time matrix Riccati equation. How-
ever, we cannot a priori conclude that continuous-time sat-
isfies this Riccati equation. For this we need (24), or alterna-
tively arguments such as in Remark 6. Otherwise the argument
is circular.
Remark 5: Historically, a popular approach was introduced

in Duncan and Varaiya [14] and Davis and Varaiya [13] (see
also [6, Section 2.4]) based on weak solutions of the relevant
stochastic differential equation. In their analysis the driving
noise is a Wiener process. The key element of their approach is
to start with an uncontrolled system and, through a change of
probability measure, correspond its solutions to those of a new
system with a suitably defined control input and noise process.
This control input, together with the conformably altered
input process, leaves the filtration of the observation process
unaffected, thereby bypassing the central issue dealt with in the
current paper. Briefly, starting from a Wiener process of an
uncontrolled system with an output process and any process
adapted to , by a suitable change of probability measure

(that depends on ),

can be transformed, using the Girsanov transformation, into a
new Wiener process, which in the sense of weak solutions [19]
is the same as any other Wiener process. Replacing in the
original uncontrolled system by leaves the filtration

unaffected.
Remark 6: Yet another approach to the separation principle

is based on the fact that, although (1) with a nonlinear control
is non-Gaussian, the model is conditionally Gaussian given the
filtration [29, Chapters 16.1]. This fact can be used to show
that is actually generated by a Kalman filter [29, Chapters
11 and 12]. This last approach requires quite a sophisticated
analysis and is restricted to the case where the driving noise
is a Wiener process.
A key point for establishing the separation priniciple is to

identify admissible control laws for which (24) holds. For each
such control law we need a solution of the feedback (10), i.e.,
a pair of stochastic processes that satisfies

(31)

Since is the driving process, it is natural to seek a solution
which causally depends on and is unique. If this is the

case then is a strong solution; otherwise it is a weak solution.
There are well-known examples of stochastic differential equa-
tions that have only weak solutions [19, page 137], [5], [37].
Moreover, as we have mentioned in Remark 5, weak solutions
circumvent the need to establish the equivalence (24) between

filtrations. Thus, it has been suggested that the framework of
weak solutions is the appropriate one for control problems [34,
page 149]. Yet, from an applications point of view, where the
control needs to be causally dependent on observed data, this
is in our view questionable. In fact, there are control laws for
which (31) only admits a weak solution and (24) does not hold
(Remark 12). In the present paper we take an even more strin-
gent view on the causal dependence. We require that (31) has a
unique strong solution which in addition specifies a measurable
map between sample-paths for every sample path of
(cf. [19, Remark 5.2, p. 128], [34, p. 122]), thus modeling corre-
spondence between signals—we further elaborate upon this in
Section IV.
In short, we only allow control laws which are physically re-

alizable in an engineering sense, in that they induce a signal that
travels through the feedback loop. This comes at a price since
there are stochastic differential equations having strong solu-
tions that do not fall in this category (Remark 12). Moreover,
verifying that a control law is admissible in our sense may be
difficult to ascertain in general. On the other hand, an advantage
of the approach is that the class of control laws includes dis-
continuous ones and allows for statements about linear systems
driven by non-Gaussian noise with possible jumps.We now pro-
ceed to develop the approach and the key property of determin-
istic well-posedness.

III. SIGNALS AND SYSTEMS

Signals are thought of as sample paths of a stochastic process
with possible discontinuities. This is quite natural from several
points of view. First, it encompasses the response of a typical
nonlinear operation that involves thresholding and switching,
and second, it includes sample paths of counting processes and
other martingales. More specifically we consider signals to be-
long to the Skorohod space ; this is defined as the space of
functions which are continuous on the right and have a left limit
at all points, i.e., the space of càdlàg functions.2 It contains the
space of continuous functions as a proper subspace. The no-
tation or emphasizes the time interval where
signals are being considered.
Traditionally, the comparison of two continuous functions in

the uniform topology relates to how much their graphs need to
be perturbed so as to be carried onto one another by changing
only the ordinates, with the time-abscissa being kept fixed.
However, in order to metrize in a natural manner one must
recognize the effect of uncertainty in measuring time and allow
a respective deformation of the time axis as well. To this end, let
denote the class of strictly increasing, continuous mappings

of onto itself and let denote the identity map. Then, for
, ,

defines a metric on which induces the so called Sko-
rohod topology. A further refinement so as to ensure bounds
on the slopes of the chords of , renders separable
and complete, that is, is a Polish space; see [7, The-
orem 12.2].

2“continue à droite, limite à gauche” in French, alternatively RCLL (“right
continuous with left limits”) in English.
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Systems are thought of as general measurable nonanticipa-
tory maps from sending sample paths to sample paths
so that their outputs at any given time is a measurable function
of past values of the input and of time. More precisely, let

for
for .

Then, a measurable map is said to be a
system if and only if

An important class of systems is provided by stochastic differ-
ential equations with Lipschitz coefficients driven by a Wiener
process [34, Theorem 13.1]. These have pathwise unique strong
solutions and induce maps between corresponding path spaces
[34, page 127], [19, pages 126–128]. Also, under fairly gen-
eral conditions (see e.g., [33, Chapter V]), stochastic differential
equations driven by martingales with sample paths in have
strong solutions who are semi-martingales.
Besides stochastic differential equations in general, and those

in (8) in particular, other nonlinear maps may serve as systems.
For instance, discontinuous hystereses nonlinearities as well as
non-Lipschitz static maps such as , are reason-
able as systems, from an engineering viewpoint. Indeed, these
induce maps from (or from , as in the case of
relay hysteresis), are seen to be systems according to our defini-
tion,3 and can be considered as components of nonlinear feed-
back laws.We note that a nonlinearity such as
is not a system in the sense of our definition since the output is
not in general in . Such nonlinearities, which often appear in
bang-bang control, need to be approximated with a physically
realizable hysteretic system.

IV. WELL-POSEDNESS AND A KEY LEMMA

It is straightforward to construct examples of deterministi-
cally well-posed feedback interconnections with elements as
above. However, the situation is a bit more delicate when con-
sidering feedback loops since it is also perfectly possible that,
at least mathematically, they give rise to unrealistic behavior. A
standard example is that of a feedback loop with causal compo-
nents that “implements” a perfect predictor. Indeed, consider a
system which superimposes its input with a delayed version
of it, i.e.,

for , and assume initial conditions for .
Then the feedback interconnection of Fig. 3 is unrealistic as it
behaves as a perfect predictor. The feedback equation

gives rise to , and hence,

3More precisely, to be seen as a system, relay hysteresis needs to be preceded
by a low-pass filter since its domain consists of continuous functions.

Fig. 3. Basic feedback system.

Therefore, the output process is not causally dependent on the
input. The question of well-posedness of feedback systems has
been studied from different angles for over forty years. See for
instance the monograph by Jan Willems [39].
In our present setting of stochastic control we need a concept

of well-posedness which ensures that signals inside a feedback
loop are causally dependent on external inputs. This is a natural
assumption from a systems point of view.
Definition 7: A feedback system is deterministically well-

posed if the closed-loop maps are themselves systems; i.e., the
feedback equation has a unique solution
for all inputs and the operator is itself a
system.
Thus, now thinking about and in the feedback system

in Fig. 3 as stochastic processes, deterministic well-posedness
implies that for , where and are
the sigma-fields generated by and , respectively. This is a
consequence of the fact that is a system. Likewise,
since is also a system, so that in fact

(32)

Next, we consider the situation in Fig. 1 and the relation
between and the filtration of the process .
The latter represents the “uncontrolled” output process where
the control law is taken to be identically zero. A key tech-
nical lemma for what follows states that the filtrations and
are also identical if the feedback system is deterministically

well-posed. This is not obvious at first sight, solely on the basis
of the linear relationships and , as the fol-
lowing simple example demonstrates: the two vector processes

and generate the same filtrations while and
do not.

Lemma 8: If the feedback interconnection in Fig. 1 is de-
terministically well-posed, is a system, and is a linear
system having a right inverse that is also a system, then

is a system and , .
Remark 9: Note that, for the prototype problem involving (1),

the conditions on in Lemma 8 are trivial as and
hence is a right inverse. The requirement in the
lemma that is a system allows for a more general situation
where is not itself a system (e.g., generating outputs not in D),
but where the cascade connection is still admissible.

Proof: By well-posedness is a system. To
show that exists and is a system, first note that

(33)
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The first step is using left distributivity and the second is using
the fact that is linear. But then

(34)

where . Thus, is a “right inverse” of
in that the composition of the two maps is the iden-

tity. We claim that is in fact the inverse of (which is neces-
sarily unique) in that and

(35)

establish a bijective correspondence between and , i.e., that
both as well as are identity maps. We need to show
the latter. The only potential problem would be if two distinct
values and satisfy (35) for the same value for . We now
show that this is not possible.
Since is right invertible, can be written in the form
for . Let and .

Then , so by (34) is a particular solution of (35).
Now let be another solution, i.e., suppose that

(36)

and that . We begin by writing in the form ,
which can always be done since is right invertible. Next we
set . Then, by well-posedness, is the unique
solution of

(37)

Moreover, by (33) and (36), , and consequently
with . We now claim that which would

then contradict the assumption that . To show this, note
that, since and is linear,

But the solution to (37) is unique by well-posedness. Hence,
which proves our claim.

Therefore, finally, is invertible and

is itself is a system, being a composition of systems. Thus, the
configuration in Fig. 4 is deterministically well-posed. Using
(33) once again,

(38)

It now follows that

(39)

while also (35) holds. Equation (39) shows that ,
whereas (35) shows that .

Fig. 4. An equivalent feedback configuration.

Fig. 5. Feedback loop for complete state information.

The essence of the lemma4 is to underscore the equivalence
between the configuration in Fig. 1 and that in Fig. 4. It is this
equivalence which accounts for the identity between
the respective -algebras. An analogous notion of well-posed-
ness was considered by Willems in [40] where however, in con-
trast, the well-posedness of the feedback configuration in Fig. 4,
and consequently the validity of , is assumed at the
outset.
In the present paper we consider only feedback laws that

render the feedback system deterministically well-posed. There-
fore we highlight the conditions in a formal definition.
Definition 10: A feedback law is deterministically well-

posed for the system (8) if is a system and the feedback loop
of Fig. 1 is deterministically well-posed.
If the feedback law is deterministically well-posed, then, by

Lemma 8, the feedback loop in Fig. 4 is also deterministically
well-posed. Thus, in essence, given the assumption that

can be uniquely and causally solved for every input
sample path, so can .
Remark 11: For pedagogical reasons, we consider the case

of complete state information, corresponding to (14). This cor-
responds to taking and , and the basic feedback
loop is as depicted in Fig. 5. Then the basic condition (32) im-
plied by well-posedness states that the filtration , where

, is constant under variations of the
control. Consequently, we do not need Lemma 8 to resolve an
issue of circular control dependence. This is completely consis-
tent with the analysis leading up to (15) in Section II.

4It is interesting to note, as was pointed out by a referee, that the proof of the
lemma relies critically on the action of the operator on a null set,
as the probability for any nontrivial model. This fact
may be disturbing from a probabilistic point of view but does not invalidate the
lemma.
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Remark 12: We now present two examples of feedback sys-
tems which fail to be deterministically well-posed. Consider the
system

where is a Wiener process, i.e., in Fig. 5. First
take the control law to be the Tsirel’son functional

in [34, p. 156]. Then the solution of the feedback equa-
tion can only be defined in the weak sense and, remarkably,

is strictly contained in for (see, e.g., [34, The-
orem (18.3)]). For a different example5, take the control law

with . This is not determinis-
tically well-posed although the stochastic differential equation

has a unique strong solution [18, Chapter 5, Proposition 5.17]
in the sense that any other solution has same sample paths with
probability one (indistinguishable). The failure to be determin-
istically well-posed can be traced to the fact that this control law
allows for multiple consistent responses for , a physically
questionable situation. Indeed, the ordinary differential equa-
tion is not Lipschitz and has infinitely many solutions.

V. SEPARATION PRINCIPLE

Our first result is a very general separation theorem for the
classical stochastic control problem stated at the beginning of
Section I.
Theorem 13: Given the system (1), consider the problem of

minimizing the functional (3) over the class of all feedback laws
that are deterministically well-posed for (1). Then the unique

optimal control law is given by (4), where is defined by (11),
and is given by the Kalman filter (5).

Proof: By Lemma 8, (18) does not depend on the control.
Therefore, given the analysis at the beginning of Section II, (4)
is the unique optimal control provided it defines a deterministi-
cally well-posed control law. It remains to show this.
Inserting (4) into (5) yields

where the transition matrix of
has partial derivatives in both arguments. Together

with (4) this yields

(40)

where . Clearly has
bounded variation for each , and therefore integration
by parts yields

(41)

5This was kindly suggested by a referee.

which is defined samplewise. Now inserting into
(9) and (10) we obtain

(42)

where takes the form

with the kernel given by

where is the kernel of the Volterra operator (9). A simple
calulation yields

where is the transition matrix of , and therefore
is a continuous Volterra kernel, and

so is the unique solution of the resolvent equation

(43)

[35], [42]. From (42) we have

from which it follows that

Hence has a unique preimage given by

which is clearly a system. Hence the feedback loop is determin-
istically well-posed.
Consequently, for a system driven by a Wiener process with

Gaussian initial condition, the linear control law defined by (4)
and (5) is optimal in the class of all linear and nonlinear control
laws for which the feedback system is deterministically well-
posed.
If we forsake the requirement that is given by the Kalman

filter (5), we can now allow to be non-Gaussian and to be
a square-integrable martingale, even allowing jumps.
Theorem 14: Given the system (1), where is a square-in-

tegrable martingale and is an arbitrary zero mean random
vector independent of , consider the problem of minimizing
the functional (3) over the class of all feedback laws that are
deterministically well-posed for (1). Then, provided it is deter-
ministically well-posed, the unique optimal control law is given
by (4), where is defined by (11) and is the conditional
mean (6).
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Proof: Given Lemma 8, we can use the same comple-
tion-of-squares argument as in Section II except that we now
need to use Ito’s differential rule for martingales (see, e.g., [19],
[33]), which, in integrated form, becomes

(44)

where is the quadratic variation of and is an extra
term which is in general nontrivial when has a jump compo-
nent. Now let

where is the transition function of (1) which is differentiable
in both arguments. Then, , where and
is a continuous process with bounded variation. Therefore

In fact, [19, Corollary 8.5]. Since does not
depend on the control , neither does the last term in the integral
in (44). If has a jump component, we have a nontrivial extra
term in (44), namely

where the sum is over all jump times on the interval and
is the jump, and we need to ensure that

this term does not depend on the control either. However, since
, we have .

Then the rest of the proof that (4) with given by (6) is the
unique minimizer of (3) over all deterministically well-posed
control laws follows from an argument as in Section II. More
precisely, using (11) and completing the squares we obtain

(45)

Next we claim that exists and
equals zero. To see this note that the integrand is nonanticipatory
[34, p. 122]. It also has finite variance, since is a square-in-
tegrable martingale and needs to be square-integrable for the
cost to be finite. Therefore the integrand satisfies the condition
[19, eqn. (8.8)], and hence is a mar-
tingale as well and thus has zero mean. Consequently, the only
control dependent term in (45) is the term appearing in (17).
By Lemma 8, the estimation error does not depend on the
control. Hence the statement of the theorem follows.
We note that in general the optimal control law does not be-

long to and that is not given by the Kalman filter (5) but

Fig. 6. Model for step change in white noise.

by the conditional mean (6), which then has to be chosen with
some care since it is only defined almost surely as projection
for each individual time . To this end it is standard to select the
optional projection of on which is a stochastic process
with a càdlàg version [2, page 17]. Often is given by a non-
linear filter as in the following example. However, even in those
cases, it is difficult to ascertain well-posedness. At present, we
are unable to establish that the control law in the example is de-
terministically well-posed and hence optimal in our admissible
class of controls. We expect that Theorem 14 can be strength-
ened by removing the a priori assumption of well-posedness
for cases where the optimal filter can be expressed as a sto-
chastic differential equation with suitably well-conditioned co-
efficients. Such a strengthening is needed to prove optimality
for the following example where we are currently unable to es-
tablish well-posedness.
Example 15: Consider the system in Fig. 6. Here, rep-

resents a parameter which undergoes a sudden random step
change due to a random external forcing . The step can be in
either direction. Thus, as a stochastic process is defined

(46)

where with equal probability and is a random variable
uniformly distributed on . Clearly is a martingale. Our
goal is to maintain a value for the state close to zero on the
interval via integral control action through , indirectly,
by demanding that

be minimal with . Here, denotes the control. The
process is observed in additive white noise . The system
is now written in the standard form (1) as follows:

(47)

where is a Wiener process. We solve the Riccati equation
with boundary condition to obtain

. The control law in Theorem 14
is

(48a)

where the conditional expectation is determined separately
using a (nonlinear) Wonham-Shiryaev filter

(48b)
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with and . Following [16, page 222] we ex-
plain the steps for deriving the filter equations in Appendix VIII.
In order to conclude that the control law (48) is actually op-

timal we need to establish that the feedback loop is determinis-
tically well-posed. This requires that (10) has a unique solution
for each . Noting that the innovation
can be expressed as

this requires that the stochastic differential equations (47)–(48)
can be uniquely solved pathwise as a map from
to . There are conditions in the literature for when
such maps between path spaces exist (see [34, page 126, The-
orem 10.4], [19, page 128], and the references therein). How-
ever, we are not able at present to verify that these hold in our
case.
In view of Remark 11 we immediately have the following

corollary to Theorem 14 for the case of complete state informa-
tion. A similar statement was given in [27] in a different context.
Corollary 16: Given the system (14), where is a square-in-

tegrable martingale and is an arbitrary random vector inde-
pendent of , consider the problem ofminimizing the functional
(3) over the class of all feedback laws that are deterministi-
cally well-posed for (14). Then the unique optimal control law
is given by (15), where is defined by (11).

Proof: It just remains to prove that the control law (15) is
deterministically well-posed. To this end, we first note that (with

) the feedback (10) becomes

where with (as before) being
the transition matrix function of . Then a straight-forward cal-
culation shows that

where is the unique solution of the resolvent (43). This estab-
lishes well-posedness.
Example 17: Let the driving noise in (14) be given by

either a Poisson martingale [19, page 87], or a geometric
Brownian motion [19, page 124]

where is a Wiener process, or a combination. Then the control
law is optimal for the problem to minimize
(3).

VI. SEPARATION PRINCIPLE FOR DELAY-DIFFERENTIAL
SYSTEMS

The formulation (8) covers more general stochastic systems
than the ones considered above. An example is a delay-differ-
ential system of the type

Apparently, stochastic control for various versions of such sys-
tems were first studied in [23]–[27], and [9], although [9] relies
on the strong assumption that the observation is “functionally
independent” of the control , thus avoiding the key question
studied in the present paper.
Here, as in [26], we shall consider the wider class of sto-

chastic systems

(49)

where and are of bounded variation in the first argument
and continuous on the right in the second, is deter-
ministic (for simplicity) for , and . More
precisely, for , for

, and the total variation of is bounded by
an integrable function in the variable , and the same holds for
. Moreover, to avoid technicalities we assume that is now a

(square-integrable) Gaussian (vector) martingale. Now, the first
of equations (49) can be written in the form

(50)

[26, p. 85], where is the Green’s function corresponding to the
deterministic system [3] (also see, e.g., [26, p. 101]). In the same
way, we can express the second equation in integrated form.
Consequently, (49) can be written in the form (8), where and
are computed as in [26, pp. 101–103]. The problem is to find

a feedback law (2) that minimizes

(51)

subject to the constraint (49), where

(52)

and is a positive Stieltjes measure.
Lemma 8 enables us to strengthen the results in [26]. To this

end, to avoid technicalities, we shall appeal to a representation
result from [27] rather than using a completion-of-squares ar-
gument, although the latter strategy would lead to a stronger
result where could be an arbitrary (square-integrable) mar-
tingale. A completion-of-squares argument for a considerably
simpler problem was given in [8], but, as pointed out in [28],
this paper suffers from a similar mistake as the one pointed out
earlier in the present paper. In this context, we also mention
the recent paper [4], which considers optimal control of a sto-
chastic system with delay in the control. This paper assumes at
the outset that the separation principle for delay systems is valid
with a reference to [20]. Instead of basing the argument on [20],
which is not quite appropriate here, their claim could be justi-
fied by noting that the delay in the control also implies a delay
in information as in Example 3 above.
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Now, it can be shown that the corresponding deterministic
control problem obtained by setting has an optimal linear
feedback control law

(53)

where we refer the reader to [26] for the computation of .
The following theorem is a considerable strengthening of the
corresponding result in [26].
Theorem 18: Given the system (49), where is a Gaussian

martingale, consider the problem of minimizing the functional
(51) over the class of all feedback laws that are deterministi-
cally well-posed for (1). Then the unique optimal control law is
given by

(54)

where is the deterministic control gain (53) and

(55)

is given by a linear (distributed) filter

(56a)

(56b)

where is the innovation process

(57)

and the gain is as defined in [26, p.120].
For the proof of Theorem 18 we shall need two lemmas. The

first is a slight reformulation of Lemma 4.1 in [27] and only
requires that be a martingale.
Lemma 19 ([27]): Let be a square-integrable martingale

with natural filtration

(58)

satisfying , where , , are non-
decreasing functions, and is the Kronecker delta equal to
one for and zero otherwise. With a square-integrable
control process adapted to , let

(59)

be the unique orthogonal decomposition for which is deter-
ministic and, for each , is orthogonal to the linear
span of the components of . Moreover, let
be a square-integrable process adapted to and having a

corresponding orthogonal decomposition

(60)

Then , defined by (8) exchanging for , has the
orthogonal decomposition

(61)

where

(62)

and

(63)

For a proof of this lemma, we refer the reader to [27].
Lemma 20: Let be the output process of the closed-loop

system obtained after applying a deterministically well-posed
feedback law to the system (49). Then the innovation
process (57) is a Gaussian martingale, and the corresponding
filtration (58) satisfies

(64)

Proof: As can be seen from the equation (50) and the re-
mark following it, the process obtained by setting
in (49) is given by for a process
adapted to . Define , where

. Now, and are jointly Gaussian, and there-
fore, for each , the components of belong to
the closed linear span of the components of the semimartingale

, and hence

for some -kernel . Therefore, is Gaussian, and its natural
filtration satisfies . Now let be the resolvent of
the Volterra equation with kernel ; i.e., the unique solution of
the resolvent equation

[35], [42]. Then

and hence . Consequently, in view of Lemma 8,
. Next observe that

where is a causal (linear) function of the control . Since
is adapted to ,
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and therefore the innovation process (57) satisfies
. Equation (64) now follows.

Finally, to prove that the innovation process is a martingale
we need to show that

To this end, first note that

(65)

where . Since all the processes are jointly
Gaussian (the control-dependent terms have been canceled in
forming ), independence is the same as orthogonality. Since

for , the first term in (65) is zero. The
second term can be written

which is zero since is a martingale.
We are now in a position to prove Theorem 18. Lemma 20

shows that the innovation process (57) is a martingale. It is no
restriction to assume that is diagonal; if it is not,
we just normalize the innovation process by replacing by

, where . Then we set
, . Since for

(Lemma 20), admissible controls take the form (59). Moreover,
the process is adapted to , and hence,
analogously to (59), it has the decomposition

(66)

which now will take the place of (61) in Lemma 19. As before,
let be the process obtained by setting . By Lemma 8,
does not depend on the control . Moreover, since and

are jointly Gaussian,

(67)

replacing (60) in Lemma 19. Moreover,

where the last term does not depend on the control, since
. Hence, by Lemma 19, the problem is now reduced

to finding a control (59) and a state process (66) minimizing
subject to

(68a)

(68b)

(68c)

where the last equation has been modified to account for the
fact that . Clearly, this problem decomposes into several
distinct problems. First need to chosen so that is min-
imized subject to (68a). This is a deterministic control problem
with the feedback solution

(69)

where is as in (53). Secondly, for each and
, has to be chosen so as to minimize

subject to (68b). This again is a determin-
istic control problem with the optimal feedback solution

(70)

Finally, should be chosen so as to minimize sub-
ject to (68c). This problem clearly has the solution , and
hence as well. Combining these results inserting them
into (59) then yields the optimal feedback control

It remains to show that this is exactly the same as (54); i.e., that

(71)

To this end, first note that, since the optimal control is linear in
, will take the form

where , the same as in (71). Clearly
for , and therefore

showing that the kernel does not depend on ; hence this
index will be dropped. Now, setting , comparing with
(66) and noting that , we see that is the matrix
with columns , establishing (71),
which from now we shall write

(72)

Hence, (54) is the optimal control, as claimed. Moreover,

which yields (56a). To derive (56b), follow the procedure
in [26].
It remains to show that the optimal control law (54) is deter-

ministically well-posed. To this end, it is no restriction to as-
sume that so that all processes have zero mean. Then
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it follows from (54) and the unsymmetric Fubini Theorem of
Cameron and Martin [10] that

where

and likewise from (57) that

where

The function is a Volterra kernel and therefore the Volterra
resolvent equation

has a unique solution , from which it follows that

Then the optimal control law is given by (40), where now is
given by

Now, for the optimal control law, is of bounded
variation for each [26], and hence so is . Hence

can be defined samplewise as in (41). To complete the proof
that the optimal feedback loop is deterministically well-posed
we proceed exactly as in the proof of Theorem 13, noting that
in the present setting

where is the transition matrix of [26, p.101].
Remark 21: It was shown in [27] that, in the case of complete

state information , the control (53) is optimal even when
is an arbitrary (not necessarily Gaussian) martingale.

VII. CONCLUSIONS

In studying the literature on the separation principle of sto-
chastic control, one encounters many expositions where subtle
difficulties are overlooked and inadmissible shortcuts are taken.
On the other hand, for most papers and monographs that provide

rigorous derivations, one is struck by the level of mathematical
sophistication and technical complexity, which make the ma-
terial hard to include in standard textbooks in a self-contained
fashion. It is our hope that our use of deterministic well-posed-
ness provides an alternative mechanism for understanding the
separation principle that is more palatable and transparent to the
engineering community, while still rigorous. The new insights
offered by the approach allow us to establish the separation prin-
ciple also for systems driven by non-Gaussian martingale noise.
However, in this more general framework the key issue of es-
tablishing well-posedness for particular control systems is chal-
lenging and more work needs to be done.

APPENDIX

Consider the “uncontrolled” observation process

If denotes the law of and

then, under a new measure , becomes a
Wiener process while the law of (i.e., of and ) is the same as
before. Under , the two processes and are independent.
The conditional expectation is now given by (Bayes’ formula
[16, p. 174]) as shown in (73) at the bottom of the page. Here

, when and 0 otherwise,
and . Note that . We
also define and

From (73), , where and
. By first noting that and

satisfy the stochastic differential equations

respectively, the Itô rule applied to the expression
for the conditional expectation gives the filter equations (setting

)

(74a)

(74b)

Finally, noting that the innovation is equal to
for the controlled system, we obtain the filter equations (48).

(73)
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