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Abstract— In [7], [6] a theory for degree constrained interpo-
lation has been developed by exploring the minimizers of certain
convex entropy functionals. In the present paper, we introduce
and study relevant inverse problems. More specifically, we
answer the following two questions. First, given a function f
which satisfies specified interpolation conditions, when is it that
f can be obtained as the minimizer of a suitably chosen entropy
functional? Second, given a function g, when does there exist
a suitably entropy functional so that the unique minimizer
f which is subject to interpolation constraints also satisfies
|f | = |g| on the unit circle. The theory and answers to these
questions suggest an approach to identifying interpolants of a
given degree and of a given approximate shape.

I. INTRODUCTION

The topic of this paper relates to the framework and the
mathematics of modern robust control. Although a theoret-
ical and computational approach which uses a state-space
formalism exists, certain fundamental questions appear to be
easier to deal with in the framework of analytic function
theory. Indeed, the foundational work of George Zames in
the early 1980’s cast the basic robust control problem as an
analytic interpolation one, where the interpolation constraints
are there to ensure stability of the feedback scheme while a
norm bound guarantees performance and robustness. This is
the setting which motivated the question of characterizing an-
alytic interpolants with a degree constraint (see [7], [6]). The
theory in [7], [6] utilizes the functional form of minimizers
of certain weighted entropy functionals. Conveniently, these
minimizers are rational and of a certain generic McMillan
degree (see also [12]).

Naturally, the quality of control depends on the frequency
characteristics of the interpolants, which in turn depends
heavily on suitable weight selection. The issue of how the
choice of any weights and indices affects the final design
is by no means unique here. It was R.E. Kalman [13] who,
in the context of quadratic optimal control, first raised the
question of what is it that characterizes optimal designs and
further, how to describe all performance criteria for which
a certain design is optimal. Following Kalman’s example
we pursue here the corresponding inverse problem for the
theory of analytic interpolation with complexity constraint
(as developed in [7], [6]).
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In Section II we establish notation as well as review basic
facts in analytic interpolation and in complexity constrained
interpolation. We only discuss interpolation on the unit disc
D = {z : |z| < 1}. In Section III we formulate the inverse
problem and present our main results. In Section IV we
present a method for degree reduction of interpolants, and in
Section V we illustrate the application and insights gained
by our main results as well as the degree reduction method
of Section IV. Finally, in Appendix VII we collect the proofs
of the various propositions.

II. BACKGROUND

Given complex numbers z0, z1, . . . , zn in D and complex
numbers w0, w1, . . . , wn, the classical Pick interpolation
problem asks for a function f in the Schur class

S = {f ∈ H∞(D) : ‖f‖∞ ≤ 1}

which satisfies the interpolation condition

f(zk) = wk, k = 0, 1, . . . , n. (1)

It is well-known (see, e.g., [8]) that such a function exists if
and only if the Pick matrix

P =

[

1 − wkw̄`

1 − zk z̄`

]n

k,`=0

(2)

is positive semi-definite. The solution is unique if and only
if P is singular, in which case, f is a Blaschke product of
degree equal to the rank of P . In this paper, throughout, we
assume that P is positive definite and hence, that there are
infinitely many solutions to the Pick problem. A complete
parameterization of all solutions was given by Nevanlinna
(see e.g. [1]), and for this reason the subject is often referred
to as Nevanlinna-Pick interpolation.

In engineering applications f usually represents the trans-
fer function of a feedback control system or of a filter, and
therefore the McMillan degree of f is of significant interest.
Thus, it is naturally to require that f be rational and of
bounded degree. Such a constraint completely changes the
nature of the underlying mathematical problem.

The Nevanlinna-Pick theory provides a single solution, the
so-called central solution, which is rational and of a generic
degree equal to n. It provides no insight and no help in
determining any other possible solutions of the same degree.
This central solution is also referred to as the maximum-
entropy solution because it maximizes the functional

∫

T

log(1 − |f |2)dm



subject to (1), where T = {z : |z| = 1} is the unit circle and
m is the normalized Lebesgue measure on T. Determining
extremals for such an entropy functional leads to a set of
linear equations (canonical equation) which can be expressed
and solved in considerable generality in state space form
[15].

Following [7], [12], we consider the more general entropy
functional

KΨ : S → R ∪∞, KΨ(f) = −

∫

T

Ψ log(1 − |f |2)dm,

where Ψ is a function that generally only needs to be
integrable and positive on T. We study how the minimizers
of

min KΨ(f) s.t. f(zk) = wk, k = 0, . . . , n, f ∈ S, (3)

depend on the weighting function Ψ and then determine
when an interpolant f is attainable as a minimizer of (3)
for a suitable choice of Ψ. One particularly interesting case,
as we will see below, is when Ψ = |σ|2 and σ belongs to
the class of rational functions with poles at the conjugate
inverses of the interpolation points.

Let

φ =
n

∏

k=0

zk − z

1 − z̄kz

and let U : f(z) → zf(z) denote the standard shift operator
on H2. Then φH2 is a shift invariant subspace, i.e. f ∈ φH2

imply that U(f) = zf ∈ φH2. Denote by K the co-invariant
subspace H2 	 φH2. Then K is invariant under U∗, where
U∗ denotes the adjoint of U . Let K0 denote the set of outer
functions in K that are positive in the origin. The following
result is taken from [7].

Theorem 1: Suppose that the Pick matrix (2) is positive
definite, and let σ be an arbitrary function in K0. Then there
exists a unique pair of elements (a, b) ∈ K0 × K such that

(i) f = b/a ∈ H∞ with ‖f‖∞ ≤ 1
(ii) f(zk) = wk , k = 0, 1, . . . , n, and

(iii) |a|2 − |b|2 = |σ|2 a.e. on T.
Conversely, any pair (a, b) ∈ K0 × K satisfying (i) and (ii)
determines, via (iii), a unique σ ∈ K0. Moreover, setting
Ψ = |σ|2, the optimization problem

min KΨ(f) s.t. f(zk) = wk , k = 0, . . . , n

has a unique solution f that is precisely the unique f ∈ S

satisfying conditions (i), (ii) and (iii).
In the above, K consists of all rational functions

ρ(z)/τ(z), where ρ is a polynomial of degree at most n
with all its roots outside the unit disc D and

τ(z) =

n
∏

k=0

(1 − z̄kz).

The n roots of the polynomial znρ(z−1) are referred to as
spectral zeros.

Theorem 1 has two parts: The first part implies that the in-
terpolants of degree at most n are completely parameterized
in terms of the spectral zeros; i.e., there is bijection between
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Fig. 1. Possible shapes of degree 1 interpolants

the class of pairs (b, a) so that f = b/a is an interpolant of
degree at most n, and the set of n points in the unit disc.
Given an arbitrary choice of spectral zeros, the second part
provides a convex optimization problem, the unique solution
of which is precisely the corresponding interpolant. If an
interpolation condition is specified at 0, i.e., z0 = 0, then
σ ≡ 1 ∈ K0, and the central solution is the one for which
Ψ ≡ 1 and ρ = τ . The corresponding spectral zeros are at the
conjugate inverse (mirror image in unit circle) of {zk}n

k=1.
The theorem is stated in [7], allowing for considerably

more general interpolation conditions than (ii). The special
case where φ = zn is analogous to the so-called covariance
extension problem with degree constraints, which is stated
for Charathéodory functions rather than Schur functions. The
background to the derivation of Theorem 1 has a long history.
The existence part of the parameterization was first proved in
the covariance extension case in [9], [10] the uniqueness part
(as well as well-posedness) in [5]. The optimization approach
was initiated in [3] (also, see the extended version [4]) and
further developed in, e.g., [6], [2], [11].

To motivate the basic inverse problem let us consider a
simple toy example in sensitivity shaping taken from [12],
which leads to a problem with (z0, w0) = (0, 0.4) and
(z1, w1) = (0.5, 0).1 The class of all interpolants of degree
at most one are parameterized by one spectral zero. Figure 1
depicts the modulus of the interpolant f as the parameter
ranges over the interval (−1, 1). We want to chose the shape
that best satisfies additional design specifications.

An inspection of Figure 1, shows that certain prespecified
shapes |f | are possible to achieve with an interpolant of
degree one, others are not. In the next section we will
consider whether a particular shape is attainable for an
entropy minimizer. If it is attainable, we address the question
of how to determine the corresponding entropy functional to
which it is the minimizer.

1Since ‖S‖∞ ≤ 5

2
in [12], we consider f =

2S

5
.



III. THE INVERSE PROBLEM

Let g be a prespecified function on T. When does there
exist a positive function Ψ on T such that the unique solution
f to (3) satisfies

|f(eiθ)| = |g(eiθ)|, θ ∈ (−π, π]? (4)

Without loss of generality we may assume that g is an outer
function an that, moreover, g ∈ S. Before addressing (4) we
will consider the following relaxed version:

|f(eiθ)| ≤ |g(eiθ)|, θ ∈ (−π, π]. (5)

This is in the form of a typical design specification for e.g.,
sensitivity shaping in a control problem. We seek “weight-
ing” functions g for which there exists analytic functions
f ∈ S satisfying (5) and (1). Given g, such f exists if and
only if

{f ∈ S : ‖fg−1‖∞ ≤ 1, f(zk) = wk, k = 0, 1, . . . , n}

is nonempty, or equivalently, by setting χ = fg−1, if and
only if

{χ ∈ S : χ(zk) = wkg(zk)−1, k = 0, 1, . . . , n} (6)

is nonempty. The family (6) is nonempty if and only if the
associated Pick-matrix is positive semi-definite

P (g) :=

[

1 − wkg(zk)−1wlg(zl)−1

1 − zkzl

]n

k,l=0

.

Clearly, the family (6) is a singleton if P (g) is positive semi-
definite and singular.

From this easy fact, it follows that a necessary condition
for (3) to have a solution satisfying (4) is that P (g) is
positive semidefinite. However, if the matrix P (g) is strictly
positive definite, there exist interpolants f̂ such that |f̂ | < |g|
in T and the design specifications (5) may be satisfied
with strict inequality. Therefore, a minimizing interpolant
f cannot satisfy (4), since |f̂ | < |f | on T implies that
KΨ(f̂) < KΨ(f) and contradicts the claim that f is the
minimizer. Therefore the following proposition holds.

Proposition 2: Let f be the solution of the optimization
problem (3), and suppose that g is the outer part of f (i.e. g
is outer and |f | = |g| a.e. on T). Then

[

1 − wkg(zk)−1wlg(zl)−1

1 − zkzl

]n

k,l=0

(7)

is positive semidefinite and singular.
Proof: The proof was outlined in the argument leading

to the proposition.
If g satisfies (7) and in addition it is rational with no zeros

on T, then it is possible to construct an entropy functional
so that the outer part of the minimizer is precisely g. This
is our main theorem.

Theorem 3: Let g ∈ S be a rational function with zeros
and poles outside the closed unit circle D̄. A pair (Ψ, f) (of
functions on T) exists such that

1) Ψ is positive,

2) f is the solution of (3), and
3) |f | = |g| on T

if and only if P (g) is positive semidefinite and singular.
Furthermore, Ψ = |σp|2, where σ ∈ K and deg p ≤ deg g.

Proof: See the appendix.
The positivity of (7) is closely related to the number

of zeros in the interpolant, or equivalently the degree of
the inner factor of the interpolant (see Lemma 2). This
observation can used to determine whether an interpolant
is the minimizer of (3).

Theorem 4: Let f ∈ S be an rational function satisfying
(1) and let f have at most n zeros in D̄. Then there exists a
function Ψ such that f is the unique solution of (3).

Proof: See Appendix VII.
Conversely, if f has more than n zeros in D then it is does

not arise as a solution to (3) as state below.
Theorem 5: Let f be a function satisfying (1) and let f

have more than n zeros in D. Then there does not exist a
positive function Ψ on T so that f is the solution of (3).

Proof: See Appendix VII.

IV. AN APPLICATION: DEGREE REDUCTION

The focus in [7], [6] has been on parametrizing inter-
polants of low degree. In this section we combine this theory
with the solution of the inverse problem to obtain a method
for degree reduction of interpolants.

Let f be an interpolant satisfying the conditions of Theo-
rem 4. By Theorem 4, there is a functions Ψ such that

f = arg min KΨ(f) s.t. f(zk) = wk, k = 0, 1, . . . , n, f ∈ S.

If we choose Ψ̂ close to Ψ, the corresponding solution f̂ is
also close to f . This is a consequence of the continuity of
the minimizer on Ψ as stated below.

Theorem 6: The mapping C(T)+ → H2 given by Ψ → f ,
where f is the minimizer of (3), is continuous.

Proof: Let Ψ` → Ψ in ∞-norm. Let f be the minimizer
of (3) and let f` be the minimizers of KΨ`

(f`) subject to
{f`(zk) = wk, k = 0, 1, . . . , n and f` ∈ S}. Then there
exists a sequence ε` such that

(1 − ε`)Ψ ≤ Ψ` ≤ (1 + ε`)Ψ, ε` → 0 as ` → ∞.

Since f` and f are entropy minimizers we have

KΨ(f) ≤ KΨ(f`) ≤
1

1− ε`

KΨ`
(f`)

≤
1

1 − ε`

KΨ`
(f)

≤
1 + ε`

1 − ε`

KΨ(f) → KΨ(f) as ` → ∞.

Hence KΨ(f`) → KΨ(f). By [14, Theorem 4] we have f` →
f in H2, which concludes the proof.
From Theorem 1 we know that if Ψ̂ = |σ̂|2, σ̂ ∈ K, then
the degree of the corresponding minimizer f̂ is less or equal
to n. Therefore, by choosing Ψ̂ in this class, we force the
degree of the interpolant to be bounded by n.

Our interest is in selecting interpolants as minimizers of
entropy functionals while “shaping” the minimizer indirectly



by a suitable choice the weighting function. Initially we may
begin with a desired shape |g| and obtain an interpolant f and
Ψ as before. Clearly, there is no guarantee that the dimension
of f will be acceptable. Yet, we may focus on the parameter
Ψ of the optimization problem in order to develop an efficient
search for interpolants of a given dimension and approximate
shape. Thus, the current framework suggests approximating
Ψ by Ψ̂ in a suitable class (e.g., with fixed poles). Experience
suggests that the dynamic range of Ψ is what affects the
minimizer the most, and thereby leads us to consider the
approximation Ψ̂ in the suitable class and so that ‖ logΨ −

log Ψ̂‖∞ is minimal, or so that ‖1− Ψ̂

Ψ
‖∞ is minimal instead.

The latter optimization problem is linear in the coefficients
of the numerator of Ψ̂ and can be solved quite efficiently.
In fact, a methodology using quasi-convex optimization is
given in [16] (cf. also [17]).

In cases where there is no acceptable “shape” with an
interpolant of degree n, we may conveniently consider Ψ̂
having additional poles, i.e. Ψ̂ = |σ̂p|, where σ ∈ K and p
is a rational function with deg p ≤ m. From Theorem 1 and
Lemma 1, the degree of f̂ is bounded by n + m.

Integrating the above insights and arguments, we conclude
with the following algorithm for shaping interpolants while
allowing a certain control on their degree:

1) Let g be a desired shape satisfying the requirements
of Theorem 3 and such that P (g) is positive definite
and singular.

2) In accordance with Theorem 3, we construct the pair
(Ψ, f) so that f is the minimizer of KΨ(f) subject to
(1) and so that |f | = |g| on T.

3) Let Ψ̂ minimize ‖1− Ψ̂

Ψ
‖∞, subject to Ψ̂ = |σ̂p|2 where

σ̂ ∈ K, deg p ≤ m.
4) Let f̂ be the minimizer of (3) using Ψ̂. Then f̂ is an

interpolant with degree bounded by n + m.

V. CASE STUDY

Consider the following interpolation problem

f(−0.9) = 0.4, f(0) = 0.4, f(0.8) = 0, and f ∈ S. (8)

Suppose further, design specifications suggest a desirable
shape for the interpolant given as

|f(z)| = k

∣

∣

∣

∣

z − 1.2

z − 7

∣

∣

∣

∣

on T

where k a constant of a “small” value. For k = 3.0197 and

g = k
z − 1.2

z − 7
,

P (g) is positive semidefinite and singular. Therefore, g
satisfies the requirements of Theorem 3 and, following the
steps in the proof of Theorem 3, we may construct a pair
(Ψ, f) such that |f | = |g| on T and

f = arg min KΨ(f) subject to (8).
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Fig. 2. The interpolants

Indeed, these functions turn out to be

f =
0.4314z3 − 0.4461z2 − 0.4192z + 0.4000

0.1104z3 − 0.7964z2 + 0.0230z + 1.000
,

Ψ =

∣

∣

∣

∣

(z + 0.1450)(z + 0.9659)

(z + 0.9000)(z − 0.8333)

∣

∣

∣

∣

2

,

and their magnitude on the circle drawn with solid lines in
Figure 2 and Figure 3.

We follow the method in Section IV in seeking an inter-
polant f̂ “close” f and of degree 2. We approximate Ψ by
the minimizer of

∥

∥

∥

∥

∥

1 −
Ψ̂

Ψ

∥

∥

∥

∥

∥

∞

s.t. Ψ̂ = |σ̂|2, σ̂ ∈ K, (9)

(discretizing on a grid of 2000 points). Since Ψ̂ = d
|τ |2 ,

where d is a trigonometric polynomial of degree 2, (9) can
be solved using linear programming. The solution is

Ψ̂ =

∣

∣

∣

∣

(z + 0.2467)(z + 0.9591)

(z + 0.9000)(z − 0.8000)

∣

∣

∣

∣

2

.

Finally, using Ψ̂ in (3) in the place of Ψ, the minimizing
interpolant turns out to be

f̂ =
0.5182z2 + 0.0855z − 0.4000

0.0805z2 − 0.8798z − 1.0000
.

The magnitude of f̂ and Ψ are shown with dashed lines in
Figure 2 and Figure 3, respectively.

This example illustrates the method of Section IV for
identifying interpolants of an approximate shape and of lower
degree.

VI. CONCLUDING REMARKS

In the first part of the paper we consider the general
problem of analytic interpolation with degree constraint
and introduce the relevant inverse problem. It is known
that interpolants of bounded degree arise as minimizers of
suitable weighted entropy functionals [7], [6], and thus, we
characterize optimizers and relevant weights that produce
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those needed functionals. In the second part of the paper,
we integrate insights and conclusions of the earlier theory to
suggest a method for seeking interpolants of an approximate
shape (dictated by design specifications) and of bounded
degree. We illustrate the use of the method by a simple
representative example.

VII. APPENDIX: PROOFS AND LEMMAS

Lemma 1: Let f be the minimizer of (3), Λ ⊂ D contain
a finite number of points, BΛ :=

∏

λ∈Λ
λ−z

1−λ̄z
and let f̂ be

the minimizer of

KΨ(f) s.t. f(zk) = wkBΛ(zk), k = 0, . . . , n,

and f(λ) = 0, λ ∈ Λ. (10)

Further assume that {zk}n
k=0 ∩ Λ = ∅. Then f̂ = BΛf .

Proof: Clearly KΨ(f) = KΨ(BΛf), and since BΛf
satisfies the interpolation conditions in (10), we have that
KΨ(f) ≥ KΨ(f̂). Assume that KΨ(f) > KΨ(f̂), but
then f̂/BΛ satisfies the conditions in (3) and KΨ(f) >
KΨ(f̂/BΛ), which contradicts that f is the solution of (3).
This gives KΨ(f) = KΨ(f̂). Since the minimizer is unique,
f̂ = BΛf .

Remark 1: The assumption that {zk}n
k=0 ∩Λ = ∅ as well

as the notation suggestion zk’s as being discrete are only for
simplicity and can easily be removed.

Proof: of Theorem 4: Let the set Γ be the set of zeros of
f in D̄c (the complement of D̄, including the ones at infinity
and counted with multiplicity), and let Λ be the reflection of
Γ with respect to the unit citcle. Then f̂ = BΛf satisfies

f̂(zk) = wkBΛ(zk), k = 0, . . . , n, and f̂(λ) = 0, λ ∈ Λ,
(11)

with the obvious modification for derivative conditions in the
case of interpolation points with multiplicity. Since deg f̂ ≤
m + n, where m is the number of elements in Λ, f̂ is the
minimizer of min KΨ(f̂) subject to (11). Here Ψ = aa∗−bb∗

where f̂ = b
a

and b and a belong to the co-invariant subspace

K̂ = H2 	 φ̂H2 with φ̂ =
n

∏

k=0

zk − z

1 − z̄kz
×

∏

λ∈Λ

λ − z

1 − λ̄z
.

Note that Ψ = |pσ|2, where σ ∈ K and deg p ≤ |Λ|. By
Lemma 1 f is the solution of (3).

We now turn to the proof of our main theorem.
Proof: of Theorem 3:

(⇒) Sufficiency follows from Proposition 2.
(⇐) Since the matrix in (7) is nonnegative definite and
singular, there is a unique f satisfying ‖fg−1‖ ≤ 1 and
(1). Then f = gϕ where ϕ is inner and of degree ≤ n.
Since f is rational with at most n zeros in D̄, by Theorem
4 there exists a functions Ψ such that f is the minimizer of
(3). Since f has at most deg g zeros outside D̄, it follows
(see proof of Theorem 4) that Ψ = |σp|2, where σ ∈ K and
deg p ≤ deg g.

Lemma 2: Let ϕ be the H∞-norm minimizing interpolant
satisfying (1). Then ϕ is the unique function on the form
αBΛ, α ∈ C, and BΛ a blaschke product of degree ≤ n
satisfying (1).

Proof: First note that ϕ is of the form αBΛ where BΛ

is a blaschke product of degree ≤ n (see e.g. [8]). To show
uniqueness, assume there exists an other solution ϕ̂ = α̂B

Λ̂

of degree ≤ n. Clearly |α̂| > |α|. By Theorem 1 ϕ̂ is the
minimizer of K

Ψ̂
(f) subject to f(zk) = wk, k = 0, . . . , n,

for some Ψ̂. This is a contradiction, since ϕ satisfies the
interpolation constraints and K

Ψ̂
(ϕ̂) > K

Ψ̂
(ϕ). Hence the

solution is unique.
Proof: of Theorem 5: Factor f as f = Bg, where B

is the Blaschke product that contains the zeros in D. Let ϕ
be the H∞-norm minimizing interpolant satisfying ϕ(zk) =
B(zk), k = 0, . . . , n. Since deg B > n, Lemma 2 implies
that |ϕ| < |B|. Since ϕg satisfies the interpolation conditions
and |ϕg| < |f |, f cannot be a solution of (3).
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