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Abstract. A long series of previous papers have been devoted to the
(one-dimensional) moment problem with nonnegative rational measure.
The rationality assumption is a complexity constraint motivated by ap-
plications where a parameterization of the solution set in terms of a
bounded finite number of parameters is required. In this paper we pro-
vide a complete solution of the multidimensional moment problem with
a complexity constraint also allowing for solutions that require a sin-
gular measure added to the rational, absolutely continuous one. Such
solutions occur on the boundary of a certain convex cone of solutions. In
this paper we provide complete parameterizations of all such solutions.
We also provide errata for a previous paper in this journal coauthored
by one of the authors of the present paper.
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1. Introduction

The multidimensional moment problem considered in this paper amounts to
finding a nonnegative measure dμ on a compact subset K of Rd solving the
equations

ck =
∫

K

αkdμ, k = 1, 2, . . . , n, (1.1)

where c1, c2, . . . , cn are given numbers and α1, α2, . . . αn are given linearly
independent basis functions defined on K. More precisely we are interested
in measures of the type

dμ(x) =
P (x)
Q(x)

dx + dμ̂(x), (1.2)
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where P and Q are nonnegative functions on K formed by linear combinations
of the basis functions and dμ̂ is a singular measure.

Such constraints are nonclassical and motivated by applications. An
important special case is to find an absolutely continuous measure

dμ(x) =
P (x)
Q(x)

dx (1.3)

satisfying (1.1), where P and Q are as in (1.2). Clearly (1.3) is a complexity
constraint depending on a finite number of parameters.

In the one-dimensional case, (generalized) moment problems with the
complexity constraint (1.3) has been considered in a long series of papers [5–
8,15–17]. This study started with the rational covariance extension problem,
which is a trigonometric moment problem with rational positive measure for-
mulated by Kalman [22], i.e., α1, α2, . . . αn are the trigonometric monomials,
eikx, k = 0, 1, . . . , n− 1. In this case, given moments c1, c2, . . . , cn that admit
solutions of (1.1), it was shown in [12,13] that there exists a solution (1.3)
for each choice of positive P , and in [9] it was established that this parame-
terization of the solution set is complete and smooth, i.e., the map from P to
Q is a diffeomorphism. A constructive proof based on a certain family of con-
vex optimization problems was given in [1,3,4]. These results were modified
in steps to the case that α1, α2, . . . αn are Herglotz kernels in [2,14,15,35],
leading to Nevanlinna-Pick interpolation with positive rational measure and
more general moment problems with complexity constraints [5–8,11,18,36].

In this paper we begin by generalizing certain results in [6] concerning
moment problems over the general class of measures (1.3) to the multidimen-
sional case (d > 1), but we shall also take a fresh look at the case d = 1.
However, when allowing P and Q to have zeros in K, the class of measures
have to be extended to (1.2). Unfortunately, a key result for this case in [6] is
incorrect, and we take the opportunity to provide a correction in this paper.

The multidimensional moment problem is important in many applica-
tions, such as imaging, radar, sonar, and medical diagnostics [10,21,32]. A
series of papers by Lang and McClellan [28,29,31] are of special interest to
us, since in a certain sense they provide an interesting overlap with the theory
described above. For this reason we shall have reasons to return to some of
their results in the rest of this paper.

The outline of the paper is as follows. In Sect. 2 we define the general
multidimensional moment problem and introduce a set of dual cones that will
be fundamental in the subsequent results. We present a generalization to the
multidimensional case of a theorem by Krein and Nudelman [26, p. 58] on the
existence of solutions to the moment problem. In Sect. 3 we generalize some
basic results in [6] for moment problems with rational measure to the mul-
tivariable case, and in Sect. 4 we introduce the basic optimization problem,
generalized to the multivariable case, and prove the basic parameterization
result in the rational case. In Sect. 5 we extend the parameterization to the
general case when, e.g., P and Q are allowed to have zeros in K, resulting in
solutions of the form (1.2). In Sect. 6 we consider the case when the moments
are placed on the boundary of the feasible set. Section 7 is an “Appendix” to
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which we have deferred some supporting results and proofs for better read-
ability. Finally, Sect. 8 contains “Errata” for [6].

2. The General Multidimensional Moment Problem

Let {α1, α2, . . . , αn} be a set of real-valued, continuous functions defined on
the compact set K ⊂ R

d. We assume that K has an interior of dimension d,
the closure of which is precisely K. The functions α1, α2, . . . , αn are assumed
to be linearly independent, an assumption that will be retained throughout
the paper. This condition holds in most interesting moment problems, as, for
example, the trigonometric moment problem, Nevanlinna-Pick interpolation
and the power moment problem.

Given real numbers c1, c2, . . . , cn, we shall consider the (truncated) mo-
ment problem to determine a bounded nonnegative measure dμ such that
(1.1) holds. Whenever convenient, we shall write (1.1) in the vector form

c =
∫

K

αdμ, (2.1)

where c = (c1, c2, . . . , cn)′ and α = (α1, α2, . . . , αn)′ are column vectors and
prime (′) denotes transpose.

The assumption that the basis functions are real can be done without
loss of generality. In fact, in the case of complex basis functions (as, for exam-
ple, in the trigonometric moment problem) and complex moments, we merely
exchange a complex moment equation with two real moment conditions [6].

Next we define the open convex cone P+ ⊂ R
n of sequences p =

(p1, p2, . . . , pn) such that the corresponding generalized polynomial

P (x) =
n∑

k=1

pkαk(x) (2.2)

is positive for all x = (x1, . . . , xd) ∈ K. Moreover, we denote by P̄+ its
closure and by ∂P+ its boundary P̄+\P+. It is easy to see that P ≡ 0 if and
only if p = 0, since α1, α2, . . . , αn are linearly independent.

Throughout the paper we assume that the zero locus of P has measure
zero for each p ∈ P̄+\{0}. Again many important moment problems, even in
the multidimensional case, have this property.

Moreover, we define the dual cone

C+ = {c ∈ R
n | 〈c, p〉 > 0 for all p ∈ P̄+\{0}}, (2.3)

where 〈c, p〉 is the inner product

〈c, p〉 =
n∑

k=1

ckpk.

Proposition 2.1. The dual cone C+ is nonempty if P̄+ �= {0}.
Proof. Take c =

∫
K

αdx. Then, for any p ∈ P̄+\{0}, we have

〈c, p〉 =
n∑

k=1

∫
K

αkpkdx =
∫

K

Pdx ≥ 0. (2.4)
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However, due to the continuity and linear independence, P �≡ 0, and hence
there is always a small neighborhood in which P > 0. Consequently, the
inequality in (2.4) is strict for all p ∈ P̄+\{0}, and hence c ∈ C+. �

The dual cone C+ is also an open cone, and we denote by C̄+ its closure
and by ∂C+ its boundary.

Proposition 2.2. Any c ∈ R
n satisfying (2.1) for some nonnegative measure

dμ belongs to C̄+.

Proof. If c satisfies (2.1), then

〈c, p〉 =
n∑

k=1

pk

∫
K

αkdμ =
∫

K

Pdμ ≥ 0

for all p ∈ P̄+. Hence c ∈ C̄+, as claimed. �

The converse also holds. The proof of the following generalization to the
multidimensional case of a result in Krein and Nudelman [26, p. 58] is based
on Theorem 5.1 and will be deferred to Sect. 6.

Theorem 2.3. Suppose that P+ �= ∅. Then for any c ∈ C̄+ there exists a
bounded nonnegative measure dμ such that (2.1) holds.

This theorem ensures that the space

Mc =

{
dμ ≥ 0

∣∣∣∣∣
∫

K

α dμ = c

}
(2.5)

of bounded measures is nonempty for all c ∈ C̄+. However, in general, there
are infinitely many solutions, and the extreme points of Mc are of particular
interest.

Proposition 2.4. Suppose that P+ �= ∅. Then, for all c ∈ C̄+ there is a
dμ ∈ Mc that is a discrete measure with support in at most n points in K.

Proof. Following the proof of Proposition 6 in [24], we use the Krein-Millman
Theorem [19,25] to show the existence of an extreme point, and then we show
that any extreme point has the claimed properties. The space Mc is the
intersection of a positive cone and a closed subspace, and hence it is convex
and closed. Let p ∈ P+. Then P (x) ≥ ε for some ε > 0, and hence 〈c, p〉 =∫

K
Pdμ ≥ εμ(K). Therefore the norm (total variation) of the elements of

Mc is bounded by 〈c, p〉/ε, which implies that Mc is compact in the weak*
topology [19, p. 19]. Then, since Mc is a compact convex set in a locally
convex topological linear space, it is the closure of the convex hull of its
extreme points [19,25]. Since the set Mc is nonempty (Theorem 2.3), it has
at least one extreme point.

We want to prove that the extreme points of Mc have support in at most
n points. To this end, suppose the contrary. Then there is an extreme point
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dμ =
∑n+1

k=1 βkdμk for which the measures dμk ≥ 0 have distinct support and
βk > 0, k = 1, . . . , n + 1, and therefore

c =
∫

K

αdμ =
∫

K

α[dμ1 . . . dμn+1]

⎡
⎢⎣

β1

...
βn+1

⎤
⎥⎦ .

Since
∫

K
α[dμ1 . . . dμn+1] ∈ R

n×(n+1) has linearly dependent columns, there
is a nontrivial affine set of solutions {βk}, which contradicts the assumption
that dμ is an extreme point of Mc. Hence the extreme points of Mc has
support in at most n points. �

Corollary 2.5. The extreme points of Mc have support in at most n points.

In several of the most important one-dimensional moment problems
there are matrix tests available to check that c ∈ C+. For example, in the
trigonometric moment problem, we need to check that the corresponding
Toeplitz matrix is positive definite, and, in the Nevanlinna-Pick interpolation,
that the Pick matrix is positive definite. There is also a matrix test for the
power moment problem in terms of a Hankel matrix [26].

In the multidimensional case, checking that c ∈ C+ is more complicated,
but the following result might provide some help.

Proposition 2.6. Let c0 ∈ C+ be arbitrary.1 Then the optimization problem

min
p∈P̄+

〈c, p〉 subject to 〈c0, p〉 = 1 (2.6)

has a solution with minimal value V . Moreover, (i) V > 0 if and only if
c ∈ C+, (ii) V = 0 if and only if c ∈ ∂C+, and (iii) V < 0 if and only if
c �∈ C̄+.

Proof. The constraint 〈c0, p〉 = 1 is a hyperplane that does not pass through
the vertex of the cone P̄+ where p = 0. Since, in addition, c0 ∈ C+, the
hyperplane has a compact intersection with P̄+, and therefore the linear
functional 〈c, p〉 has always a minimum there. Then the rest of the proposition
follows directly from the definition (2.3). �

As a preamble to the solution of the fundamental optimization problem
of Sect. 5, it is instructive to consider the dual problem of (2.6). Differenti-
ating the Lagrangian

L(p; dμ, λ) = 〈c, p〉 −
∫

K

Pdμ − λ(〈c0, p〉 − 1),

where the nonnegative bounded measure2 dμ ∈ C(K)∗ and λ are Lagrange
multipliers, we obtain

c − ĉ − λc0 = 0 where ĉ :=
∫

K

αdμ, (2.7)

1For example c0 =
∫
K αdx ∈ C+ as in the proof of Proposition 2.1.

2The dual space of C(K), denoted by C(K)∗, is the space of bounded signed measures
[30].
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and the complementary slackness condition

〈ĉ, p〉 =
∫

K

Pdμ = 0, (2.8)

which implies that ĉ ∈ ∂C+. Since P ≥ 0 on K and dμ is a nonnegative
measure, (2.8) also implies that dμ is either identically zero or a singular
measure with support in the set of zeros of P . Inserting the stationarity
condition (2.7) in the Lagrangian we get the dual functional [30]

ϕ(dμ, λ) = 〈ĉ, p〉 + λ〈c0, p〉 −
∫

K

Pdμ − λ〈c0, p〉 + λ = λ.

Consequently, the dual problem is

max
λ∈R

λ subject to c − λc0 ∈ ∂C+ (2.9)

with optimal value λ̂. Since these are convex optimization problems and
P+ �= ∅, there is no duality gap [30], and therefore λ̂ = V . From this we
can construct an alternative proof of Proposition 2.6. In fact, since ĉ ∈ ∂C+,
it follows from (2.7) that c ∈ ∂C+ is equivalent to λc0 ∈ ∂C+, which in turn
holds if and only if λ = 0, since c0 ∈ C+. Increasing λ through positive values
brings c = ĉ + λc0 into C+, whereas negative values of λ brings c = ĉ + λc0
outside C̄+. This could be compared with the test procedure suggested in [27,
p. 3.2.4].

Using a homotopy approach, it was shown in [16] that a certain differ-
ential equation has an exponentially attractive point if and only if c ∈ C+.
Such a procedure might be preferable from a computational point of view.

3. Solutions with Rational Positive Measure

We begin by considering rational positive measures of the type

dμ =
P

Q
dx, p, q ∈ P+ (3.1)

and define the moment map

fp(q) =
∫

K

α
P

Q
dx. (3.2)

The following condition is instrumental in ensuring the existence of an
interpolating measure of the form (3.1) for each given p ∈ P+, which, as we
will see, leads to a complete and smooth parameterization in terms of rational
measures.

Condition 3.1. The cone P+ is nonempty and has the property∫
K

1
Q

dx = ∞ for all q ∈ ∂P+. (3.3)

The following modification of Theorem 2.3 is a simple corollary of Theo-
rem 3.4 below, but we state it already here to motivate our interest in rational
measures (3.1).
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Proposition 3.2. Suppose that Condition 3.1 holds. Then there is a dμ ∈ Mc

of the form (3.1) satisfying (2.1) if and only if c ∈ C+.

This is immediate by taking any p ∈ P+ in Corollary 3.5.

Lemma 3.3. Suppose that Condition 3.1 holds and that p ∈ P+. Then the
map fp : P+ → C+ is proper, i.e., the inverse image (fp)−1(C) is compact
for every compact C ⊂ C+.

Proof. We first prove that (fp)−1(C) is bounded. To this end, first note
that the set {(c, q) | c ∈ C, q ∈ P̄+, ‖q‖∞ = 1} is compact, and hence the
bilinear form 〈c, q〉 has a minimum ε there, where ε > 0 since C ⊂ C+. Hence
〈c, q〉 ≥ ε‖q‖∞. However,

〈fp(q), q〉 =
∫

K

Pdx =: κ

is constant. Consequently ‖q‖∞ ≤ κ/ε for any q ∈ (fp)−1(C), proving bound-
edness. If (fp)−1(C) is empty or finite, it is trivially compact, so let us assume
that it contains infinitely many points. Let (qk) be any sequence in P+ such
that fp(qk) ∈ C for all k. Since (fp)−1(C) is bounded, (qk) has a cluster
point q̂ in the closure P̄+. Compactness of (fp)−1(C) now follows from the
fact that q̂ �∈ ∂P+. In fact, if q̂ ∈ ∂P+ were the case, we would have

〈fp(q̂), p〉 =
∫

K

P 2

Q
dx = ∞

by the assumptions p ∈ P+ and Condition 3.1, which contradicts the fact
that supk〈fp(qk), p〉 ≤ supc∈C〈c, p〉 is finite. �

Theorem 3.4. Suppose that Condition 3.1 holds and that p ∈ P+. Then the
map fp : P+ → C+ is a diffeomorphism between P+ and C+.

Proof. Since p ∈ P+, the Jacobian

∂fp

∂q
= −

∫
K

α
P

Q2
α′dx < 0 (3.4)

on all of P+. In fact, for a ∈ R
n, the quadratic form

a′ ∂fp

∂q
a = −

∫
K

(a′α)2
P

Q2
dx = 0

if and only if a = 0. Since fp is also proper (Lemma 3.3), it follows from
Hadamard’s global inverse function theorem [20] that the map fp is a diffeo-
morphism. �

Corollary 3.5. Suppose that Condition 3.1 holds. Then the moment equations

ck =
∫

K

αk
P

Q
dx, k = 0, 1, . . . , n (3.5)

have a unique solution q ∈ P+ for each (c, p) ∈ C+ × P+.
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Remark 3.6. As demonstrated in [8], Condition 3.1 holds in the one-
dimensional case if the basis functions (α1, α2, . . . , αn) are Lipschitz continu-
ous. In fact, if q ∈ ∂P+, there is an x0 ∈ K such that Q(x0) = 0. Therefore,
if Q is Lipschitz continuous, there exists an ε > 0 and a κ > 0 such that
Q(x) ≤ κ|x − x0| for all x ∈ [x0 − ε, x0 + ε], and hence∫

K

dx

Q
≥

∫ x0+ε

x0−ε

dx

Q
≥ 1

κ

∫ x0+ε

x0−ε

dx

|x − x0| = ∞.

This is a very mild condition, since any reasonable moment problem encoun-
tered in applications would have Lipschitz continuous basis functions. Also,
if (α1, α2, . . . , αn) is a Chebyshev system (or T-system)3 and contains a con-
stant function, then after a reparameterization the basis functions will be
Lipschitz continuous [26, p. 37].

In the multidimensional case, the situation is a bit trickier. As was noted
in [16, p. 819], Condition 3.1 always holds if K is an interval in R

2 and the
basis functions (αk) are twice differentiable and doubly periodic. However,
as the following example from [28] illustrates, this does not hold for d ≥ 3.

Example 3.7. Let K := [−π, π]d and αk(x) = cos xk, k = 1, 2, . . . , d, and set

Q(x) =
d∑

k=1

(1 − cos xk),

which corresponds to a q ∈ ∂P+ since Q(0) = 0. However, this is the only
zero of Q, and hence, in checking Condition 3.1, we need only consider a
small neighborhood Dε = {x ∈ K | ‖x‖ ≤ ε} of x = 0. A series expansion
shows that for sufficiently small ε > 0 we have 1 − cos xk ≥ x2

k/4 on all of
Dε, and hence ∫

Dε

dx

Q
≤

∫
Dε

dx∑d
k=1 x2

k/4
.

Changing to spherical coordinates, this becomes∫
Dε

dx

Q
≤

∫ 2π

ϕd−1=0

∫ π

ϕ=0

∫ ε

r=0

4
r2

rd−1 sinϕdr dϕ dϕd−1,

where ϕ := (ϕ1, . . . , ϕd−2) and sinϕ := sind−2 ϕ1 · · · sinϕd−2. This is clearly
finite for d ≥ 3, and hence Condition 3.1 does not hold in these cases.

Example 3.8. Next consider a one-dimensional case where α is not Lipschitz
continuous. Let α(x) = (1, x1/3, x2/3) and K = [−1, 1]. Then q = (0, 0, 3) ∈
∂P+. In fact, Q(x) = 3x2/3, and hence Q(0) = 0. However,∫ 1

−1

dx

Q(x)
=

∫ 1

−1

1
3
x−2/3dx = 2 < ∞, (3.6)

so Condition 3.1 is not satisfied. In this case, fp : P+ → C+ is not a dif-
feomorphism, so we have a counterexample to the statement of Theorem 3.4

3A set of real functions (α1, α2, . . . , αn) on an interval [a, b] is called a Chebyshev system
if any nonzero linear combination P (x) =

∑n
k=1 pkαk(x) has at most n zeros [26, p. 31].
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with Condition 3.1 removed. In fact, fp is not even continuous in all points.
Take p := (1, 0, 0) ∈ P+ and a sequence qk := 3(k−2, 2k−1, 1) ∈ P+, which
tends to q∞ := (0, 0, 3) as k → ∞. Then P = 1 and Qk(x) = 3(x1/3 + k−1)2,
and hence P/Qk → P/Q∞ = 1

3x−2/3 for all x �= 0. However, by (3.6),
fp
1 (q∞) =

∫ 1

−1
P/Q∞dx = 2, whereas

fp
1 (qk) =

∫ 1

−1

P

Qk
dx =

1
3

∫ 1

−1

(
x1/3 + k−1

)−2

dx =
∫ 1

−1

x2

(x2 + k−1)−2
dx = ∞

for all k ≥ 1. Consequently, fp is not continuous in q = (0, 0, 3). Moreover,
we observe that the substitution y = x1/3 transforms the basis to α(x) =
(1, x, x2), which is Lipschitz continuous. However, now P (x) = x2, and hence
p ∈ ∂P+, so this is not a counterexample to Theorem 3.4. We may even
modify this example so that fp

1 (qk) < ∞ for all finite k. To this end, choose
qk := 3(k−2 + k−4, 2k−1, 1), which again tends to q∞ := (0, 0, 3). However, it
can now be shown that

fp
1 (qk) =

∫ 1

−1

P

Qk
dx → 2 + π > 2 = fp

1 (q∞)

as k → ∞, which again shows that fp is not continuous.

4. The Optimization Problem

Next, given the moment map (3.2), following [5,6] we construct the 1-form

ω = 〈c − fp(q), dq〉 =
n∑

k=1

ckdqk −
∫

K

n∑
k=1

αk
P

Q
dqkdx

= 〈c, dq〉 −
∫

K

P

Q
dQdx

on P+. Taking the exterior derivative (on P+) we obtain

dω =
∫

K

P

Q2
dQ ∧ dQdx = 0,

i.e., the 1-form ω is closed. Therefore, since P+ is an open convex set and
hence star-shaped in any point, ω is exact by the Poincaré Lemma [39, pp.
92-94]. This means that there exists a smooth function J

c
p on P+ such that

J
c
p(q1) − J

c
p(q0) =

∫ q1

q0

ω =
∫ q1

q0

〈c, dq〉 −
∫ q1

q0

∫
K

P

Q
dQdx,

with the integral being independent of the path between two endpoints. Com-
puting the path integral, one finds that

J
c
p(q) = 〈c, q〉 −

∫
K

P log Qdx (4.1)

modulo a constant of integration. Then, for each (c, p) ∈ C+ × (P̄+\{0}) we
extend the functional (4.1) to a map P̄+ → R ∪ {∞}.

Lemma 4.1. Let (c, p) ∈ C+ × (P̄+\{0}). Then the functional Jc
p : P̄+ → R

is strictly convex.
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Proof. First observe that
∂Jc

p

∂q
= c − fp(q),

and consequently, in view of (3.4), the Hessian H(q) of Jc
p is given by

H(q) = −∂fp

∂q
(q) =

∫
K

α
P

Q2
α′dx,

where the integrand P/Q2 is nonnegative. Since by assumption the zero locus
of P has measure zero, P/Q2 is zero at most on a subset of K of measure
zero, and consequently H(q) > 0 for the same reason as in the proof of
Theorem 3.4. This implies that J

c
p is strictly convex. �

Lemma 4.2. The map J
c
p : P̄+ → R is lower semi-continuous on all of P̄+.

Proof. Let (qk) be a sequence in P̄+ converging to q ∈ P̄+ in L∞-norm.
Since the functions (Qk) and Q are continuous on a compact set K, the
convergence Qk → Q as k → ∞ is uniform. Since Q is a continuous function
on a compact set, maxx Q < ∞. Moreover, since the convergence is uniform,
we have that supk maxx Qk < ∞. Hence there is an M such that maxx Q ≤ M
and supk maxx Qk ≤ M , and thus

− log
(

Q

M

)
≥ 0 and − log

(
Qk

M

)
≥ 0, k = 1, 2, . . . .

Therefore, by Fatou’s lemma,

−
∫

K

log
(

Q

M

)
dx ≤ lim inf

k→∞
−

∫
K

log
(

Qk

M

)
dx

since Qk → Q pointwise. Consequently, Jc
p(q) ≤ lim infk→∞ J

c
p(qk), proving

that J
c
p is lower semicontinuous. �

Lemma 4.3. The sublevel sets of J
c
p are compact, i.e., the inverse image

(Jc
p)

−1(∞, r] is compact for all values of r.

Proof. By Lemma 7.1 in the “Appendix” we have

r ≥ J
c
p(q) ≥ εc‖Q‖∞ − εp log ‖Q‖∞,

and by comparing linear and logarithmic growth we see that the sublevel sets
are bounded from both above and below. Since they are sublevel sets of a
lower semi-continuous function (Lemma 4.2), they are closed. Hence they are
compact. �

Theorem 4.4. Let (c, p) ∈ C+ × (P̄+\{0}). Then the functional (4.1) has a
unique minimum in P̄+. Moreover, the map gc : P̄+\{0} → P̄+ sending p
to the corresponding minimizer q̂ is continuous and injective. If, in addition,
Condition 3.1 holds and p ∈ P+, then the minimizer q̂ belongs to P+.

Proof. By Lemma 4.3 there exists a minimizer q̂ ∈ P̄+. Since J
c
p is strictly

convex (Lemma 4.1), this minimizer is unique. Injectivity of the function gc

follows from a trivially modified version of the proof of Lemma 2.4 in [6].
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Continuity of gc is proved in the “Appendix” (Proposition 7.3). If Condi-
tion 3.1 holds and p ∈ P+, the functional (4.1) has a stationary point in the
open cone P+ (Theorem 3.4), which must then be identical to q̂. �

We note in passing that, for (c, p) ∈ C+ × P+, the convex optimization
problem to minimize Jc

p over all q ∈ P+ is the dual of the problem to maximize

Ip(Φ) =
∫

K

P (x) log Φ(x)dx (4.2)

over all Φ ∈ F+ satisfying the moment condition∫
K

α(x)Φ(x)dx = c, (4.3)

where F+ is the class of positive functions in L1(K). In fact, we have the
following duality result.

Theorem 4.5. Suppose that (c, p) ∈ C+ × P+ and that Condition 3.1 holds.
Then the optimization problem to maximize (4.2) over all Φ ∈ F+ satisfying
the moment condition (4.3) has a unique solution

Φ̂ =
P

Q̂
,

where q̂ is the unique minimizer of Jc
p. Moreover,

Ip(Φ̂) = J
c
p(q̂) +

∫
K

P (log P − 1)dx.

Proof. Given Lagrange multipliers q = (q1, q2, . . . , qn), form the Lagrangian

L(Φ, q) = Ip(Φ) +
n∑

k=1

qk

(
ck −

∫
K

αkΦdx

)

= Ip(Φ) + 〈c, q〉 −
∫

K

QΦdx,

which is finite for any fixed q ∈ P+. Setting the Fréchet differential

δL(Φ, q; δΦ) =
∫

K

(
P

Φ
− Q

)
δΦdx = 0

for all δΦ, we obtain the stationary point Φ = P/Q, which inserted into the
Lagrangian yields

L(P/Q, q) = J
c
p(q) +

∫
K

P (log P − 1)dx.

Since Φ �→ L(Φ, q) is concave for any q ∈ P+, we have L(Φ, q) ≤ L(P/Q, q)
for all Φ ∈ F+. However, by Theorem 4.4, there is a unique q ∈ P+ such that
Φ := P/Q satisfies (4.3), namely q̂, and hence

Ip(Φ) = L(Φ, q̂) ≤ L
(
P/Q̂, q̂

)
= Ip(Φ̂)

for all Φ ∈ F+ satisfying (4.3), proving the required optimality. �
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The choice P ≡ 1 yields the maximum entropy solution of the moment
problem. This duality has been extensively discussed in [1–5,7,8,18] in the
one-dimensional case. In the special case of trigonometric basis functions, the
multidimensional case was already covered in [28,29,31], but in a more gen-
eral framework of weighted maximum entropy optimization which does not
consider parameterization of rational solutions and related issues, something
that is important in our present context.

The duality result of Theorem 4.5 relies on Condition 3.1 and will be
reformulated in Sect. 5, where this condition will not be required. In this case
the optimal solution may contain a singular part, that is, be of the form (1.2)
(Theorem 5.2).

Theorem 4.6. Suppose that Condition 3.1 holds and c ∈ C+. Then the map
gc : P+ → P+, restricted to P+, is a diffeomorphism onto its image Q+.

Proof. Since gc is continuous and injective (Theorem 4.4), Q+ is an open set
of the same dimension as P+. By definition, gc : P+ → Q+ is also surjective.
Next define the function

ϕ(p, q) = c −
∫

K

α
P

Q
dx.

Then the moment equations (stationarity condition) can be written
ϕ(p, q) = 0. Since

∂ϕ

∂q
=

∫
K

α
P

Q2
α′dx

is positive definite on all of P+ ×P+, the Implicit Function Theorem implies
that q = gc(p) where gc is continuously differentiable. Moreover,

∂gc

∂p
(p) = −

[∫
K

α
P

Q2
α′dx

]−1
∂ϕ

∂p
(p, gc(p))

is positive definite, since

∂ϕ

∂p
(p, q) = −

∫
K

α
1
Q

α′dx

is negative definite. Hence, by the Inverse Function Theorem, the inverse
function (gc)−1 is also continuously differentiable. Consequently, gc : P+ →
Q+ is a diffeomorphism. �

Together with Corollary 3.5, Theorem 4.6 yields a complete parameter-
ization of all solutions of the rational moment Eq. (3.5). This generalizes to
the multidimensional case the corresponding results in [6], which in turn are
generalizations of the results in [9].

If q ∈ ∂P+, it follows that q �∈ Q+ := gc(P+) ⊂ P+, and hence, by
Theorem 4.6, p �∈ P+, and thus p ∈ ∂P+. This yields the following corollary.

Corollary 4.7. Suppose that Condition 3.1 holds, c ∈ C+, and P/Q satisfies
the rational moment condition (3.5). Then q ∈ ∂P+ implies that p ∈ ∂P+.
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Note, however, that the converse is not true. In fact, a q ∈ ∂Q+ could be
contained in P+ as the following simple one-dimensional example shows. Let
K = [−π, π], α1 = 1 and α2 = cos x, and suppose that P (x) = 1 − cos x and
Q(x) ≡ 1. Then c = (1,−1/2). Since c has a positive definite Toeplitz matrix,
c ∈ C+. Moreover, since P (0) = 0, p ∈ ∂P+, and therefore, by Theorem 4.6,
q = (1, 0) ∈ ∂Q+. However, clearly q ∈ P+.

Moreover, again Condition 3.1 is crucial. In fact, in Example 3.8, where
this condition does not hold, q ∈ ∂P+ whereas p ∈ P+ is in the interior.
However, under the variable substitution y = x1/3, which makes the basis
Lipschitz continuous so that Condition 3.1 holds, p moves to the bound-
ary ∂P+.

5. Solutions on the Boundary

If Condition 3.1 holds and p ∈ P+, then J
c
p has a unique minimum in the

open cone P+, which solves the moment Eq. (3.5). On the other hand, if
these conditions are not satisfied, the minimizer may end up on the bound-
ary ∂P+, leading to complications described in [33,34] for the special case of
rational covariance extension. Therefore, in the present more general situa-
tion, the constraint Q(x) ≥ 0 becomes essential for solving the optimization
problem.

Theorem 5.1. Let (c, p) ∈ C+ × (P̄+\{0}). Then there exists a unique pair
(ĉ, q̂) ∈ ∂C+ × (P̄+\{0}) such that

ck =
∫

K

αk
P

Q̂
dx + ĉk, k = 0, 1, . . . , n. (5.1a)

Here

ĉk =
∫

K

αkdμ̂, k = 0, 1, . . . , n, (5.1b)

where dμ̂ is a (not necessarily unique) singular bounded nonnegative measure
such that supp(dμ̂) ⊂ null(Q̂), i.e., the support of the discrete measure dμ̂ is
contained in the set of zeros of Q̂. The vector q̂ is the unique minimizer of
(4.1) over P̄+.

Proof. Since Q ∈ C(K), Lagrange relaxation leads to the Lagrangian

L(q, μ) = J
c
p(q) −

∫
K

Qdμ, (5.2)

where q ∈ P̄+, and where the Lagrange multiplier dμ ∈ C(K)∗ is a nonneg-
ative measure. Then setting

∂L

∂qk
(q, μ) = ck −

∫
K

αk
P

Q
dx −

∫
K

αkdμ, k = 1, 2, . . . , n,

equal to zero, we obtain (5.1) for the saddle point (q̂, μ̂) [30]. By Theorem 4.4,
the minimizer q̂ is unique. Then it is seen from (5.1a) that ĉ is also unique.
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Now, by complementary slackness [30, Theorem 1, p. 217],∫
K

Q̂dμ̂ = 0. (5.3)

Since the optimization problem is convex with a strictly feasible point, the
KKT conditions (i) q̂ ∈ P̄+, (ii) dμ̂ nonnegative bounded measure in C(K)∗,
(iii) (5.1) and (iv) (5.3) are necessary and sufficient for optimality. Since
Q̂ ≥ 0 and dμ̂ ≥ 0 on K, (5.3) can only hold if the support of dμ̂ is contained
in the set of zeros of Q̂. However, such zeros exist only if q̂ ∈ ∂P+.

It remains to show that ĉ ∈ ∂C+. To this end, first note that, in view of
the representation (5.1b), ĉ ∈ C̄+ (Proposition 2.2). Moreover, by (5.3),

〈ĉ, q̂〉 =
∫

K

Q̂dμ̂ = 0,

and hence ĉ ∈ ∂C+. �

We are now in a position to generalize the duality relation from Theorem
4.5 to the more general setting where Condition 3.1 is no longer required.
Thus we extend the domain of the objective function Ip of the primal problem
to include any nonnegative measure dμ and define

Ip(dμ) =
∫

K

P (x) log Φ(x)dx, (5.4)

where dμ = Φ(x)dx + dμ̂ is the unique Lebesgue decomposition of the mea-
sure [38].

Theorem 5.2. Let (c, p) ∈ C+ × (P̄+\{0}) be given. Then the problem to
maximize (5.4) over the set of nonnegative measures of bounded variation,
subject to the moment condition (1.1), has a solution on the form

dμ =
P (x)
Q̂(x)

dx + dμ̂,

where q̂ ∈ P̄+\{0} and dμ̂ is a singular bounded nonnegative measure such
that supp(dμ̂) ⊂ null(Q̂).

Proof. Following the same path as in the proof of Theorem 4.5, we now
consider the Lagrangian

L(dμ, q) = Ip(dμ) +
n∑

k=1

qk

(
ck −

∫
K

αk(Φdx + dμ̂)
)

=
∫

K

P (x) log Φ(x)dx + 〈c, q〉 −
∫

K

QΦdx −
∫

K

Qdμ̂.

Note that for (dμ, q) to be a saddle point it is necessary that q ∈ P̄+ and
supp(dμ̂) ⊂ null(Q). This means that the last term must disappear for any
saddle point candidate, and we are therefore left with a function that is
identical to the Lagrangian in the proof of Theorem 4.5. The proof then
follows along the same lines as that of Theorem 4.5. Also note that the
existence of dμ̂ is ensured by Theorem 5.1. �
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It is interesting to note that the functional (5.4) is concave but not
strictly concave, since the value does not depend in the singular part dμ̂.
Therefore it is not surprising that the optimal singular measure dμ̂ is not
guaranteed to be unique. Moreover the function (5.4) can in fact be seen as
a Kullback-Leibler-like divergence index between the two measures dp(x) :=
P (x)dx and dμ(x) [18]. In fact, maximizing (5.4) is equivalent to minimizing∫

K
P log (P/Φ) dx, and, since dp is absolutely continuous with respect to dμ,

we have the Kullback-Leibler-like divergence

SKL(dp‖dμ) :=
∫

K

log
(

dp

dμ

)
dp =

∫
K

P log
(

P

Φ

)
dx,

where (dp/dμ) = P/Φ is the Radon-Nikodym derivative [37, p. 553-554].
For later reference we collect the KKT conditions of Theorem 5.1 in the

following corollary.

Corollary 5.3. Let c ∈ C+. Then q̂ is the optimal solution to

min
q∈P̄+

J
c
p(q) (5.5)

if and only if

q̂ ∈ P̄+, ĉ ∈ ∂C+ (5.6a)

ck =
∫

K

αk
P

Q̂
dx + ĉk, k = 0, 1, . . . , n (5.6b)

〈ĉ, q̂〉 = 0 (5.6c)

Note that ĉ = 0 whenever q̂ ∈ P+, since then Q̂(x) > 0 on all of K. This
is the situation of Corollary 3.5. If q̂ ∈ ∂P+, we have supp(dμ̂) ⊂ null(Q̂).
Although ĉ in (5.1b) is unique, the measure dμ̂ may not be unique in general,
as can be seen from the following examples.

Example 5.4. Next we provide a one-dimensional example where dμ̂ is not
unique. Let K = [0, 1], α1 = 1 and α2(x) = (1−x)

(
cos

(
x

1−x

)
+1

)
. First note

that α2(1) := limx→1 α2(x) = 0, and thus α2 is continuous on all of K. Since
α2(x) ∈ [0, 2] for all x ∈ K, we have P̄+ = {q ∈ R

2 | q1 ≥ 0, q2 ≥ − 1
2q1}.

Now take c = (2, γ)′, where γ :=
∫

K
α2dx. Since α2 ≥ 0 but not identically

zero, γ > 0. Moreover,

γ <

∫ 1

0

cos
(

x

1 − x

)
dx + 1 < 2.

Hence 0 < γ < 2. Let q ∈ P̄+\{0} be arbitrary. If q1 = 0, we have q2 > 0, and
hence 〈c, q〉 = γq2 > 0. If q1 > 0, we have 〈c, q〉 = 2q1 + γq2 ≥ (

2 − γ
2

)
q1 > 0.

Therefore 〈c, q〉 > 0 for all q ∈ P̄+\{0}, and hence c ∈ C+. Next taking
P = Q̂ = α2, we have P (1) = Q̂(1) = 0, i.e., p = q̂ = (0, 1)′ ∈ ∂P+. Then
forming
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ĉ1 = c1 −
∫ 1

0

α1
P

Q̂
dx = 2 − 1 = 1

ĉ2 = c2 −
∫ 1

0

α2
P

Q̂
dx = γ − γ = 0

〈ĉ, q〉 = q1 ≥ 0 for all q ∈ P̄+\{0}, and hence ĉ ∈ C̄+. Moreover, 〈ĉ, q̂〉 =
q̂1 = 0, so ĉ ∈ ∂C+. Consequently, by Corollary 5.3, q̂ is the minimizer of Jc

p,
and hence the support of the measure dμ̂ in (5.1b) is contained in null(Q̂) =
null(α2). However α2(t) have infinitely many zeros, and any measure dμ =
dx + dμ̂ such that μ̂(K) = 1 and supp(dμ̂) ⊂ null(Q̂) is a solution.

Example 5.5. It is easy to construct a small two-dimensional example for
which the measure dμ̂, representing ĉ, is not unique. Let K = [0, 1]2 and
α(x) = (1, x1, x2, x1x2)′, and define

c =
∫

K

α
P

Q̂
dx + ĉ,

where P (x) = x1, Q̂ = x1(1 + x2), and ĉ =
∫

K
αδ(x1)dx = (1, 0, 1/2, 0)′.

Clearly c ∈ C+ and q̂ ∈ P̄+. Moreover, ĉ ∈ ∂C+. In fact,

〈ĉ, q̂〉 =
∫

K

Q̂dμ̂ =
∫ 1

0

x1δ(x1)dx1

∫ 1

0

(1 + x2)dx2 = 0.

Therefore (ĉ, q̂) satisfies the KKT conditions (5.6) and is the unique min-
imizer of J

c
p (Corollary 5.3). However, null(Q̂) is the whole line x1 = 0,

and any measure dμ̂ with mass 1 and support constrained to x1 = 0 such
that

∫
K

x2dμ̂ = 1/2 is a solution. Hence there are infinitely many ways to
select dμ̂.

Condition 5.6. The vectors α(x1), α(x2), . . . , α(xm) are linearly independent,
where x1, x2, . . . , xm are the points where the optimal polynomial (5.1) have
zeros, i.e., Q̂(xj) = 0.

Proposition 5.7. Suppose that Condition 5.6 holds. Then the measure dμ̂ in
Theorem 5.1 is unique. Moreover,

dμ̂ =
m∑

j=1

ajδ(x − xj)dx (5.7)

for some a1, . . . , am ∈ R
n, where m ≤ n.

Proof. Inserting (5.7) into (5.1b) yields

ĉk =
m∑

j=1

αk(xj)aj ,

which has a unique solution (a1, a2, . . . , am) if α(x1), α(x2), . . . , α(xm) are
linearly independent. �
Remark 5.8. In the one-dimensional case (d = 1), α(x1), α(x2), . . . , α(xm) are
linearly independent for all distinct points x1, x2, . . . , xm such that m ≤ n−1
in any T-system [23,26], for example, the trigonometric and power moment
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problems, and also the Herglotz basis used in Nevanlinna-Pick interpolation.
In these cases the zero set of Q will always satisfy the linear independence
property of Proposition 5.7, resulting in a unique dμ̂.

Theorem 5.9. Let (c, p) ∈ C+ × (P̄+\{0}). Suppose that Condition 5.6 holds
for the minimizer Q̂ of (5.5) and let dμ = P/Q̂dx + dμ̂ be the unique cor-
responding measure in (5.6). Moreover, let (pk) be a sequence in P̄+ such
that pk → p as k → ∞, and let dμk = (Pk/Qk)dx + dμ̂k be measure (5.6)
corresponding to the minimizer of J

c
pk

. Then dμk → dμ in weak∗ as k → ∞.

Proof. We want to show that∫
K

fdμk →
∫

K

fdμ

for an arbitrary f ∈ C(K). We may choose ρ(x) = r′α(x) so that ρ(x) = f(x)
for x ∈ null(Q̂). In fact, since α(x1), α(x2), . . . , α(xm) are linearly indepen-
dent (Condition 5.6), it follows that the system of linear equations

r′ [α(x1) α(x2) . . . α(xm)
]

=
[
f(x1) f(x2) . . . f(xm)

]
has a solution. Then, setting g = f − ρ, null(Q̂) ⊂ null(g). Moreover, since
dμk and dμ both satisfy the moment condition (2.1), we have

∫
K

ρ dμk =∫
K

ρ dμ = 〈c, r〉, and hence it is sufficient to show that∫
K

g dμk →
∫

K

g dμ. (5.8)

Next, fix ε > 0, and choose M so that supk μk(K) ≤ M and μ(K) ≤ M . Let
Bδ := {x0+x1 ∈ K | x0 ∈ null(Q̂), ‖x1‖2 < δ}, where δ > 0 is chosen so that
|g(x)| < ε/(2M) on Bδ, which can be done since g is continuous and g(x) = 0
on null(Q̂). By Theorem 5.1, supp(dμ̂) ⊂ Bδ. Also, since Q̂k → Q̂ uniformly
(Theorem 4.4), it follows that, for k sufficiently large, null(Q̂k) ⊂ Bδ, and
hence, supp(dμ̂k) ⊂ Bδ (Theorem 5.1). Thus for k large enough, we have
∣∣∣∣
∫

K

g (dμk − dμ)
∣∣∣∣ =

∣∣∣∣∣
∫

Bδ

g (dμk − dμ) +
∫

K\Bδ

g
(
Pk/Q̂k − P/Q̂

)
dx

∣∣∣∣∣
≤ 2M max

x∈Bδ

|g(x)| +
∫

K\Bδ

|g|dx max
x∈K\Bδ

∣∣∣Pk/Q̂k − P/Q̂
∣∣∣ .

(5.9)

The first term is bounded by ε (by the definition of Bδ) and the second
term tends to zero since Pk/Q̂k → P/Q̂ uniformly on K\Bδ. Since ε > 0 is
arbitrary, the limit of

∣∣∫
K

g(dμk − dμ)
∣∣ as k → ∞ of (5.9) is zero, and weak∗

convergence dμk → dμ follows. �

In many classical one-dimensional moment problems, such as the power
moment problem and the trigonometric moment problem, there will be can-
cellation of common factors in P and Q. With more general basis functions
this is not necessarily the case. In multidimensional generalizations of the clas-
sical problems such cancelation may or may not occur. Example 5.5 shows
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a situation where there is cancelation, whereas no cancellation occurs in the
next simple example.

Example 5.10. Consider a two-dimensional power moment problem on K =
[0, 1]2 with basis functions α(x) = (1, x1, x

2
1, x2, x

2
2, x1x2)′. The polynomials

P (x) = x2
1 +x2

2 and Q(x) = x1 +x2
1 +x2 +x2

2 are irreducible with a common
zero in x = (0, 0)′. Moreover,

lim
x→0

P (x)
Q(x)

= 0,

showing that it is integrable. Set c :=
∫

K
αP

Qdx. Then 〈c, r〉 =
∫

K
RP

Qdx > 0
for all r ∈ P̄+\{0}, so c ∈ C+. Consequently, we have an example where
ĉ = 0 and both p and q belong to ∂P+, but there is no cancellation.

6. Moments on the Boundary

If c ∈ ∂C+, there is a q0 ∈ P̄+\{0} such that 〈c, q0〉 = 0. Then J
c
p(λq0) → −∞

as λ → ∞. Consequently, the functional (4.1) has no minimum. Then dμ in
(1.1) cannot have a rational part. In fact, if dμ is given by (1.2), then

〈c, q0〉 =
∫

K

Q0
P

Q
dx +

∫
K

Q0dμ̂ = 0. (6.1)

Since the first term is positive and the second in nonnegative, there could be
no rational part in dμ. Moreover, dμ̂ must have support in null(Q0). More
precisely, we have the following representation (c.f., “Appendix” A [31]).

Proposition 6.1. Suppose that P+ �= ∅. Then, for any c ∈ ∂C+, there exists
a dμ ∈ Mc with support in at most n − 1 points in K.

Proof. Since c ∈ C̄+, it follows from Proposition 2.4 that there is a dμ ∈ Mc

with support in at most n points x1, x2, . . . , xn. Then dμ =
∑n

�=1 β�dμ� for
some nonnegative coefficients β�, where dμ� = δ(x−x�) is the Dirac measure,
for � = 1, 2, . . . , n. If β� = 0 for some �, then dμ has support in at most n − 1
points, so only the case that β� > 0 for � = 1, 2, . . . , n, remains. Now, since
c ∈ ∂C+, there is a p ∈ P̄+\{0} such that 〈c, p〉 = 0, i.e.,

0 = 〈c, p〉 = p′
∫

K

α
n∑

�=1

β�dμ� = p′
n∑

�=1

α(x�)β�

and hence {α(x1), . . . , α(xn)} are linearly dependent. Therefore one of the
measures dμ� can be eliminated in the representation

c =
∫

K

α

n∑
�=1

β�dμ� =
n∑

�=1

α(x�)β�,

proving that only a measure dμ with support in n − 1 is needed. �

Next we provide the deferred proof of Theorem 2.3, which is based on
Theorem 5.1 only.
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Proof of Theorem 2.3. From Theorem 5.1 we know that a solution of (2.1)
exists for all c ∈ C+. Hence it just remains to show that there is a solution
for all c ∈ ∂C+. For any c ∈ ∂C+, let cε = c + εc0, where c0 ∈ C+. The
existence of such a c0 is insured by Proposition 2.1 since P+ �= ∅. Then
cε ∈ C+ for all ε > 0. Therefore, by Theorem 5.1 and the fact that P+ �= ∅,
we know that there exist a bounded measure dμε ∈ C(K)∗ of the form
dμε = (P/Qε)dx + dμ̂ε such that

cε =
∫

K

αdμε

for some p ∈ P̄+\{0}. Now, since P+ �= ∅, there is a p0 ∈ P+, and there is a
δ > 0 such that P0(x) ≥ δ for all x ∈ K. Then

〈cε, p0〉 =
∫

K

P0dμε ≥ με(K)δ,

However, 〈cε, p0〉 = 〈c, p0〉 + ε〈c0, p0〉 ≤ M for some M and sufficiently small
ε. Hence με(K) ≤ M/δ for all such ε. Therefore there is a subsequence {dμεj

}
that converges to some dμ in weak∗ [30, p. 128], [38, p. 246], and consequently

c = lim
ε→0

cε = lim
j→∞

∫
K

αdμεj
=

∫
K

αdμ

which proves Theorem 2.3. �

7. Appendix

The following lemma, showing that J
c
p is bounded from below, is a direct

generalization of Proposition 2.1 in [6], and the proof follows along the same
lines as in [6].

Lemma 7.1. Let (c, p) ∈ C+ × P̄+\{0}. Then there are constants εc, εp > 0
such that

J
c
p(q) ≥ εc‖Q‖∞ − εp log ‖Q‖∞ (7.1)

for all q ∈ P̄+\{0}.
Proof. The linear form 〈c, q〉 has a minimum, mc, on the compact set {q ∈
P̄+ | ‖q‖∞ = 1}. Since c ∈ C+, mc > 0. Hence for an arbitrary q ∈ P̄+\{0}
we have

〈c, q〉 =
〈

c,
q

‖q‖∞

〉
‖q‖∞ ≥ mc‖q‖∞.

Next we observe that

‖Q‖∞ = max
x∈K

Q = max
x∈K

{
n∑

k=0

qkαk

}
≤

n∑
k=0

|qk| |αk| ≤ M‖q‖∞,

where M := maxk,x |αk|. This maximum exists and is positive and finite,
since the basis functions α1, α2, . . . , αn are continuous and K is compact.
Consequently, taking εc := mc/M > 0, we obtain

〈c, q〉 ≥ εc‖Q‖∞.
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Next we consider the integral part of Jc
p, namely∫

K

P log Qdx =
∫

K

P log
(

Q

‖Q‖∞

)
dx + log ‖Q‖∞

∫
K

Pdx.

Since p ∈ P̄+\{0} is fixed, εp :=
∫

K
Pdx > 0. Therefore

J
c
p(q) ≥ εc‖Q‖∞ −

∫
K

P log
(

Q

‖Q‖∞

)
dx − εp log (‖Q‖∞) .

However, the integrand in the second term is nonpositive, and hence (7.1)
follows. �
Lemma 7.2. Let c ∈ C+, and let J

c
p(q) : P̄+ → R ∪ {∞} be the functional

(4.1). Then the optimal value J
c
p(q̂) = minq∈P̄+

J
c
p(q) is continuous in p over

P̄+\{0}.
Proof. Let p1, p2 ∈ P̄+\{0} be arbitrary, and let q1, q2 ∈ P̄+ be the unique
minimizers of J

c
p1

and J
c
p2

, respectively. Choose a q0 ∈ P+ such that 0 <
‖Q0‖∞ < ∞. Then, by optimality,

J
c
p1

(q1) ≤ J
c
p1

(q2 + εq0) (7.2a)

J
c
p2

(q2) ≤ J
c
p2

(q1 + εq0) (7.2b)

for all ε > 0. Therefore, if we could show that, for any δ > 0,∣∣Jc
p2

(q1 + εq0) − J
c
p1

(q1)
∣∣ ≤ δ (7.3a)∣∣Jc

p1
(q2 + εq0) − J

c
p2

(q2)
∣∣ ≤ δ (7.3b)

for ‖p2 − p1‖ sufficiently small, we would have

J
c
p2

(q2) − δ ≤ J
c
p1

(q1) ≤ J
c
p2

(q2) + δ,

and the lemma would follow. To prove this, form
|Jc

p2
(q1 + εq0) − J

c
p1

(q1)|

=
∣∣∣∣〈c, εq0〉 −

∫
K

P2 log(Q1 + εQ0)dx +
∫

K

P1 log Q1dx

∣∣∣∣
=

∣∣∣∣〈c, εq0〉 −
∫

K

P1 log
(

1 +
εQ0

Q1

)
dx −

∫
K

(P2 − P1) log(Q1 + εQ0)dx

∣∣∣∣
≤ ε

(
〈c, q0〉 +

∫
K

P1
Q0

Q1
dx

)
+ ‖P2 − P1‖1‖ log(Q1 + εQ0)‖∞,

where, by optimality of q1 with respect to J
c
p1

,
∫

K
P1

Q0
Q1

dx = 〈c, q0〉 is finite.
Here we can make the first term less or equal to δ/2 by choosing ε sufficiently
small. Then, set K(ε) := 2‖ log(Q1+εQ0)‖∞, and take ‖P2−P1‖1 ≤ δ/K(ε),
from which (7.3a) follows. The inequality (7.3b) follows by the same line of
argument. �
Proposition 7.3. Let J

c
p(q) : P̄+ → R ∪ {∞} be the functional (4.1). Then

the function
q̂ = arg min

q∈P̄+

J
c
p(q)

that maps p ∈ P̄+\{0} to q̂ ∈ P̄+ is continuous for all values of c ∈ C+.
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Proof. Let (pk) be a sequence in P+ converging to p ∈ P̄+\{0} as k → ∞.
Moreover, let qk = arg minq∈P̄+

J
c
pk

(q) and q̂ = arg minq∈P̄+
J

c
p(q). Then, by

Lemma 4.3, the sequence (qk) is bounded, and hence there is a subsequence,
which we also call (qk) converging to a limit q∞. Assume that q∞ �= q̂, and
choose a q0 ∈ P+ such that 0 < ||Q0||∞ < ∞. Then

J
c
pk

(qk) = J
c
pk

(qk + εq0) − 〈c, εq0〉 +
∫

K

Pk log
(

Qk + εQ0

Qk

)
dx

≥ J
c
pk

(qk + εq0) − 〈c, εq0〉.
Therefore, by Lemma 7.2, we have

J
c
p(q̂) = lim

k→∞
J

c
pk

(qk) ≥ lim
k→∞

J
c
pk

(qk + εq0) − ε〈c, q0〉.

However qk + εq0 ∈ P+, and, since (p, q) �→ J
c
p(p, q) is continuous in P+, we

obtain

J
c
p(q̂) ≥ lim

k→∞
J

c
pk

(qk + εq0) − ε〈c, q0〉 = J
c
p(q∞ + εq0) − ε〈c, q0〉 (7.4)

Since the minimum minq∈P̄+
J

c
p(q) is unique (Theorem 4.4), there is a δ > 0

such that J
c
p(q∞) − δ > J

c
p(q̂), which together with (7.4) yields

J
c
p(q∞) − δ > J

c
p(q∞ + εq0) − ε〈c, q0〉

However by letting ε → 0 we get −δ > 0, which is a contradiction. Therefore
limk→∞ qk = q̂, as claimed. �

Proposition 7.4. Let q̂ := arg minq∈P̄+
J

c
p(q), where J

c
p(q) : P̄+ → R ∪ {∞}

is the functional (4.1). Then the function sending c ∈ C+ to q̂ is continuous
for all values of p ∈ P̄+\{0}.
Proof. The proof is analogous to that of Proposition 7.3. We first prove that
the optimal value J

c
p(q̂) = minq∈P̄+

J
c
p(q) is continuous in c over C+. To

this end, let c1, c2 ∈ C+ be arbitrary, and let q1, q2 ∈ P̄+ be the unique
minimizers of Jc1

p and J
c2
p , respectively. Next, exchanging J

c
p1

for J
c1
p and J

c
p2

for J
c2
p everywhere in the proof of Lemma 7.2, we see that it just remains to

show that the absolute value of

J
c2
p (q1 + εq0) − J

c1
p (q1) ≤ ‖q1‖‖c2 − c1‖ + ε

[
〈c1, q0〉 +

∫
K

P
Q0

Q1
dx

]

can be made smaller than some preselected δ > 0 by choosing an appropri-
ately small ε. This follows from the same argument as in Lemma 7.2, thus
establishing the continuity of the optimal value.

Next, let (ck) be a sequence in C+ converging to c ∈ C+ as k → ∞,
and let qk = arg minq∈P̄+

J
ck
p (q) and q̂ = arg minq∈P̄+

J
c
p(q). Since (qk) is

bounded, there is a subsequence, also called (qk) such that qk → q∞. We
assume that q∞ �= q̂, and show that this leads to a contradiction. As in the
proof of Proposition 7.3, we first note that

J
ck
p (qk) ≥ J

ck
p (qk + εq0) − ε〈ck, q0〉
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and hence, by the continuity of the optimal value of Jc
p in c, that

J
c
p(q̂) = lim

k→∞
J

ck
p (qk) ≥ lim

k→∞
(
J

ck
p (qk + εq0) − ε〈ck, q0〉

)
= J

c
p(q + εq0) − ε〈c, q0〉,

where we have used the fact that J
c
p is continuous in (c, q) ∈ C+ ×P+. Then

letting ε → 0 leads to a contradiction, proving that q∞ = q̂, as claimed. �

8. Errata

The proof of the Lemma 3.1 in [6] contains an error emanating from an in-
correct use of the dominate convergence theorem, which invalidates Theorem
1.10 in [6]. The correct statement is the one-dimensional version of Theo-
rem 5.1 in the present paper.
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