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Abstract

This paper is concerned with synchronization problem for nonlinear delayed semi-Markov jump neural network-

s (s-MJNN) via distributed delayed impulsive control. By using stochastic Lyapunov functions together with

Razumikhin technique, some sufficient conditions for synchronization for a class of nonlinear delayed s-MJNN

via distributed delayed impulsive control are developed. Finally, two numerical examples are given to show the

effectiveness and advantages of the proposed techniques.
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1. Introduction

Over the past few decades, neural networks have received considerable interest due to their potential applications

in science and engineering, such as pattern recognition [1], image and signal processing [2, 3], optimization problems

[4] and so on. It is well-known that the transition of neural networks nodes from one state to another is a

stochastic process, which can be regarded as a Markov process. For example, the packet loss in neural networks

can be described by Markov process. The time between two successive transitions is called sojourn time, and the

sojourn time of Markov jump systems obeys a memoryless exponential distribution (or geometric distribution),

and therefore, the transition probabilities (TPs) of Markov jump systems (MJSs) are constants.

In practice, however, TPs of neural networks nodes may have time-varying characteristics, that is, the sojourn

time of transition of neural networks obeys a memory distribution. For instance, [5] demonstrated that there

are some variable repair rates and failure rates in complex manufacturing systems. Besides, packet loss occurs

when network systems transmit information, and sometimes packet loss rates may not be constants. In general,

a stochastic process with sojourn time following a memory distribution is called a semi-Markov process. Neural

networks with a semi-Markov process are referred to as semi-Markov jump neural networks (s-MJNN).

In this paper we study synchronization of s-MJNN. The basic problem is to control a system called the response

system so that its trajectories converge to the same values as another system called the drive system, although

the systems start at different initial conditions. There is quite a large literature on the synchronization of s-

MJNN (see, e.g., [6–9] and the references therein). For instance, in [6], Wei et al. discussed stability analysis

and stabilization problems for stochastic synchronization of s-MJNN with time-varying delays by constructing a

semi-Markovian Lyapunov-Krasovskii functional and a new integral inequality. In [8], Zhang et al. investigated

the stochastic synchronization of neutral-type semi-Markovian jump neural networks with partial mode-dependent

additive time-varying delays via event-triggered control. In [9], Qi et al. derived some sufficient conditions for

finite-time synchronization of delayed semi-Markov switching neural networks with quantized measurement via a

feedback controller. Moreover, since the neurons will transit information to other neurons, and the switching speed
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of actuations is limited, time delays are inevitable in neural networks. In fact, the effects of time delays may make

a stable system unstable or make a system show unpredictable behavior such as oscillations, divergence and so on

(see, e.g., [10–12] and the references therein).

Given the basic behavior of neural networks, synchronization is one of the most significant issues in such systems.

Impulsive control has been proved to be an effective and powerful method to achieve synchronization of neural

networks (see, e.g., [13–16] and the references therein). Generally, it takes time for controllers to process samples

and transmit information to actuators, so it is necessary to consider time delays in the impulsive controllers. For

example, as mentioned in [17], when patients are injected with insulin, it takes time for insulin to be transported

from injection depot to the interstitial compartment and inhibit hepatic glucose production, which can be seen as

time delays in impulsive control, that is, delayed impulsive control, these time delays cause the open-loop control

to take longer time to lower glucose concentration level.

In recent years systems with delayed impulses have attracted extensive attentions (see, e.g., [18–23] and the

references therein). However, these results only consider discrete-time delays in the impulsive control. In fact,

distributed delays are applied to a large number of practical systems, such as Susceptible-Infected-Removed (SIR)

epidemic model [24], predator-prey model [25], feeding systems and combustion chambers in a liquid monopropellant

rocket motor with pressure feeding [26, 27] and so on. Lately, distributed delayed impulsive control was studied by

[28–30]. As pointed out in [28], distributed delayed impulsive control means the jumps of systems states depend on

the accumulation (or average) of the system states over a history time period. In [28], Liu and Zhang proposed a

distributed delayed impulsive control to stabilize general nonlinear systems with time delays, a exponential stability

criterion was obtained by using the Lyapunov-Razumikhin method. In [29], Liu et al. designed a distributed delayed

impulsive consensus protocol to investigate the consensus of networked multi-agent systems with distributed delays.

In [30], Xu et al. studied the synchronization of chaotic neural networks with time delays via distributed delayed

impulsive control. However, the above results have some limitations. For instance, the results of [28] impose both

upper and lower bounds on impulsive intervals, and the distributed delays in impulsive controllers are not allowed

to be greater than the time delays in systems. In [29], the distributed delays in impulsive controllers are related to

the time delays in systems. In [30], the delay in neural networks is constant rather than time-varying. Therefore,

the research on distributed delayed impulsive control needs further implementation and improvement.

Motivated by the above discussion, in this paper, we address the synchronization problem for a class of nonlinear

delayed s-MJNN via distributed delayed impulsive control. The main contributions of this paper are highlighted as

follows: (i) by using stochastic Lyapunov functions together with Razumikhin technique, some sufficient conditions

are obtained for synchronization of nonlinear delayed s-MJNN via distributed delayed impulsive control; (ii) the

results obtained generalize the results in [28–30] by considering time-varying delays, removing the lower bounds of

impulsive intervals and the relationship between the distributed delays in impulsive controllers and the time delays

in systems; (iii) the results obtained show that distributed delayed impulses do contribute to the synchronization

of nonlinear delayed s-MJNN.

The rest of this paper is organized as follows. In Section 2 the basic problem is formulated, and definitions and

notations are introduced. In Section 3 the main results are presented. In particular, some synchronization criteria

for a class of nonlinear delayed s-MJNN via distributed delayed impulsive control are presented. In Section 4, some

numerical examples are given to demonstrate the effectiveness and superiority of the proposed results. Finally,

conclusions are drawn in Section 5.

Notation: In this paper, Rn(Rm+ ) and Rn×m denote, respectively, the m-dimensional (nonnegative) Euclidean

space and the set of all n×m real matrices; ‖ · ‖ represents the Euclidean vector norm, where x = (x1, . . . , xn)T ;

the notation X ≥ Y (respectively, X > Y ), where X and Y are symmetric matrices, means that X − Y is

positive semi-definite (respectively, positive definite); λmax(A) and λmin(A) denote the maximum and minimum

eigenvalue of A; AT represents the transpose of A; In is the identity matrix with n-dimension; the symmetric terms

below the main diagonal of a symmetric matrix are denoted by ∗; for the notation (Ω,F , P ), Ω represents the

sample space, F is the σ-algebra of subsets of the sample space and P is the probability measure on F ; R denotes
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the set of real numbers; R+ denotes the set of nonnegative real numbers; Z+ denotes the set of positive integer

numbers; for τ > 0, let PC([−τ, 0],Rn) denote the set of piecewise continuous function ψ : [−τ, 0]→ Rn with norm

‖ψ‖τ = sup−τ≤θ≤0 ‖ψ(θ)‖; Denote by LpFt
([−τ, 0],Rn) the family of all Ft measurable, PC([−τ, 0],Rn)-valued

stochastic variables φ such that ‖φ‖pE = sup−τ≤θ≤0 E{‖φ(θ)‖p} < ∞, E{· |(ψ, r0)} represents the mathematical

expectation.

2. Problem formulation

Consider the following nonlinear delayed semi-Markov jump neural networks defined on a complete probability

space (Ω,F , P ): {
ẋ(t) = −C(r(t))x(t) +A(r(t))f(x(t)) +B(r(t))f(x(t− ξ(t))) + J,

x(t0 + θ) = ϕ(θ), θ ∈ [−ξ, 0],
(1)

where x(t) ∈ Rn denotes the state vector of the neural networks. {r(t), h}t≥0 = {rm, hm}m∈Z+ is characterized by

a continuous-time semi-Markov process that takes values in a finite set Ψ = {1, 2, . . . , S}, S ∈ Z+, and governs the

switching among S system modes, {rm}m∈Z+ is the index of system mode at the mth transition, taking values in

Ψ, and {hm}m∈Z+ is the sojourn-time of mode rm−1 between the (m− 1)th transition and mth transition, taking

values in R+. For convenience, for each r(t) = i ∈ Ψ, we have C(r(t)) = Ci, A(r(t)) = Ai and B(r(t)) = Bi ∈ Rn×n,

Ci = diag(ci1, . . . , cin) satisfying cij > 0, j = 1, 2, . . . , n. The matrices Ai and Bi denote the connection weight

matrix and the delayed weight matrix, respectively. f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ∈ Rn represents

the neuron activation function. ξ(t) refers to a time-varying delay satisfying 0 ≤ ξ(t) ≤ ξ < ∞, where ξ ∈ R+

denotes the upper bounds of time-delay. J is an external input. ϕ(· ) ∈ PC([−ξ, 0],Rn) is the initial value. The

evolution of semi-Markov process is governed by the following TPs [31]:{
Pr{rm+1 = j, hm+1 ≤ h+ ε|rm = i, hm+1 > h} = λij(h)ε+ o(ε), i 6= j,

Pr{rm+1 = j, hm+1 > h+ ε|rm = i, hm+1 > h} = 1 + λii(h)ε+ o(ε), i = j,
(2)

where h denotes the sojourn-time that indicates the time duration between two successive mode transitions; o(ε)

is the little-o notation defined as limε7→0(o(ε)/ε) = 0, and λij(h) ≥ 0, for j 6= i, denotes the transition rate

from mode i at time t to mode j at time t + ε, and λii(h) = −
∑S
j=1,j 6=i λij(h). Thus, we get the generator

matrix Λ(h) = (λij(h))S×S , h ≥ 0, which governs the evolution of semi-Markov process {r(t), t ≥ 0}. For any

ϕ(· ) ∈ PC([−ξ, 0],Rn), we assume that the function f(x(t)) satisfies all necessary conditions to ensure that neural

network (1) admits a unique solution x(t, ϕ, r0) which exists in a maximal interval [t0−ξ,∞). Set x(t) = x(t, ϕ, r0).

If the probability density function (PDF) of sojourn time h in mode i is gi(h), by [32], then the cumulative

distribution function (CDF) of sojourn time h in mode i is

Gi(h) = Pr{hm+1 ≤ h|rm = i} =

∫ h

0

gi(s)ds,∀i ∈ Ψ,∀h > 0,

the transition rate of the system transition from mode i is

λi(h) = lim
ε→0

Gi(h+ ε)−Gi(h)

ε(1−Gi(h))
.

Let neural network (1) be the drive system and the corresponding response system be given by{
ẏ(t) = −C(r(t))y(t) +A(r(t))f(y(t)) +B(r(t))f(y(t− ξ(t))) + u(r(t)) + J,

y(t0 + θ) = φ(θ), θ ∈ [−τ, 0],
(3)

where φ(· ) ∈ PC([−τ, 0],Rn), τ = max{ξ, d}, u(r(t)) is the impulsive control input. Except for the control the

reponse system (3) has the same dynamics as the drive system (1) but different initial condition.
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Next a distributed delayed impulsive controller will be designed such that response system (3) can be synchro-

nized to drive system (1). The distributed delayed impulsive control input is given as follows:

u(r(t)) =

∞∑
k=1

(
D(r(t))e(t−) +K(r(t))

∫ t

t−dk
e(s)ds− e(t)

)
δ(t− tk), k ∈ Z+, (4)

where e(t) = y(t) − x(t), dk(k ∈ Z+) denote the distributed delays in impulsive control input satisfying 0 ≤ dk ≤
d <∞, δ(·) is the delta function, for each r(t) = i ∈ Ψ, D(r(t)) = Di,K(r(t)) = Ki ∈ Rn×n, Di and Ki are known

real matrices. Particularly, e(t) = D(r(t))e(t−) + K(r(t))
∫ t
t−dk e(s)ds (k ∈ Z+) for t = tk, t0 = 0, tk ∈ R+ for

k ∈ Z+, t1 < t2 < . . . < tk < . . ., with limk→∞ tk = +∞. e(t+) = limε→0+ e(t + ε) and e(t−) = limε→0+ e(t − ε),
we assume that e(t+) = e(t). Then the error system is obtained as follows:

ė(t) = −C(r(t))e(t) +A(r(t))F (e(t)) +B(r(t))F (e(t− ξ(t))), t 6= tk,

e(tk) = D(r(tk))e(t−k ) +K(r(tk))

∫ tk

tk−dk
e(s)ds, k ∈ Z+,

e(t0 + θ) = ψ(θ), θ ∈ [−τ, 0],

(5)

where e(t) ∈ Rn, F (e(·)) = f(y(·))− f(x(·)) ∈ Rn, ψ(θ) = φ(θ)− ϕ(θ), ψ(· ) ∈ PC([−τ, 0],Rn).

Let Ã be the infinitesimal generator, then according to the definition of Ã, see e.g. [33]

ÃV (e(t), t, r(t)) = lim
ε→0

E{V (e(t+ ε), t+ ε, r(t+ ε))|(e(t), r(t))} − V (e(t), t, r(t))

ε
,

here V (· ) denotes the Lyapunov function, ε is a small positive number.

Assumption 1. Assume that each activation function fj(t), t ∈ R(j = 1, 2, . . . , n) is continuous, bounded, and

there exist constants lj1, lj2 such that

lj1 ≤
fj(a)− fj(b)

a− b
≤ lj2, j = 1, 2, . . . , n,

where a, b ∈ R, and a 6= b.

In this paper, the following definition and a proposition are needed for the derivation of the main results.

Definition 1. The trivial solution of system (5) is said to be p-th moment exponentially stable, if there exist

constants σ > 0,M0 > 0 such that

E
{
‖e(t, ψ)‖p

}
≤M0‖ψ‖pEe

−σ(t−t0), ∀t ≥ t0,

for any initial data ψ ∈ PC([−τ, 0],Rn). Furthermore, if p = 2, then neural network (1) is said to be mean-square

exponentially synchronized to response system (3).

Proposition 1. Suppose there exist some constants c1 > 0, c2 > 0, η > 0, q > 0, k1 ≥ 0, k2 ≥ 0 and % > 0 such that

(i) c1‖e(t)‖p ≤ V (e(t), t, i) ≤ c2‖e(t)‖p for all (e(t), t, i) ∈ Rn × [−τ,∞)×Ψ;

(ii) E{ÃV (e(t), t, i)} < qE{V (e(t), t, i)} for all t ∈ [tk−1, tk) when E{V (e(t+ θ), t+ θ, i)} ≤ %eητE{V (e(t), t, i)} for

all θ ∈ [−τ, 0], where % ≥ e(η+q)(tk−tk−1), k ∈ Z+;

(iii) E{V (e(tk), tk, i)} ≤ k1E{V (e(t−k ), tk, i)}+ k2

∫ tk
tk−dk E{V (e(s), s, j)}ds, i, j ∈ Ψ;

(iv) (k1 + k2dke
ηdk)% ≤ 1, k ∈ Z+.

Then the trivial solution of system (5) is p-th moment exponentially stable.

The proof of Proposition 1 is presented in Appendix A.

Proposition 1 presents a sufficient criterion for the exponential stability of system (5). In Razumikhin technique

condition (ii), q > 0 indicates that original impulse-free system (5) may be unstable. Condition (iii) means the
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relationship among e(tk), e(t−k ) and
∫ tk
tk−dk e(s)ds, k ∈ Z+, the state of system at tk depends not only on the state of

system at impulsive instant t−k but also on the integral of system states from tk−dk to t−k . Moreover, condition (iii)

and condition (iv) imply that distributed delayed impulses do contribute to the stability of system (5). Therefore,

Proposition 1 shows that an unstable system can be exponentially stabilized under distributed delayed impulsive

control.

Corollary 1. Assume that conditions (i)-(iii) hold and there exist constants η > 0, k1 ≥ 0, k2 > 0 and % such that

η ≤ ln(1−k1%)−ln k2d%
d . Then the trivial solution of system (5) is p-th moment exponentially stable.

As mentioned in [34, 35], MJSs can be regarded as semi-Markov jump systems if TPs are unknown, moreover,

semi-Markov jump systems also can reduce to MJSs if the transition rate λij(h) becomes λij , i, j ∈ Ψ, which is a

constant. Recently, there are many interesting results on stability of semi-Markov jump systems (see, e.g., [33, 35–

37] and the references therein). However, the above mentioned papers have some restrictions. For instance, in

[33, 36], the transition rate λij(h) has upper and lower bounds. In the present paper, λij(h) can be unbounded for

some i, j ∈ Ψ, and therefore our results may be less conservative than the results in [33, 36]. In addition, [35] did

not consider delayed impulses and the results of [35] impose both upper and lower bounds on impulsive intervals.

The paper [37] did not consider time delays in systems and impulsive control. Compared to [35, 37], in our paper

a distributed delayed impulsive control is considered, and impulsive intervals only have upper bounds. Therefore,

our results generalize the results in [35, 37].

3. Main results

In this section, some synchronization criteria for nonlinear delayed s-MJNN (1) with distributed delayed im-

pulsive control will be developed.

Theorem 1. Suppose Assumption 1 holds. Then, given constants η > 0, % > 0, if there exist constants α ∈
R, β > 0, k1 ≥ 0, k2 ≥ 0, symmetric positive definite matrices Pi ∈ Rn×n, i ∈ Ψ, and a positive diagonal matrix

U =diag{u1, u2, . . . , un} such that
−CTi Pi − PiCi +

S∑
j=1

λ̄ijPj − αPi − UL̂ PiAi + UĽ 0n×n PiBi

∗ −U 0n×n 0n×n

∗ ∗ −UL̂− βPl UĽ

∗ ∗ ∗ −U

 < 0, i, l ∈ Ψ, (6)

2DT
i PiDi − k1Pi ≤ 0, 2KT

i PiKi −
k2

d
Pz ≤ 0, i, z ∈ Ψ, (7)

k1%+ k2dk%e
ηdk ≤ 1, k ∈ Z+, (8)

(η + α+ β% exp(ητ))(tk − tk−1)− ln % ≤ 0, k ∈ Z+, (9)

where L̂ =diag(l11l12, l21l22, . . . , ln1ln2), Ľ =diag
(
l11+l12

2 , l21+l22
2 , . . . , ln1+ln2

2

)
, λ̄ij = E{λij(h)} =

∫∞
0

λij(h)gi(h)dh

with the PDF gi(h) of sojourn-time h at mode i, dk is given in inequality (4), then the neural network (1) is

mean-square exponentially synchronized to response system (3).

The proof of Theorem 1 is presented in Appendix B.

Remark 1. In inequality (9) of Theorem 1, α + β%eητ is equal to q of Proposition 1, which describes the rate of

change of function V (t) over each impulsive interval [tk−1, tk), k ∈ Z+.

More generally, if the control gain matrices Di and Ki, i ∈ Ψ are unknown, then we have the following theorem.
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Theorem 2. Suppose Assumption 1 holds. Then, given constants η > 0, % > 0, if there exist constants α ∈ R, β >
0, k1 ≥ 0, k2 ≥ 0, symmetric positive definite matrices Pi ∈ Rn×n, a positive diagonal matrix U =diag{u1, u2, . . . , un},
matrices Gi ∈ Rn×n and Hi ∈ Rn×n(i ∈ Ψ) such that

−CTi Pi − PiCi +

S∑
j=1

λ̄ijPj − αPi − UL̂ PiAi + UĽ 0n×n PiBi

∗ −U 0n×n 0n×n

∗ ∗ −UL̂− βPl UĽ

∗ ∗ ∗ −U

 < 0, i, l ∈ Ψ, (10)

[
−k1Pi

√
2Gi

∗ −Pi

]
< 0,

[
−k2d Pz

√
2Hi

∗ −Pi

]
< 0, i, z ∈ Ψ, (11)

k1%+ k2dk%e
ηdk ≤ 1, k ∈ Z+,

(η + α+ β% exp(ητ))(tk − tk−1)− ln % ≤ 0, k ∈ Z+,

where L̂ =diag(l11l12, l21l22, . . . , ln1ln2), Ľ =diag
(
l11+l12

2 , l21+l22
2 , . . . , ln1+ln2

2

)
, λ̄ij = E{λij(h)} =

∫∞
0

λij(h)gi(h)dh

with the PDF gi(h) of sojourn-time h at mode i, then neural network (1) is mean-square exponentially synchronized

to response system (3) under the control gain matrices Di = P−1
i GTi and Ki = P−1

i HT
i .

The proof of Theorem 2 is presented in Appendix C.

Remark 2. In particular, in the above theorems, if k1 = 0, it follows from inequality (7) that we have Di =

0n×n(i ∈ Ψ), that is, the control (4) is impulsive control with distributed delays only. Similarly, if k2 = 0, then we

have Ki = 0n×n(i ∈ Ψ), the control (4) is impulsive control without time delays.

There are a few results on distributed delayed impulsive control (see, e.g., [28–30] and the references therein),

which however have some limitations. For instance, the results of [28] impose both upper and lower bounds on

impulsive intervals, and the distributed delays in impulsive controllers are not greater than the time delays in

systems, that is, rn ≤ τ . In [29], the distributed delays in the impulsive controllers are related to the time delays

in systems. In [30], the delay in the neural networks is constant rather than time-varying. Moreover, we obtain

the same distributed delayed impulsive control as in [30] if the semi-Markov process case is not considered and

D(r(t)) = 0n×n. Compared with [28–30], we have the following advantages: 1) impulsive intervals do not have a

lower bound; 2) the distributed delays in impulsive controllers are independent of the time delays in systems; 3)

time-varying delays are considered in neural networks.

4. Simulation examples

To illustrate the effectiveness and superiority of the given results, some examples are given in this section.

Example 1. Consider neural network (1) with three operation modes and the following system data:

C1 =

[
1.2 0

0 1

]
, C2 =

[
1.1 0

0 1.2

]
, C3 =

[
1.3 0

0 1.4

]
,

A1 =

[
2 −0.1

−5 2

]
, A2 =

[
1 −0.1

−6 3

]
, A3 =

[
0.2 −0.1

−5 3

]
,

B1 =

[
−1.5 −0.1

−0.2 −2.6

]
, B2 =

[
−1.3 −0.1

−0.1 −2.5

]
, B3 =

[
−1.4 −0.1

−0.2 −2.1

]
,
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f(x(t)) = (tanh(x1(t)), tanh(x2(t)))T ∈ R2,Ψ = {1, 2, 3}, time-varying delay ξ(t) = 1 + 0.3 sin(t), ξ = 1.3.

Consider the distributed delayed impulsive control with the following data:

D1 =

[
0.2 0.1

0.1 0.2

]
, D2 =

[
0.2 0.01

0.1 0.2

]
, D3 =

[
0.2 0.1

0.01 0.2

]
,

K1 =

[
0.2 0.01

0.1 0.2

]
, K2 =

[
0.2 0.01

0.1 0.2

]
, K3 =

[
0.2 0.1

0.01 0.2

]
,

the impulsive intervals tk − tk−1 = 0.07, distributed delays dk = 0.8, k ∈ Z+.

We assume that the sojourn time h is subject to the Weibull distribution and exponential distribution respectively.

Especially, when i = 1, the sojourn time h ∼ Weibull(4, 2), i.e., the probability density function (PDF) g1(h) =
1
8he
−1/16h2

; when i = 2, the sojourn time h ∼ Weibull(2, 2), i.e., the probability density function (PDF) g2(h) =
1
2he
−1/4h2

; when i = 3, the sojourn time h ∼ Exp(2), i.e., the probability density function (PDF) g3(h) = 1
2e
−1/2h,

the generator matrix is denoted by

Λ(h) =

λ11(h) λ12(h) λ13(h)

λ21(h) λ22(h) λ23(h)

λ31(h) λ32(h) λ33(h)

 =

−
1
4h

1
8h

1
8h

1
2h −h 1

2h
1
2

1
2 −1

 . (12)

Correspondingly, we can calculate the mathematical expectation of the transition rate λ12(h) as

E {λ12(h)} =

∫ ∞
0

1
8hg1(h)dh =

∫ ∞
0

1
64h

2e−1/16h2

dh = 0.4431.

With similar calculations, we have the mathematical expectation of the transition rates that

E {Λ(h)} =

−0.8862 0.4431 0.4431

0.8862 −1.7724 0.8862

0.5 0.5 −1

 .
It is easy to check that L̂ = 02×2, Ľ = 0.5I2. Choose η = 0.1, % = 2. Then, using the Matlab LMI toolbox, one

of the feasible solutions of Theorem 1 is α = 6.3685, β = 1.0476, k1 = 0.0585, k2 = 0.1904,

P1 =

[
0.1276 0.0126

0.0126 0.0905

]
, P2 =

[
0.1433 0.0000

0.0000 0.1437

]
,

P3 =

[
0.1243 0.0089

0.0089 0.0956

]
, U =

[
0.8627 0

0 0.8627

]
,

and thus it follows from Theorem 1 that neural network (1) is mean-square exponentially synchronized to response

system (3).

The following algorithm shows how to find a feasible solution for system (5) and design an appropriate impulsive

sequence.

Algorithm 1

Step 1. Set η := 0.1, % := 0.1.

Step 2. Using LMI toolbox in Matlab to find α, β, k1, k2, Pi, i ∈ Ψ, and U for LMIs (6), (7) and (8).

Step 3. Using inequality (9) to determine the impulsive sequence.

Step 4. If a feasible solution is found, then stop, else set η := η + 0.1, % := %+ 0.1 and go to Step 2.

Choose the initial condition ϕ(θ) = [0.6, 0.7]T , ψ(θ) = [1, 1.5]T , θ ∈ [−1.3, 0], and J = 0. With the distributed

delayed impulsive control input u(r(t)) = 0, Figure 1 shows that response system (3) is not synchronized to drive

7



system (1). When the distributed delayed impulsive control input u(r(t)) is given by (4), response system (3)

is synchronized to drive system (1), see Figure 2. Example 1 demonstrates that impulses do contribute to the

synchronization of drive system (1) and response system (3).

Figure 1: The error dynamics of impulse-free system

(5) in Example 1
Figure 2: The error dynamics of system (5) with

impulses in Example 1

Example 2. Consider neural network (1) with two operation modes and the following system data:

C1 =

[
1 0

0 1

]
, C2 =

[
1 0

0 1

]
,

A1 =

[
3 −0.1

−4 3

]
, A2 =

[
2 −0.2

−5 3

]
,

B1 =

[
−2 −0.1

−0.2 −2.5

]
, B2 =

[
−1.5 −0.1

−0.1 −2

]
,

f(x(t)) = (tanh(x1(t)), tanh(x2(t)))T ∈ R2,Ψ = {1, 2}, time-varying delay ξ(t) = 1 + 0.3 sin(t), ξ = 1.3.

We assume that the sojourn time h is subject to the Weibull distribution and exponential distribution respectively.

Especially, when i = 1, the sojourn time h ∼ Weibull(1, 2), i.e., the probability density function (PDF) g1(h) =

2he−h
2

; when i = 2, the sojourn time h ∼ Weibull(2, 2), i.e., the probability density function (PDF) g2(h) =
1
2he
−1/4h2

, the generator matrix is denoted by

Λ(h) =

[
λ11(h) λ12(h)

λ21(h) λ22(h)

]
=

[
−2h 2h
1
2h − 1

2h

]
. (13)

Correspondingly, we can calculate the mathematical expectation of the transition rate λ12(h) as

E {λ12(h)} =

∫ ∞
0

2hg1(h)dh =

∫ ∞
0

4h2e−h
2

dh = 0.4431.

With similar calculations, we have the mathematical expectation of transition rates that

E {Λ(h)} =

[
−1.7725 1.7725

0.8862 −0.8862

]
.

It is easy to check that L̂ = 02×2, Ľ = 0.5I2. Choose η = 0.1, % = 2, the impulsive intervals tk − tk−1 = 0.07,

distributed delays dk = 0.8, k ∈ Z+. One of the feasible solutions of Theorem 2 is α = 4.6056, β = 0.2594, k1 =

8



0.1486, k2 = 0.1791,

P1 =

[
0.6020 0

0 0.6020

]
, P2 =

[
0.5869 0

0 0.5869

]
,

G1 =

[
0.6885 0

0 0.6885

]
, G2 =

[
0.6615 0

0 0.6615

]
,

H1 =

[
0.7294 0

0 0.7294

]
, H2 =

[
0.8037 0

0 0.8037

]
, U =

[
8.3158 0

0 8.3157

]
.

Then the control gain matrices is obtained as follows:

D1 =

[
1.1436 0

0 1.1436

]
, D2 =

[
1.1270 0

0 1.1270

]
,

K1 =

[
1.2115 0

0 1.2115

]
, K2 =

[
1.3693 0

0 1.3693

]
,

thus it follows from Theorem 2 that neural network (1) is mean-square exponentially synchronized to response

system (3).

Choose the initial condition ϕ(θ) = [0.2, 0.3]T , ψ(θ) = [0.3, 0.4]T , θ ∈ [−1.3, 0], and J = 0. Figure 3 shows that

response system (3) isn’t synchronized to drive system (1) without distributed delayed impulsive control. As shown

in Figure 4, response system (3) is synchronized to the drive system (1) under distributed delayed impulsive control.

Figure 3: The error dynamics of impulse-free system

(5) in Example 2

Figure 4: The error dynamics of system (5) with

impulses in Example 2

5. Conclusion

In this paper, we have investigated the synchronization problem for nonlinear delayed s-MJNN via distributed

delayed impulsive control. By using stochastic Lyapunov functions together with Razumikhin technique, combined

with some LMIs, some synchronization criteria for a class of nonlinear delayed s-MJNN are derived to ensure that

response system and derive system are exponentially synchronized. The results obtained show that distributed

delayed impulses do contribute to synchronization of nonlinear delayed s-MJNN. In particular, our results gener-

alize the results in [28–30]. Finally, some simulation examples have been given to illustrate the effectiveness and

superiority of the proposed results. The limitation of our results is that the stability criteria are sufficient conditions

rather than sufficient and necessary conditions for synchronization of the neural networks. A possible direction for

future work is to obtain some robust stability criteria for delayed semi-Markov jump systems.
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Appendix A

Proof of Proposition 1: For convenience, set V (t) = V (e(t), t, i), i ∈ Ψ, and let

W (t) =

{
V (t)eη(t−t0), t ≥ t0,

V (t), t ∈ [t0 − τ, t0).
(14)

We claim that

E{W (t)} ≤ %E{V (t0)}, t ≥ t0, (15)

where V (t0) := sup{V (s), t0 − τ ≤ s ≤ t0}.
Firstly, we will prove

E{W (t)} ≤ %E{V (t0)}, t ∈ [t0 − τ, t1).

(a) When t ∈ [t0 − τ, t0], it is obvious that (15) holds.

(b) Next, we will prove that (15) holds for t ∈ (t0, t1).

If (15) is not true for t ∈ (t0, t1), then there exists a t́ ∈ (t0, t1) such that E{W (t́)} > %E{V (t0)}. Due

to the fact that E{W (t0)} = E{V (t0)} < %E{V (t0)}, set t∗ = inf{t ∈ (t0, t1),E{W (t)} ≥ %E{V (t0)}} so that

E{W (t∗)} = %E{V (t0)} and E{W (t)} < %E{V (t0)}, t ∈ (t0, t
∗). Furthermore, it follows from the definition of t∗

and the continuity of E{W (t)} that there exists a t∗ = sup{t ∈ [t0, t
∗),E{W (t)} ≤ E{V (t0)}} so that E{W (t∗)} =

E{V (t0)} and E{W (t)} ≥ E{V (t0)}, t ∈ [t∗, t
∗]. It can be deduced that for θ ∈ [−τ, 0] and t ∈ [t∗, t

∗], and therefore

E{W (t + θ)} ≤ %E{V (t0)} ≤ %E{W (t)} holds, which implies E{V (t + θ)} ≤ %e−ηθE{V (t)} ≤ %eητE{V (t)}. Then

from condition (ii) we obtain E{ÃV (t)} < qE{V (t)} for t ∈ [t∗, t
∗].

When t 6= tk, k ∈ Z+, r(t) = i, it follows from (14) that

E{ÃW (t)} = E{ηeη(t−t0)V (t)}+ eη(t−t0)E{ÃV (t)}

< ηE{W (t)}+ eη(t−t0)qE{V (t)}

= (η + q)E{W (t)}, t ∈ [t∗, t
∗]. (16)

Integrate both sides of (16) from t∗ to t∗. By using Dynkin’s formula and the Gronwall-Bellman lemma, it

follows from condition (ii) that

E{W (t∗)} < E{W (t∗)}e(η+q)(t∗−t∗)

= E{V (t0)}e(η+q)(t∗−t∗)

≤ %E{V (t0)},

which is a contradiction. Thus (15) holds for t ∈ [t0, t1).

Now we assume that (15) holds for t ∈ [tl−1, tl), for some l ∈ Z+. Next we claim that (15) holds for t ∈ [tl, tl+1).

When t = tl, it follows from condition (iii) that

E{V (tl)} ≤ k1E{V (t−l )}+ k2

∫ tl

tl−dl
E{V (s)}ds.

There are two cases:

1) If t0 − τ ≤ tl − dl ≤ t0, then it follows from (14) that

E{W (tl)} ≤ k1E{W (t−l )}+ k2e
η(tl−t0)

∫ t0

tl−dl
E{V (s)}ds+ k2

∫ tl

t0

eη(tl−t0)E{V (s)}ds

= k1E{W (t−l )}+ k2e
η(tl−t0)

∫ t0

tl−dl
E{W (s)}ds+ k2

∫ tl

t0

eη(tl−s)E{W (s)}ds

≤ k1E{W (t−l )}+ k2

∫ tl

tl−dl
eη(tl−s)E{W (s)}ds

10



≤ k1%E{V (t0)}+ k2dle
ηdl%E{V (t0)}

≤ (k1 + k2dle
ηdl)%E{V (t0)}. (17)

2) If t0 ≤ tl − dl ≤ tl, then it follows from (14) that

E{W (tl)} ≤ k1E{W (t−l )}+ k2

∫ tl

tl−dl
eη(tl−s)E{W (s)}ds

≤ k1%E{V (t0)}+ k2dle
ηdl%E{V (t0)}

≤ (k1 + k2dle
ηdl)%E{V (t0)}. (18)

Hence, it follows from condition (iv) that E{W (tl)} ≤ E{V (t0)}.
Suppose (15) is false for t ∈ (tl, tl+1). Then there exists a t̀ ∈ (tl, tl+1) such that E{W (t̀)} > %E{V (t0)}. Set

t̃ = inf{t ∈ (tl, tl+1),E{W (t)} ≥ %E{V (t0)}}. Then we have E{W (t̃)} = %E{V (t0)} and E{W (t)} < %E{V (t0)}, t ∈
(tl, t̃). Furthermore, set t̄ = sup{t ∈ [tl, t̃),E{W (t)} ≤ E{V (t0)}}, then we have E{W (t̄)} = E{V (t0)} and

E{W (t)} ≥ E{V (t0)}, t ∈ [t̄, t̃]. Then it can be deducted that for θ ∈ [−τ, 0] and t ∈ [t̄, t̃], we have E{W (t+ θ)} ≤
%E{V (t0)} ≤ %E{W (t)} holds, which implies E{V (t + θ)} ≤ %e−ηθE{V (t)} ≤ %eητE{V (t)}. Then from condition

(ii) we obtain E{ÃV (t)} < qE{V (t)} for t ∈ [t̄, t̃].

When t 6= tk, k ∈ Z+, r(t) = i, it follows from (14) that

E{ÃW (t)} = E{ηeη(t−t0)V (t)}+ E{eη(t−t0)ÃV (t)}

< ηE{W (t)}+ E{eη(t−t0)qV (t)}

= (η + q)E{W (t)}, t ∈ [t̄, t̃]. (19)

Integrate both sides of (19) from t̄ to t̃, by using Dynkin’s formula and the Gronwall-Bellman lemma, it follows

from condition (ii) that

E{W (t̃)} < E{W (t̄)}e(η+q)(t̃−t̄)

= E{V (t0)}e(η+q)(t̃−t̄)

≤ %E{V (t0)},

which is a contradiction. Thus (15) holds for t ∈ [tl, tl+1).

By the principle of mathematical induction, we have proved that (15) holds for t ≥ t0, then we have E{V (t)} ≤
%E{V (t0)}e−η(t−t0), which implies that the trivial solution of system (5) is p-th moment exponentially stable.

Appendix B

Lemma 1. [38]. Let Φ ∈ Rn×n be a positive definite matrix and M ∈ Rn×n be a symmetric matrix, then for any

x ∈ Rn, the following inequality holds :

λmin(Φ−1M)xTΦx ≤ xTMx ≤ λmax(Φ−1M)xTΦx.

Lemma 2. Let X and Y be any n-dimensional real vectors, and let P be an n × n positive semidefinite matrix.

Then, the following matrix inequality holds:

2XTPY ≤ XTPX + Y TPY.

Lemma 3. [39]. Let M ∈ Rn×n be a symmetric positive definite matrix and constants b > a, then for any vector

function ω : [a, b]→ Rn, the following inequality is established.(∫ b

a

ω(s)ds

)T
M

(∫ b

a

ω(s)ds

)
≤ (b− a)

(∫ b

a

ωT (s)Mω(s)ds

)
.
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Lemma 4. (Schur Complement). The linear matrix inequality[
Q S

ST R

]
< 0,

where Q = QT , R = RT , is equivalent to either of the following conditions:

1) Q < 0, R− STQ−1S < 0,

2) R < 0, Q− SR−1ST < 0.

Proof of Theorem 1: Choose the following stochastic Lyapunov function

V (e(t), t, r(t)) = eT (t)Pr(t)e(t).

For simplicity, set V (t) = V (e(t), t, r(t)).

For any t 6= tk, k ∈ Z+, noting that r(t) takes values in Ψ = {1, 2, ..., S} and r(t) = rm,m ∈ Z+, we suppose

that r(t) = i ∈ Ψ and apply the law of total probability and conditional expectation to obtain

ÃV (t) = lim
ε→0

1

ε

[
E

{
S∑

j=1,j 6=i

Pr{rm+1 = j, hm+1 ≤ h+ ε|rm = i, hm+1 > h}eT (t+ ε)Pje(t+ ε)

+ Pr{rm+1 = i, hm+1 > h+ ε|rm = i, hm+1 > h}eT (t+ ε)Pie(t+ ε)

}
− eT (t)Pie(t)

]

= lim
ε→0

1

ε

[
E

{
S∑

j=1,j 6=i

Pr{rm+1 = j, rm = i}
Pr{rm = i}

Pr{h < hm+1 < h+ ε|rm+1 = j, rm = i}
Pr{hm+1 > h|rm = i}

× eT (t+ ε)Pje(t+ ε) +
Pr{hm+1 > h+ ε|rm = i}
Pr{hm+1 > h|rm = i}

eT (t+ ε)Pie(t+ ε)

}
− eT (t)Pie(t)

]

= lim
ε→0

1

ε

[
E

{
S∑

j=1,j 6=i

qij(Gi(h+ ε)−Gi(h))

1−Gi(h)
eT (t+ ε)Pje(t+ ε)

+
1−Gi(h+ ε)

1−Gi(h)
eT (t+ ε)Pie(t+ ε)

}
− eT (t)Pie(t)

]
, (20)

where Gi(h) is the CDF of sojourn-time h when the system stays in mode i, and qij = Pr{rm+1=j,rm=i}
Pr{rm=i} =

Pr{rm+1 = j|rm = i} is the probability intensity of the system transition from mode i to mode j. Given a small

ε, take the Taylor series with respect to ε at 0 as follows:

e(t+ ε) = e(t) + εė(t) + o(ε) = (εΥi + Ĩ)ς(t) + o(ε), (21)

where 
ς(t) = [eT (t), FT (e(t)), FT (e(t− ξ(t)))]T ,

Υi = [−Ci, Ai, Bi],

Ĩ = [In,0n×n,0n×n].

It follows from inequalities (20) and (21) that

ÃV (t) = lim
ε→0

1

ε

[
E

{
S∑

j=1,j 6=i

qij(Gi(h+ ε)−Gi(h))

1−Gi(h)
ςT (t)(εΥi + Ĩ)TPj(εΥi + Ĩ)ς(t)

+
1−Gi(h+ ε)

1−Gi(h)
ςT (t)(εΥi + Ĩ)TPi(εΥi + Ĩ)ς(t)

}
− eT (t)Pie(t)

]
, t 6= tk, k ∈ Z+.
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Considering the condition that limε→0
Gi(h+ε)−Gi(h)

1−Gi(h) = 0, one has

ÃV (t) = lim
ε→0

E

{
ςT (t)

[
1−Gi(h+ ε)

1−Gi(h)
(ΥT

i PiĨ + ĨTPiΥi)

+ ĨT
( S∑
j=1,j 6=i

qij(Gi(h+ ε)−Gi(h))

ε(1−Gi(h))
Pj +

Gi(h)−Gi(h+ ε)

ε(1−Gi(h))
Pi

)
Ĩ

]
ς(t)

}
, t 6= tk, k ∈ Z+.

Using the property of the CDF, we have

lim
ε→0

1−Gi(h+ ε)

1−Gi(h)
= 1, lim

ε→0

Gi(h+ ε)−Gi(h)

ε(1−Gi(h))
= λi(h),

where λi(h) refers to the transition rate of the system transition from mode i.

Define λij(h) = qijλi(h), i 6= j and λii(h) = −
∑S
j=1,j 6=i λij(h), similar to [31], one has

ÃV (t) = ςT (t)

[
(ΥT

i PiĨ + ĨTPiΥi) + ĨT
( S∑
j=1

λ̄ijPj

)
Ĩ

]
ς(t)

= ςT (t)


−CTi Pi − PiCi +

S∑
j=1

λ̄ijPj PiAi PiBi

ATi Pi 0n×n 0n×n

BTi Pi 0n×n 0n×n

 ς(t),

where ς(t) = [eT (t), FT (e(t)), FT (e(t− ξ(t)))]T , λ̄ij = E{λij(h)} =
∫∞

0
λij(h)gi(h)dh.

It follows from Assumption 1 that

[Fj(ej(t− ξ(t)))− lj1ej(t− ξ(t))]T [lj2ej(t− ξ(t))− Fj(ej(t− ξ(t)))] ≥ 0, j = 1, 2, . . . , n.

Therefore

0 ≤
n∑
j=1

uj [Fj(ej(t− ξ(t)))− lj1ej(t− ξ(t))]T [lj2ej(t− ξ(t))− Fj(ej(t− ξ(t)))]

= −eT (t− ξ(t))UL̂e(t− ξ(t)) + 2eT (t− ξ(t))UĽF (e(t− ξ(t)))

− FT (e(t− ξ(t)))UF (e(t− ξ(t))). (22)

From inequalities (5) and (22), for any t 6= tk, k ∈ Z+, taking r(t) = i and r(t− ξ(t)) = l ∈ Ψ, we have

ÃV (t) ≤ ω̃T (t)


−CTi Pi − PiCi +

S∑
j=1

λ̄ijPj − UL̂ PiAi + UĽ 0n×n PiBi

∗ −U 0n×n 0n×n

∗ ∗ −UL̂ UĽ

∗ ∗ ∗ −U

 ω̃(t)

= ω̃T (t)


−CTi Pi − PiCi +

S∑
j=1

λ̄ijPj − αPi − UL̂ PiAi + UĽ 0n×n PiBi

∗ −U 0n×n 0n×n

∗ ∗ −UL̂− βPl UĽ

∗ ∗ ∗ −U

 ω̃(t)

+ αeT (t)Pie(t) + βeT (t− ξ(t))Ple(t− ξ(t))

< αeT (t)Pie(t) + βeT (t− ξ(t))Ple(t− ξ(t)),
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where ω̃(t) = [eT (t), FT (e(t)), eT (t− ξ(t)), FT (e(t− ξ(t)))]T . Hence

ÃV (t) < αV (t) + βV (t− ξ(t)). (23)

Taking expectation E{· } on both sides of (23) leads to

E{ÃV (t)} < αE{V (t)}+ βE{V (t− ξ(t))}.

For all t ∈ [tk−1, tk), k ∈ Z+, θ ∈ [−τ, 0], if E{V (t+ θ)} ≤ %eητE{V (t)}, then we have

E{ÃV (t)} < αE{V (t)}+ βE{V (t− ξ(t))}

≤ αE{V (t)}+ β%eητE{V (t)}

≤ (α+ β%eητ )E{V (t)}. (24)

For any t = tk, k ∈ Z+, r(tk) = i, it follows from Lemma 2, Lemma 3 and (5) that

V (tk) = eT (tk)Pie(tk)

=
[
Die(t

−
k ) +Ki

∫ tk

tk−dk
e(s)ds

]T
Pi

[
Die(t

−
k ) +Ki

∫ tk

tk−dk
e(s)ds

]
= eT (t−k )DT

i PiDie(t
−
k ) + 2eT (t−k )DT

i PiKi

∫ tk

tk−dk
e(s)ds

+
(
Ki

∫ tk

tk−dk
e(s)ds

)T
Pi

(
Ki

∫ tk

tk−dk
e(s)ds

)
≤ 2eT (t−k )DT

i PiDie(t
−
k ) + 2

(∫ tk

tk−dk
e(s)ds

)T
KT
i PiKi

(∫ tk

tk−dk
e(s)ds

)
≤ k1e

T (t−k )Pie(t
−
k ) + k2

(∫ tk

tk−dk
eT (s)P (r(s))e(s)ds

)
= k1V (t−k ) + k2

∫ tk

tk−dk
V (s)ds. (25)

Taking expectations E{·} in the above inequality, we have that

E{V (tk)} ≤ k1E{V (t−k )}+ k2

∫ tk

tk−dk
E{V (s)}ds, k ∈ Z+. (26)

Thus by Proposition 1, we obtain

E{V (t)} ≤ %E{V (t0)}e−η(t−t0),

and therefore it follows from Lemma 1 that

E
{
‖e(t, ψ)‖2

}
≤ %maxi∈Ψ{λmax(Pi)}‖ψ‖2E

mini∈Ψ{λmin(Pi)}
e−η(t−t0), ∀t ≥ t0,

which implies that neural network (1) is mean-square exponentially synchronized to response system (3). The proof

of Theorem 1 is completed.

Appendix C

Proof of Theorem 2: It follows from Lemma 4 and (11) that −k1Pi + 2DT
i PiDi < 0,−k2d Pz + 2KT

i PiKi <

0, i, z ∈ Ψ, and thus inequality (7) holds. Then by Theorem 1, neural network (1) is mean-square exponentially

synchronized to response system (3) under the control gain matrices Di = P−1
i GTi and Ki = P−1

i HT
i , i ∈ Ψ.
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