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Abstract— Partial stochastic realization of periodic processes
from finite covariance data leads to the circulant rational
covariance extension problem and bilateral ARMA models. In
this paper we present a convex optimization-based theory for
this problem that extends and modifies previous results by
Carli, Ferrante, Pavon and Picci on the AR solution, which
have been successfully applied to image processing of textures.
We expect that our present results will provide an enhancement
of these procedures.

I. INTRODUCTION

The rational covariance extension problem is an important
problem in systems and control with an extensive literature;
see, e.g., [2]–[7], [15], [17], [18], [21], [30] and references
therein. Among other things, it is the basic problem in
partial stochastic realization theory [3] and Toeplitz ma-
trix completion problems. Covariance extension for periodic
stochastic processes, on the other hand, leads to matrix
completion of Toeplitz matrices with circulant structure and
to partial stochastic realizations in the form of bilateral
ARMA models. This connects up to a rich realization theory
for reciprocal processes [22]–[25].

In [12] Carli, Ferrante, Pavon and Picci presented a
maximum-entropy approach to this circulant covariance ex-
tension problem, thereby providing a procedure for deter-
mining the unique bilateral AR model matching the covari-
ance sequence. However, recently it was discovered that the
circulant covariance extension can be recast in the context
of the optimization-based theory of moment problems with
rational measures developed in [1], [4], [5], [7]–[9], [11],
[19], [20] allowing for a complete parameterization of all
bilateral ARMA realizations, and a complete theory for the
scalar case was presented in [26]. The present paper provides
a first step in generalizing this theory to the multivariable
case.

The AR theory of [12] has been successfully applied to
image processing of textures [14], [31], and we anticipate
an enhancement of such methods by allowing for more
general ARMA realizations. As pointed out in [26] the
circulant rational convariance extension theory provides a
fast approximation procedure for solving the regular rational
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covariance extension problem, as it is based on fast Fourier
transforms (FFT), and in the present paper we shall provide
numerical evidence that this also holds in the multivariable
case.

The outline of the paper goes as follows. In Section II we
review the regular multivariable rational covariance extension
problem and harmonic analysis on the discrete unit circle.
Then in Section III we present our main result on the mul-
tivariable circulant rational covariance extension problem,
parametrizing the family of solutions, and in Section IV we
show how logarithmic moments can be used to determine the
best particular solution. Finally, in Section V we provide two
numerical examples demonstrating the power of circulant
covariance extension as a tool for approximation.

II. PRELIMINARIES

A. The multivariable rational covariance extension problem
We begin by reviewing basic results from [1] in the

formalism of [11]. Given a sequence C0, C1, . . . , Cn in
Cm×m (with C0 Hermitian symmetric) such that the block
Toeplitz matrix

Tn =


C0 C∗

1 C∗
2 · · · C∗

n
C1 C0 C∗

1 · · · C∗
n−1

C2 C1 C0 · · · C∗
n−2

...
...

...
. . .

...
Cn Cn−1 Cn−2 · · · C0

 (1)

is positive definite, find an infinite extension
Cn+1, Cn+3, Cn+3, . . . such that, the series expansion

Φ(eiθ) =

∞∑
k=−∞

Cke
−ikθ, C−k = C∗k , (2)

converges for all θ ∈ [−π, π] to a positive m ×m spectral
density that takes the rational form

Φ(z) = P (z)Q(z)−1. (3)

This is a moment problem since it follows from (2) that the
spectral density Φ satisfies the moment conditions∫ π

−π
eikθΦ(eiθ)

dθ

2π
= Ck, k = 0, 1, . . . , n. (4)

We stress that this paper is a first step in establishing a
complete theory for the multivariable case. For technical
reasons, we confine our ARMA models to those whose
transfer function has a matrix representation with a scalar
numerator polynomial. Thus, P is a symmetric trigonometric
polynomial of the form

P (eiθ) =

n∑
k=−n

pke
−ikθ, p−k = p̄k, (5)



of degree at most n, whereas Q is a symmetric trigonometric
m×m matrix polynomial

Q(eiθ) =

n∑
k=−n

Qke
−ikθ, Q−k = Q∗k. (6)

Let P(m,n)
+ be the set of matrix polynomials (6) which are

positive definite for all θ ∈ [−π, π]. This is a convex cone,
the closure of which we shall denote P

(m,n)
+ . Now, defining

the trigonometric matrix polynomial

C(eiθ) =

n∑
k=−n

Cke
−ikθ, C−k = C∗k , (7)

we have

〈C,Q〉 :=

∫ π

−π
tr
{
C(eiθ)Q(eiθ)∗

} dθ
2π

=

n∑
k=−n

tr{CkQ∗k}.

(8)
If Q ∈ P

(m,n)
+ , then there is a stable spectral factor

A(z) = A0z
n +A1z

n−1 + · · ·+An (9)

such that Q(z) = A(z)A(z)∗, and consequently

〈C,Q〉 =

∫ π

−π
tr
{
A(eiθ)C(eiθ)A(eiθ)∗

} dθ
2π

= tr{ATnA∗},
(10)

where A := (A0, A1, . . . , An). Let C(m,n)
+ be the interior of

the dual cone of all (7) such that

〈C,Q〉 ≥ 0 for all Q ∈ P
(m,n)
+ . (11)

This is an open convex cone. It follows from (10) that C ∈
C
(m,n)
+ if and only if Tn is positive definite.
Next, consider the optimization problem to maximize the

generalized entropy

IP (Φ) =

∫ π

−π
P (eiθ) log det Φ(eiθ)

dθ

2π
(12)

over all Φ that are positive definite on the unit circle subject
to the moment conditions (4).

Theorem 1 (Blomqvist-Lindquist-Nagamune [1]): For
each (P,C) ∈ P

(1,n)
+ × C

(m,n)
+ , the problem to maximize

(12) subject to the moment conditions (4) has a unique
solution Φ̂, and it has the form

Φ̂(z) = P (z)Q̂(z)−1, (13)

where Q̂ ∈ P
(m,n)
+ is the unique solution to the dual problem

to minimize

JP (Q) = 〈C,Q〉 −
∫ π

−π
P (eiθ) log detQ(eiθ)

dθ

2π
(14)

over all Q ∈ P
(m,n)
+ .

Consequently, a large subclass of all multivariable rational
covariance extensions, namely those for which Φ takes the
form (3), are completely parameterized by the P ∈ P

(1,n)
+ .

B. Harmonic analysis in Z2N and stationary periodic vector
processes

The discrete Fourier transform (DFT) F maps a finite
sequence g = {gk; k = −N + 1, . . . , N} in Cm, into a
sequence of complex m-vectors

G(ζj) :=

N∑
k=−N+1

gkζ
−k
j , j = −N+1,−N+2, . . . , N,

(15)
where ζj := eijπ/N . Here we have defined the discrete vari-
able ζ taking the 2N values ζj , j = −N + 1, . . . , 0, . . . , N
and running counterclockwise on the discrete unit circle
T2N . In particular, we have ζj = (ζ1)j and ζ−k = ζk. The
inverse DFT F−1 is given by

gk =
1

2N

N∑
j=−N+1

ζkj G(ζj), k = −N+1,−N+2, . . . , N,

(16)
which can also be written as a Stieltjes integral

gk =

∫ π

−π
eikθG(eiθ)dν(θ), k = −N+1,−N+2, . . . , N,

(17)
where ν is a step function with steps 1

2N at each ζk; i.e.,

dν(θ) =

N∑
j=−N+1

δ(eiθ − ζj)
dθ

2N
. (18)

With H being the DFT of {hk},
N∑

j=−N+1

gjh
∗
j =

1

2N

N∑
k=−N+1

G(ζk)H(ζ−k)∗

=

∫ π

−π
G(eiθ)H(eiθ)∗dν,

(19)

which is Plancherel’s Theorem for DFT. From this we see
that

〈G,H〉 :=

∫ π

−π
tr
{
G(eiθ)H(eiθ)∗

}
dν =

N∑
j=−N+1

tr{gjh∗j}

(20)
is computed exactly as in (8) despite the change of measure
in the integral. Hence results such as (10) hold also with the
Stieltjes measure dν.

Occasionally we shall write the discrete Fourier transform
(15) in the matrix form

ĝ = Fg, (21)

where ĝ :=
(
G(ζ−N+1)T,G(ζ−N+2)T, . . . ,G(ζN )T

)
T, g :=(

g−N+1
T,g−N+2

T, . . . ,gN
T
)

T and F is the nonsingular
2mN × 2mN block Vandermonde matrix

F =


ζN−1
−N+1Im ζN−2

−N+1Im · · · ζ−N−N+1Im
...

... · · ·
...

ζN−1
0 Im ζN−2

0 Im · · · ζ−N0 Im
...

... · · ·
...

ζN−1
N Im ζN−2

N Im · · · ζ−NN Im

. (22)



Likewise, it follows from (16) that

g =
1

2N
F∗ĝ, (23)

i.e., F−1 corresponds to 1
2NF∗. Consequently, FF∗ = 2N I,

and hence F−1 = 1
2NF∗ and (F∗)−1 = 1

2NF.
Next consider be a zero-mean stationary m-dimensional

process {y(t)} defined on Z2N ; i.e., a stationary process
defined on a finite interval [−N + 1, N ] of the integer line
Z and extended to all of Z as a periodic stationary process
with period 2N . Let C−N+1, C−N+2, . . . , CN be the m ×
m covariance lags Ck := E{y(t + k)y(t)∗}, and define its
discrete Fourier transformation

Φ(ζj) :=

N∑
k=−N+1

Ckζ
−k
j , j = −N + 1, . . . , N, (24)

which is a positive, Hermitian matrix-valued function of ζ.
Then, as seen from (16) and (17),

Ck =
1

2N

N∑
j=−N+1

ζkj Φ(ζj)

=

∫ π

−π
eikθΦ(eiθ)dν, k = −N + 1, . . . , N.

(25)

The m×m matrix function Φ is the spectral density of the
vector process y. In fact, let

ŷ(ζk) :=

N∑
t=−N+1

y(t)ζ−tk , k = −N + 1, . . . , N, (26)

be the discrete Fourier transformation of the process y. Since
1

2N

∑N
t=−N+1(ζkζ

∗
` )t = δk`, the random variables (26) are

uncorrelated, and
1

2N
E{ŷ(ζk)ŷ(ζ`)

∗} = Φ(ζk)δk`. (27)

This yields a spectral representation of y analogous to the
usual one, namely

y(t) =
1

2N

N∑
k=−N+1

ζtk ŷ(ζk) =

∫ π

−π
eikθdŷ(θ), (28)

where dŷ := ŷ(eiθ)dν.

C. Block-circulant matrices

Circulant block matrices are block Toeplitz matrices with
a special circulant structure

Circ{Λ0,Λ1, . . . ,Λν} =


Λ0 Λν Λν−1 · · · Λ1

Λ1 Λ0 Λν · · · Λ2

Λ2 Λ1 Λ0 · · · Λ3

...
...

...
. . .

...
Λν Λν−1 Λν−2 · · · Λ0

,
where the block columns (or, equivalently, block rows)
are shifted cyclically, and where Λ0,Λ1, . . . ,Λν here are
taken to be complex matrices. In the multivariable circulant
rational covariance extension problem we consider Hermitian
circulant matrices

M := Circ{M0,M1,M2, . . . ,MN ,M
∗
N−1, . . . ,M

∗
1 }, (29)

which can be represented in the form

M =

N∑
k=−N+1

S−k ⊗Mk, M−k = M∗k (30)

where ⊗ is the Kronecker product and S is the nonsingular
2N × 2N cyclic shift matrix

S :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 1
1 0 0 0 0

. (31)

The m×m pseudo-polynomial

M(ζ) =

N∑
k=−N+1

Mkζ
−k, M−k = M∗k (32)

is called the symbol of M. Let S be the 2mN×2mN cyclic
shift matrix

S = S ⊗ Im =


0 Im 0 . . . 0
0 0 Im . . . 0
...

...
...

. . .
...

0 0 0 0 Im
Im 0 0 0 0

. (33)

Clearly S2N = S0 = I := I2mN , and

Sk+2N = Sk, S2N−k = S−k = (Sk)T. (34)

Moreover,
SMS∗ = M, (35)

is both necessary and sufficient for M to be circulant. With
g :=

(
g−N+1

T,g−N+2
T, . . . ,gN

T
)

T, we have

[Sg]k = gk+1, k ∈ Z2N . (36)

Then, in view of (15), ζF(g)(ζ) = F(Sg)(ζ), from which
we have

F(Mg)(ζ) = M(ζ)F(g)(ζ), (37)

where the m×m matrix fuction M(ζ) is the symbol (32) of
the circulant matrix M. An important property of circulant
block matrices is that they can be block-diagonalized by the
discrete Fourier transform. More precisely, it follows from
(37) that

M =
1

2N
F∗diag

(
M(ζ−N+1), . . . ,M(ζN )

)
F, (38)

where ’diag’ denotes block diagonal. Hence the inverse is

M−1 =
1

2N
F∗diag

(
M(ζ−N+1)−1, . . . ,M(ζN )−1

)
F,

(39)
and, since

S =
1

2N
F∗diag

(
ζ−N+1, . . . , ζN

)
F

S∗ =
1

2N
F∗diag

(
ζ−1−N+1, . . . , ζ

−1
N

)
F,

we have
SM−1S∗ = M−1.



Hence M−1 is also a circulant block matrix with sym-
bol M(ζ)−1. In general, in view of the circulant property
(30) and (34), quotients of symbols are themselves pseudo-
polynomials of degree at most N and hence symbols. More
generally, if A and B are circulant block matrices of the
same dimension with symbols A(ζ) and B(ζ) respectively,
then AB and A + B are circulant matrices with symbols
A(ζ)B(ζ) and A(ζ) + B(ζ), respectively. In fact, the cir-
culant matrices of a fixed dimension form an algebra, and
the DFT is an algebra homomorphism of the set of circulant
matrices onto the pseudo-polynomials of degree at most N
in the variable ζ ∈ T2N .

III. THE MULTIVARIABLE CIRCULANT RATIONAL
COVARIANCE EXTENSION PROBLEM

Given C := (C0, C1, . . . , Cn) ∈ C
(m,n)
+ for some n < N ,

find an m×m spectral density Φ of the form (3) such that∫ π

−π
eikθΦ(eiθ)dν = Ck, k = 0, 1, 2, . . . , n. (40)

It turns out that this yields an extension

Ck =

∫ π

−π
eikθΦ(eiθ)dν, k = n+ 1, n+ 2, . . . , N (41)

such that the banded Hermitian block-circulant matrix

C = Circ{C0, C1, . . . , Cn, 0, . . . , 0, C
∗
n, . . . , C

∗
1} (42)

with symbol (7) is extended to a Hermitian block-circulant
matrix

Σ := Circ{C0, C1, C2, . . . , CN , C
∗
N−1, . . . , C

∗
2 , C

∗
1} (43)

that is positive definite with symbol Φ.
We now proceed to solve the multivariable circulant ratio-

nal covariance extension problem in terms of the symbols,
and then interpret the results in terms of matrices.

A. Circulant rational covariance extension in terms of sym-
bols

Define the cone P
(m,n)
+ (N) ⊃ P

(m,n)
+ of m×m matrix-

valued trigonometric polynomials (6) such that

Q(ζk) > 0 k = −N + 1,−N + 2, . . . , N. (44)

Then P
(m,n)
+ (N) ⊃ P

(m,n)
+ (2N) ⊃ P

(m,n)
+ (4N) ⊃ · · · ⊃

P
(m,n)
+ , and the corresponding dual cones satisfy

C
(m,n)
+ (N) ⊂ C

(m,n)
+ (2N) ⊂ C

(m,n)
+ (4N) ⊂ · · · ⊂ C

(m,n)
+ .

(45)
Theorem 2: Let C ∈ C

(m,n)
+ (N). Then, for each P ∈

P
(1,n)
+ (N), there is a unique Q ∈ P

(m,n)
+ (N) such that

Φ = PQ−1 (46)

satisfies the moment conditions (40).
Theorem 2 follows from the following theorem, which also

provides an algorithm for computing the solution.

Theorem 3: For each (P,C) ∈ P
(1,n)
+ (N) × C

(m,n)
+ (N),

the problem to maximize the functional

IP (Φ) =

∫ π

−π
P (eiθ) log det Φ(eiθ)dν (47)

subject to the moment conditions (40) has a unique solution
Φ̂, and it has the form

Φ̂(z) = P (z)Q̂(z)−1, (48)

where Q̂ ∈ P
(m,n)
+ (N) is the unique solution to the dual

problem to minimize

JP (Q) = 〈C,Q〉 −
∫ π

−π
P (eiθ) log detQ(eiθ)dν (49)

over all Q ∈ P
(m,n)
+ (N).

The proofs of Theorems 2 and 3 follow the lines of [26]
and will be given in [27]. It can also be shown that the
moment map sending Q ∈ P

(m,n)
+ (N) to C ∈ C

(m,n)
+ (N) is

a diffeomorphism.

B. Circulant rational covariance extension in terms of ma-
trices

Next we reformulate the optimization problems in terms
of circulant matrices. To this end, we define the circulant
matrix

Σ =
1

2N
F∗diag

(
Φ(ζ−N+1), . . . ,Φ(ζN )

)
F (50)

with symbol (46) and the banded numerator matrix

P =
1

2N
F∗diag

(
Im⊗P (ζ−N+1), . . . , Im⊗P (ζN )

)
F (51)

of degree at most n with symbol P (ζ)Im, where the scalar
pseudo-polynomial P is given by (5). It can also be shown
that

log Σ =
1

2N
F∗diag

(
log Φ(ζ−N+1), . . . , log Φ(ζN )

)
F.

(52)
Therefore, since log det Φ = tr log Φ, the primal functional
(47) may be written∫ π

−π
P (eiθ) log det Φ(eiθ)dν

=
1

2N

N∑
j=−N+1

tr {P (ζj) log Φ(ζj)}

=
1

2N
tr{P log Σ}

(53)

and the moment conditions (40) as
1

2N
tr{SkΣ} = Ck, k = 0, 1, . . . , n, (54)

or, equivalently, as

En
TΣEn = Tn, where En =

[
Imn
0

]
. (55)

Consequently, the primal problem amounts to maximizing
tr{P log Σ} over all Hermitian, positive definite 2mN ×
2mN block matrices subject to (54) or (55). This reduces



to the primal problem presented in [12] in the special case
P ≡ 1, except that in [12] there is an extra condition insuring
that Σ is circulant. However, in [13] it was shown that this
condition is automatically satisfied and is hence not needed.

Similarly the dual functional (49) can be written∫ π

−π
C(eiθ)Q(eiθ)∗dν −

∫ π

−π
P (eiθ) log detQ(eiθ)dν

=
1

2N
tr{CQ} − 1

2N
tr{P log Q},

(56)

where

Q =
1

2N
F∗diag

(
Q(ζ−N+1), . . . , Q(ζN )

)
F (57)

and C is the banded circulant block matrix (42) formed from
C0, C1, . . . , Cn. Therefore, given C ∈ C+(N), it follows
from Theorem 2 that, for each Hermitian, positive-definite
circulant block matrix P with symbol of the form P (ζ)Im,
where P is a pseudo-polynomial of degree at most n, there
is a unique Σ given by

Σ = Q−1P, (58)

where Q is the unique solution of the problem to minimize

JP(Q) =
1

2N
tr{CQ} − 1

2N
tr{P log Q} (59)

over all Hermitian, circulant block-banded matrices

Q = Circ{Q0, Q1, . . . , Qn, 0, . . . , 0, Q
∗
n, Q

∗
n−1, . . . , Q

∗
1}

that are positive definite. For the maximum-entropy solution
corresponding to P = I this reduces to an optimization
problem that is different from the one presented in [12].

As observed in [12] the condition Tn > 0 is necessary, but
not a sufficient, for feasibility of the circulant block-banded
covariance extension problem. In the present setting we see
that the Toeplitz condition Tn > 0 is equivalent to C ∈
C
(m,n)
+ , whereas, by Theorem 2, C ∈ C

(m,n)
+ (N) is required

for feasibility. Since C
(m,n)
+ (N) ⊂ C

(m,n)
+ , it follows that the

Toeplitz condition cannot be sufficient in general. However,
as proved in [12], feasibility is achieved for a sufficiently
large N . This can also be seen by noting that the set {ζj ; j =
−N + 1, . . . , N} becomes dense on the unit circle as N →
∞, and therefore P+(N)→ P+. Consequently, C+(N)→
C+, and the convergence is monotone in the sense of (45).
Therefore, since C+ is an open set, there is an N0 such that
any C ∈ C+ will sooner or later end up in C+(N) and
remain there as N ≥ N0 increases.

IV. DETERMINING P FROM LOGARITHMIC MOMENTS

We have parameterized a large class of solutions to the
multivariable circulant rational covariance extension prob-
lem in a smooth manner by the numerator trigonometric
polynomials P ∈ P

(1,n)
+ (N), or, equivalently, by their

corresponding banded circulant matrices P. Next, we show
how P can be determined from the logarithmic moments

γk =

∫ π

−π
eikθ log det Φ(eiθ)dν, k = 1, 2, . . . , n. (60)

Such moments are known as cepstral coefficients in speech
processing. Let Γ(ζ) be the pseudo-polynomial

Γ(ζ) =

n∑
k=−n

γkζ
−k, (61)

where γ−k = γ̄k, k = 1, 2, . . . , n and γ0 is real.
Consider the problem of finding the spectral density Φ, or,

equivalently, the circulant block matrix Σ, that maximizes
the entropy gain

I(Φ) =

∫ π

−π
log det Φ(eiθ)dν =

1

2N
tr log Σ (62)

subject to the two sets of moment conditions (40) and (60).
Such a problem was apparently first considered in the usual
trigonometric moment setting in an unpublished technical
report [29] and then, independently and in a more elaborate
form, in [6], [7], [15].

Setting up the Lagrangian a straightforward calculation
yields the dual problem to minimize

J(P,Q) = 〈C,Q〉 −
∫ π

−π
P (eiθ) log detQ(eiθ)dν

−〈Γ, P 〉+

∫ π

−π
P (eiθ) logP (eiθ)dν,

(63)

over (P,Q) ∈ P̂
(1,n)
+ (N)×P

(m,n)
+ (N), where P̂

(1,n)
+ (N) is

the bounded subset

P̂
(1,n)
+ (N) := {P ∈ P

(1,n)
+ (N) | p0 = 1} (64)

of the cone P
(1,n)
+ (N).

The following theorem is a multivariable version of The-
orem 8 in [26] and the proof is analogous.

Theorem 4: Suppose that C ∈ C
(m,n)
+ (N) and that

γ1, . . . , γn are complex numbers. Then there exists a so-
lution (P̂ , Q̂) that minimizes J(P,Q) over all (P,Q) ∈
P̂

(1,n)
+ (N)×P

(m,n)
+ (N), and, for any such solution

Φ̂ = P̂ Q̂−1 (65)

satisfies the covariance moment conditions (40). If, in ad-
dition, P̂ ∈ P

(1,n)
+ (N), (65) also satisfies the logarithmic

moment conditions (60) and is an optimal solution of the
primal problem to maximize the entropy gain (62) given (40)
and (60). Then Q̂ ∈ P

(m,n)
+ (N), and the solution is unique.

In fact, J is strictly convex on P̂
(1,n)
+ (N)×P

(m,n)
+ (N).

Provided C ∈ C+(N), minimizing J(P,Q) over all
(P,Q) ∈ P̂

(1,n)
+ (N) × P

(m,n)
+ (N) will always pro-

duce a spectral density with the prescribed covariance
lags C0, C1, . . . , Cn. If the moments C0, C1, . . . , Cn and
γ1, . . . , γn come from the same theoretical spectral density,
the optimal solution (65) will also match the cepstral coef-
ficients. In practice, however, they will be estimated from
different data sets, so there is no guarantee that P̂ does
not end up on the boundary of P(1,n)

+ (N) without satisfying
the logarithmic moment conditions. Then the problem needs
to be regularized, leading to adjusted values of γ1, . . . , γn
consistent with the covariances C0, C1, . . . , Cn.
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Fig. 1. Autoregressive 2 × 2 model, with order n = 8.

Such a regularization was proposed by P. Enqvist [15] in
the context of the usual rational covariance extension prob-
lem. The regularized dual problem to find a pair (P,Q) ∈
P̂

(1,n)
+ (N)×P

(m,n)
+ (N) minimizing

Jλ(P,Q) = J(P,Q)− λ
∫ π

−π
logP (eiθ)dν (66)

for some λ > 0 will always lead to a solution where P ∈
P

(1,n)
+ (N). Indeed, (66) will take an infinite value for P ∈

∂P
(1,n)
+ (N), since then P (ζk) = 0 for some k, and hence

the minimum will be in the interior. In circulant form (66)
becomes

Jλ(P,Q) =
1

2N
tr{CQ} − 1

2N
tr{ΓP}

+
1

2N
tr{P log PQ−1} − λ

2N
tr{log P},

(67)

where

Γ =
1

2N
F∗diag

(
Im⊗Γ(ζ−N+1), . . . , Im⊗Γ(ζN )

)
F. (68)

Then both sets (40) and (60) of moments are matched
provided one adjusts the logarithmic moments γ1, γ2, . . . , γn
to γ1 + ε1, γ2 + ε2, . . . , γn + εn, where

εk =

∫ π

−π
eikθ

λ

P (eiθ)
dν =

λ

2N

N∑
j=−N+1

ζkj
P (ζj)

=
λ

2N
tr{SkP−1}.

(69)

V. NUMERICAL EXAMPLES

Given a P ∈ P
(1,n)
+ and a sequence C0, C1, . . . , Cn

of m × m covariance lags with a positive definite block
Toeplitz matrix (1), Theorem 1 states that there is a unique
Q ∈ P

(m,n)
+ such that Φ := PQ−1 satisfies the moment

conditions (4). As pointed out above, for a sufficiently large
N the sequence C will also belong to the somewhat smaller
cone C

(m,n)
+ (N), and then, by Theorem 2, there will be a

unique QN ∈ P
(m,n)
+ (N) such that ΦN := PQ−1N satisfies

(40). Next we shall give some numerical results illustrating
how Φ can be approximated by ΦN for various values of N .

In our first example Φ is a 2 × 2 spectral density cor-
responding to an AR process of order n = 8 with poles as
depicted in Fig. 1. Given the theoretical covariance sequence
C0, C1, . . . , Cn from this Φ, we solve the corresponding
circulant moment problem (40) for various values of N to
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Fig. 2. Norm of the spectral estimation error for bilateral AR models with
N = 16, 32, 64.
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Fig. 3. ARMA 2 × 2 model, with order n = 6.

obtain a bilateral AR representation of order n = 8 with
spectral density ΦN . Fig. 2 illustrates the approximation error
‖Φ(eiθ)− Φ̂(eiθ)‖2 for N = 16, 32 and 64. It turns out that
there is no need to go for high values of N .

In the second example we start from a two-dimensional
ARMA process with a spectral density Φ := PQ−1, where P
is a scalar pseudo-polynomial of degree three and Q is a 2×2
matrix-valued pseudo-polynomial of degree n = 6. Its zero
poles map is illustrated in Fig. 3. Given its covariance se-
quence C0, C1, . . . , Cn and cepstral sequence γ1, γ2, . . . , γn,
we apply the combined covariance and cepstral procedure
described in Section IV to determine a pair (PN , QN ) for
n = 6 and a correponding bilateral ARMA model. For
comparison we also compute an bilateral AR approximation
with n = 12 fixing P = 1. As illustrated in Fig. 4 and
Fig. 5, the bilateral ARMA model of order n = 6 computed
for N = 32 outperforms the bilateral AR model with n = 12
which is obtained by fixing N = 64.

VI. CONCLUSIONS

In this paper we have taken a first step in generalizing the
scalar theory of rational circulant covariance extension given
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Fig. 4. Comparison between a bilateral AR of order 12 for N = 64 and a
bilateral ARMA of order 6 for N = 32: norm of the approximation error.
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Fig. 5. Comparison between a bilateral AR of order 12 for N = 64 and a bilateral ARMA of order 6 for N = 32: estimated spectral densities.

in [26] to the multivariable case. Proofs of the theorems will
be given in [27].
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