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Extreme Points of Riccati Inequalities 

ANDERS LINDQUIST, C. MARTIN, AND GIORGIO PICCI 

Abstruct -Relations between solutions of the  algebraic  Riccati  equation 
and the associated quadratic  matrix  inequalities  are discussed and ex- 
plained. 

The purpose of this note is to clarify some of the relations that exist 
between solutions of the algebraic Riccati equation and the associated 
quadratic matrix inequalities. In particular, the main result of the  note is 
to establish that there are extremepoints in the solutions set of quadratic 
matrix inequalities that are not solutions of the algebraic Riccati equa- 
tion. The history of this result is typical of many results involving Riccati 
equations in the engineering literature-total confusion. It has been part 
of the folklore for many years that the solutions of the algebraic Riccati 
equation  are extreme points of the above-mentioned quadratic matrix 
inequalities. In Badawi’s  thesis [l] a very elegant proof is given,  however, 
in review it was discovered that there had in fact appeared a proof in the 
literature. In  Faurre et nl. [3] there is indeed a proof and a footnote to the 
effect that  there are extreme points other  than the solutions of the 
algebraic Riccati equation. However, it has evolved as part of the folklore 
that the two sets coincide, even though it seems to be known that there are 
extreme points  that are not solutions of the algebraic Riccati equation. 
However. we have been unable to find a proof. In this note we present a 
class of examples that establishes that there are other extreme points. 

The example is based on the simple analysis presented in [2]. Following 
the  notation of [ l ]  we let F, G and H and R be matrices such that F is 
2 X 2. G is 2 X 1, and H is 1 X 2.  We define then the function W( P )  = FP 
+ PF’+(G-   PH’ )R- ’ (G-  PH’)’. W(P) is the Riccati operator. The 
matrix Riccati inequality referred to above is of course the inequality 
W (  P )  Q 0 in the sense of positive definite matrices. The Riccati equation 
is the  equation W (  P )  = 0. Now we choose F, G. and H such that  the 
Hamiltonian associated with the Riccati equation has complex eigenval- 
ues. The Hamiltonian is constructed by transforming the above equation 
to the more standard form (for the purposes of geometric analysis) 

W (  P )  = ( F  - G R - ’ H )  P + P (  F -  GR-’H)’+  GR-’G’+  PH’R-lHP 

and writing the  Hamiltonian # 

where we let A = F - GR-‘H, D = - H’R-’H. and Q = GR-IG‘. This 
matrix  has four complex eigenvalues which can be denoted by r,  r, - r. - r. 
(A standard result about infinitesimal symplectic matrices.) It is trivial to 
establish  that such matrices exist. For example. let A have complex 
eigenvalues and let Q = SI. Since .X? has complex eigenvalues with s = 0, 
it follows (from  continuity) that when s is sufficiently small. the eigenval- 
ues of the  Hamiltonian are also. Choose the matrices A.  B ,  Q.  and D 
such that ( A ,  H )  is controllable and Q and D are positive semidefinite. 
Then using the results of [2] there exist exactly two  real solutions of the 
associated algebraic Riccati equation. Thus, if the set of extreme points of 
the quadratic matrix inequalities consists only of these tn’o solutions then 
the solution set is a linear segment. This is not the case and hence there 
must exist other extreme points. 
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The  Optimal Projection Equations for Fixed-Order 
Dynamic  Compensation 

DAVID C. HYLAND AND DENNIS S .  BERNSTEIN 

Abstract-First-order  necessary conditions for quadratically optimal, 
steady-state, fixed-order dynamic compensation of a linear, time-invari- 
ant  plant in the  presence of disturbance and observation noise are  derived 
in a new  and highly simplified form. In contrast to the pair of matrix 
Riccati equations for the full-order LQG case, the optimal steady-state 
fixed-order dynamic compensator is characterized  by four matrix equa- 
tions (two modified Riccati equations and two modified Lyapunov 
equations) coupled by a projection whose rank  is  precisely  equal to the 
order of the compensator and  which determines the optimal compensator 
gains. The coupling represents a graphic portrayal of the demise of the 
classical separation principle for the reduced-order controller case. 

I. INTRODUCTION 

Because of constraints imposed by on-line computations, dynamic 
controllers for high-order systems such as flexible spacecraft must be of 
relatively modest order.  Hence, this paper is concerned with the design of 
quadratically optimal, fixed-order (i.e., reduced-order) dynamic compen- 
sation for a plant subject to stochastic disturbances and nonsingular 
measurement noise. Since white noise in all measurement channels 
precludes direct output feedback (see Section K), only purely dynamic 
controllers are considered. The requirements for resolution of this 
optimization problem include the following. 

1) Conditions for the existence of an optimal, stabilizing compensator 
of the prescribed order. (In the full-order  case these are the usual 
stabilizability and detectability conditions of LQG theory.) 

2) Stationary conditions, i.e., first-order necessary conditions, ren- 
dered in a tractable form to facilitate developments in items 3) and 4) 
below. (In the full-order  case these conditions are precisely the LQG gain 
relations together with the regulator and observer Riccati equations.) 

3) Sufficiency conditions, Le., additional restrictions on solutions of 
the first-order necessary conditions which characterize local minima and 
single out the global minimum. (In the full-order case  the global 
minimum is distinguished by the unique nonnegativedefinite solutions to 
the LQG Riccati equations.) 

4) Convergent numerical algorithms for simultaneous satisfaction of 
the necessary and sufficient conditions. (In the full-order case numerical 
algorithms have been devised which take full advantage of the highly 
structured form  of  the Riccati equations.) 
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