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This is a survey of some recent work on Markovian re-
presentation of multivariate stationary stochastic
processes. First a gecmetric theory in Hilbert space
is developed. Next these results are translated into
a Hardy space setting, and a complete set of Markov
models are constructed for the given process. These
models are then analyzed from a systems theoretical
point of view.

1. Introduction

Hilbert space methods for analysis of stochastic processes have a
long tradition going back to Kolmogorov [30,31,29,69,46-49,21,55,24,10]. Such
an approach was taken in the important work by Masani and Wiener [69,461, as
well as in [21,55], in which prediction theory for stationary processes [70)
was extended to the multivariate case. A prominent feature of this body of
work is the utilization of Hardy space theory, a convenient tool in spectral
analysis of stochastic processes since it properly represents the underlying
time structure.

Selected results from this rich mathematical theory of prediction
found their application in systems engineering and were redeveloped in the
particular traditions of this field (26,27), geared toward specific applica-
tions rather than mathematical completeness. In more recent years, however,
there has been a tendency in stochastic systems theory to return to its
original source of inspiration for methods of analysis.

The following ocbject is a prototype of a linear stochastic system,
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having been studied extensively in the systems sciences. Llet {x(t);t € Z)
and {y(t);t € Z} be two purely nondeterministic stationary stochastic
vector processe§ of dimensions n and m respectively satisfying the

recursion
x(t+1) = Ax(t) + Bu(t+1) (1a)

Cx(t) 7(1b)

#

y(t).

on all of Z, where “A,B,C are real matrices of dimensions nxn, nxk and

mxn respectively, and {u(t);t € Z} is a k-dimensional white noise sequence,
i.e. E{uls)u(t)') = Iast. (Here prime denotes transpose, and 8¢ is the
Kronecker symbol.) 1If, in addition, we take x to be nondegenerate
(E{x(t)x{t)')} positive definite), A must be a stability matrix, i.e. it

must have all its eigenvalues inside the unit circle. The process x 1is
called the state process of the system (1) and y the output process. If u
is Gaussian, the state process is a vector Markov process, and (1) is a
Markovian representation of y.

The usefulness of such models in the analysis of random phenomena
in engineering has lead to the study of the inverse problem: Given the
process y, find Markovian representations (1). This is a version of the
stochastic realization problem [3,14,67,33-45,53,58-63,66,68,9,17]. If y
has a rational spectral density, one model (1) can be easily obtained from
the innovation representaticn of y, but there are others, the solution not
being unique. If y does not have a rational spectral density, y cannot be
trepresented by means of a finite-dimensional state process, but the problem
can still make sense if we allow infinite-dimensional state processes. 1In
order to accommodate this situation and also remove the trivial distinction
between models which can be obtained from each other by coordinate-transfor-
mations in the range space of the state process, it is convenient to formulate
the problem as a geometric problem in Hilbert space.

Let {y(t);t € Z} be a stationary m~dimensional Gaussian process
which is purely nondeterministic of full rank and centered, and let H be
the Gaussian space [52] generated by its components. Then H 1is a Hilbert
space with inner product <f{,n> = E{gn). Since y is stationary, there is
a unitary map U: H - H which acts as the shift, i.e. yk(t+1) = Uyk(t)
for all t €2 and k =1,2,...,m [57]. Because of the full rank assumption
this shift has multiplicity m [65; p.53. A (closed) subspace X of H is
said to be Markovian if

<Exu,Ex8> = <a,8> for all o € X, 8 € X*, {2)
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where X := Vt<0Utx, X = Vt>0UtX, and EX denotes the orthogo:al pro-
jection onto X.  Then, since H 1is a Gaussian space, X and X are
conditionally independent given X. A Markovian subspace X will be called
a state space for y if ‘

yk(O) € X for k=1,2,...,m (3)

A state space is minimal if it contains no other state space as a proper
subspace. ;

A first step toward developing a state space theory for the stochastic
realization problem was taken by Akaike [1,2] and Picci [54). These partial
results were further elaborated upon in Rozanov [56]. A comprehensive theory
can be found in Lindquist and Picci [37-44], Lindquist, Picci and Ruckebusch
{451, and Ruckebusch [59-631, where complete characterizations of all minimal
state spaces are given, and in Lindquist and Pavon [34,35], where further
aspects of realization of discrete-time processes are studied. In this regard,
also see Caines and Delchamps [9] and Frazho [17].

The purpose of this paper is to provide a survey of some of these
results. Basically, however, we shall follow the approach developed in
[40-44,34,35], and results will mostly be stated without proofs. The con-
struction of Markovian representations consists of three steps: (i) determin-
ing all state spaces, (ii) analysis and characterization of the state spaces
in terms of Hardy functions, and (iii) construction of models of type ).

As pointed out to us by S.K. Mitter, step (ii) is similar to thé‘construction

in Lax-Phillips scattering theory [32], and some interesting parallels can

be drawn, although we do not yet completely understand the physical significance
of this analogy. (For an early study of the connection between Wold decom-
position and the fundamental representation theorem of Lax and Phillips, we
refer to Masani and Robertson [471 and Masani (50).) Especially step (i),

but also step (ii), has been studied from a somewhat different angle by
Ruckebusch [59-63], and there has been important cross-fertilization between

the approaches, as we shall see in this paper.

Several versions of the stochastic realization problem can be
formulated both for continuous-time and discrete-time processes. In order
to make the basic ideas the main thing and not unnecessarily obscure the
mathematics, we have chosen the simplest possible formulation which still ~
contains the main features of the problem.  Consequently we consider a multi-
variate process y rather than a scalar one. To the student of the work by
Masani and Wiener [46,691 it should come as no surprise that the multivariate
case leads to a much richer theory. For other formulations we refer the
reader to [45,63,68]).
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2. Splitting Subspaces

Define two subspaces of H, the past space H™  and the future space
H', in the following way. Let H™ be the closed linear hull of
(Y bt)it <0, k= 1,2,...,m and H' that of (y,(t);t 20, k = 1,2,....m).
A subspace X of H is a splitting subspace if

<Exc,Exs> = <a,8> forall o €H, 8 €H . (4)

This is a concept originally introduced by McKean [51], but here used in a
modified way. A splitting subspace is said to be minimal if it contains no
other splitting subspace as a proper subspace. Since -(3) implies that
H < X~ and H < X', a state space must be a splitting subspace, but the
converse is not true. However, it follows from the definition (4) that, if
n € R 0K, [n- Exnﬁ =0, i.e. n € X, and consequently (3) holds. Therefore
a Markovian splitting subspace is the same as a state space, and we shall use
these terms interchangeably. )

Two subspaces A and B are said to intersect perpendicularly if
'E_AB = fBA = AN B (where the bar over the E stands for closure). When
A v B = H, this happens if and only if A c B or, equivalently, Bt < A [411.

Theorem 1. [411. A subspace X 1is a splitting subspace if and only if

X=5$NnS§S (5)

for some pair (S,S) of perpendicularly intersecting subspaces such that
Hes and H < 5. The correspondence ¥++($,5) is one-one, S and §
being given by S=H v X and § = H' v X. Moreover, X is Markovian if
and only if
-1
U'se s (6a)
S’ (6b)

We shall occasionally write X ~ {S$,5) to exhibit the correspondence
between X and (S,S). In view of the definition of perpendicular inter-

section we have
Corollary 1. In Theorem 1, {5) can be replaced by X = 5 or X = ESs.
" It is not hard to see that for any two subspaces A and B,

A= e (ANB) (7

where e denotes orthogonal direct sum and the superscript 1 orthogonal
compiement in H. Then Corollary 1 and the fact that perpendicular




Recent Trends in Stochastic Realization Theory 208

intersection of S and § 1is equivalent to S'c S yield

Corollary 2. A subspace X is a splitting subspace if and only if there are
subspaces SO H and S>H' such that

H=s"e XeS . (8)

The pair (S,5) is the same as in Theorem 1.

Equation (8) is analogous to the decomposition in terms of incoming
and outgoing subspaces in Lax-Phillips scattering theory [32]: 5t corresponds
to the ingoing and st to the outgoing subspace,

Hence, for any splitting subspace X ~ (S,5), S contain both H'
and S*, i.e. §> H v st Similariy we must also have SO H .v 5*. Now
equation (5) seems to suggest that,.to obtain a minimal splitting subspace,
S and S should be reduced as far as possible without violating these
conditions on S and §S.

Theorem 2. [41]. Llet X ~ (S,5) be a splitting subspace, and define

S =W vs' and S, =H v3S: Then S. and §b intersect perpendicularly

0 _ "o 0 0
and Xo:= S0 n S0 is a minimal splitting subspace. Moreover, if X is
Markovian, so is XO'

The following corollaries-are immediate.
Corollary 3. A splitting subspace X ~ (5,5) is minimal if and only
S=H vs* (9a)
S=H v3. ~ (9b)

The next corollary insures that all minimality conditions remain the
same when the class of splitting subspaces is restricted by imposing the
Markov conditions (6).

Corollary 4. A minimal state space is a minimal splitting subspace.
The existence of minimal splitting subspaces is insured by

Corollary 5. Each (Markovian) splitting subspace contains a minimal
(Markovian) splitting subspace.

On each splitting subspace X we can define a restricted shift
UX): X=X by U(X)g = EXU:. In view of (8), the following proposition
is an immediate consequence of Lemma 0 in Sarason [64], as can be seen by
first considering the adjoint of (10).
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Proposition 1. let X bea splitting subspace. Then X 1is Markovian if
and only if, for each £ € X,

eXuke = u(x)ke ©(10)
for k = 0,1,2,...

3. Observability and Constructibility

Borrowing the terminology from deterministic systems theory [28; p. 523,
we say that an elemerit £ of a splitting subspace X is unobservable if
£ H+ and unconstructible if £ 1 H . Then (7) provides us with a decom-
position of X into the direct sum of an observable and an unobservable sub-

space, i.e..
x = F% e x n (W), (1a)

We shall say that X is (completely) observable if X Q (H+)l =0 or,
equivalently, the operator O: H+ -+ X given by 0Og¢ = Ex( has dense range.

Similarly we have
X =E%W e rxn (H)) (11b)

and Qe say that X is (completely) constructible if X n (W)t =0 or,
which is the same thing, the operator C : H = X has full range, where
ce = B,

The following theorem is a consequerce of decomposition (8).

Theorem 3. [401. A splitting subspace is minimal if and only if it is both
observable and constructible. .

Ruckebusch, who was the first to use the terms observable and con-
structible in the sense described above, proved a version of this corollary
in [61]. (Also see [45].) _ R

Consider the Hankel operators T _:= EH [H+ and T := EH ]H- LIt
can be shown [42,63,43] that these operators can be factored through a sub-
space X so that the diagrams

r r
- +

Ht—-—-—-——-—H- H:—-——-———-—-H+

N e c\‘ o (12)
X

commute if and only if X is a splitting subspace. (Ihe two diagrams are
equivalent, one being the dual of the other; 0* := gt ]x and C* :=f" [x
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are the adjoints of 0 and C respectively.) A diagram such as {12) is
said to be canonical if the first factor (here C or ¢©) maps onto a dense
subset of X and the second factor (here C* or 0%) is one-one. Since
ker 0* = X n (H)' and ker C* = X n (H7)*, we have the following result.

Corollary 7. [43). A subspace X 1is a splitting subspace if and only if the
two equivalent diagrams (12) commute and a minimal splitting subspace if and
only if they are canonical.

4. The Predictor Spaces -

Define the predictor space X_ = EH H* and the backward predictpr
space X+ = EH™. (The réader is cautioned not to confuse these spaces
with X~ and X' defined in the introduction.) Then, by {7), we have the
decompositions H™ = X e N° and H' = X, ® N, where N := H™ n (Y and
o= W (H')*. Therefore, in view of Corollary 2,.X_~ (S_,5_) and
X, ~ (s,,S,) are splitting subspaces, and S_=H,S5 = (NT)2, S, = ()t
and §; =K. Moreover, both X_ and X, satisfy (&) and (9), so consequently
they are minimal Markovian splitting subspaces.

Since X_ i N+ and x+ £ N7, we have the decomposition

H=N o o', (13)

where HD is the frame space HD = X_vX,. Clearly HD is a Markovian
splitting subspace, but it is in general not minimal.

Proposition 2. [38]. Let X be a minimal splitting subspace. Then
HnH e xe i (14)

Hence HD is the closed linear hull of all minimal splitting sub-
spaces and is therefore the only éart of H needed in constructing minimal
splitting subspaces. It is not hard to see that an observable splitting sub-
space is perpendicular to N~ and a constructible one is perpendicular to
N We shall say that y (or, more correctly, HD) is noncyclic if N~ and
N are nontrivial, i.e. N” #0 and N’ # 0, and strictly noncyclic if they
are both full range. Then HD does not contain all of H~ or all of H+,
so there is nontrivial data reduction. The frame space is finite-dimensional
if and only if y has a rational spectral density [40], in which case it is
always strictly noncyclic.

The following proposition describes the role of X_ and X, in state
estimation. A weaker version of this result can be found in [61].
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-

Proposition 3. [42,43).. lLet X be a splitting subspace. Then EH X=X

. - - Ht . . +
if and only if X1 N, and E X = X, if and only if X 4 N'.
The other minimal state spaces can be regarded as generalized predictor

spaces, as can be seen from the following theorem.

Theorem 4. (38,44]). let y be strictly noncyclic. Then a subspace X is
a minimal state space if and only if

X = PR (153)

#

for some S satisfying (6a) and
S.eScs, . (15b)

From Corollary 1 and Theorem 3 it is not hard to see that, if the
condition Sc S, is removed, (15) is equivalent to X being an observable
splitting subspace {and for this we need not have y strictly noncyclic).
The minimality, however, is much harder to prove; we refer the reader to
[44] for the proof. Theorem 4 has a symmetric counterpart in which (15a) is
E°H™, (15b) for S, < S 3., and (6a) for (6b).

H v X (Theorem 1), Theorem 4 shows that there is a one-

]

exchanged for X
Since S
one correspondence between minimal state spaces X and 0'1—invariant sub-
spaces S satisfying (15b). The partial ordering of these subspaces with
respect to subspace inclusion induces a lattice structure on the family of
minimal state spaces, which thus forms a complete lattice with minimum element

]

X_  and maximum element X,

5. HWold Decomposition for Proper State Spaces
A Markovian splitting subspace X ~ (S,S) s said to be proper if

0 te . etz
ﬂt=_“U S =0 and nt=OU S =0, .

Proposition 4. [40]. Llet y be strictly noncyclic. Then all state spaces
X HD, i.e. in particular the minimal ones, are proper. '
Now, let X ~ {S,5) be a proper state space. Since X 1is Markovian,
U'Sc S and USc 5. Then define the wandering subspaces Vi= S e u'ls
and V:= S e US. Since the shift U has multiplicity m, both V and V
have dimension m (65; p. 2], and it can be shown that S = og=_~utv. S=
®rmo utV, and H = e::QQUtV = ezz_wutv. ‘This is the well-known Wold decom-
position; see e.g. {65]. (A continuous-time versiocn of this decomposition
was introduced by Masani [49].)
Next choose an orthonormal basis {v].vz....,vm) in V and an

orthonormal basis {33.3&,...,75} in V, and, for each t € 7, let u(t)
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and U(t) be the m-dimensional random vectors with components. ui(t):z
Utvi and G;(t):= Uth respectively, i = 1,2,...,m. Then, since UV 1 u'v

. t-s. . .
for all s # t, <ui(s),uj(t)> <vi.U V.> g 1ol

3 6,.3-65
E{u(s)u(t)') = I, - i} {16)

In the same way it;is seen that also u satisfies {(16). Therefore both
{ult); t € 2} and {u(t); t € Z) are m-dimensional Gaussian white noise
processes. For each such process {u(t); t € Z}, we define H{u) to be the
Gaussian space generated by its components and H (u) and H*(u) to be the
subspaces of H(u) corresponding to {u(t); t <0} and ({u{t); t > 0}
respectively. Note that H{u) = U']H'(u) e H'(u).
, Consequently, to each proper state space X ~ (5,5), there corresponds
" a pair {u,u) of white noise processes, called the generating processes of
X, such that S =H (u) and S = H'(Z). The pair (u.u) is unique modulo
trivial coordinate transformations in V and V. In particular, let
{u_,u) and (u+,i;) be the pairs of generating processes of X_ and X
respectively. Then H'(u_) = K, i.e. u_ 1is the innovation process, and

+ + . - . $an
H (u+) =H, i.e. u, s the backward innovation process.

6. State Space Representation in Hardy Space
If {u{t); t € Z} is an m-dimensional white noise process such that

H = H(u), any n € H can be written

ne d C ) g (17)

where {ft; te€2} is an £,-sequence of vectors in R"‘, and  <», > m is
R

the inner product in R™. It is well-known [57] that u has the spectral
representation
T Gwt -
u() = [ eMMi) 5 ez (18)
-7
for a unique orthogonal stochastic vector measure dii with the property that
E{du{w)di(u)*} = (Zn)'lldu. (Asterisk denotes transpose and conjugation.)
Equations (17) and (18) then yield
. . .
ne [ <fe’) gt (19)
R

-
where

fz) =] f2k. €Y
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Here f belongs to the space LZ(T) of all m-dimensional vector functions
square-integrable on the unit circle T with respect to the Lebesgue
measure (Zn)“d«. Equation (19) defines an isometric isomorphism between
H .and LZ(T) 1571, Llet Tu : H= LZ(T) be the map Tun = f, Then Tu
is unitary, and Taf = n. N ) B
Next define the Hardy spaces H2 and H2 in the following way: Let

H; be the space of al} funictions (20) in LZ(T) such that fk =0 for
k > 0, and let NE be: the functions in L,(T) for which f =0 for k <O.
These Hardy functions can be extended to the complex plane, the functions in
H; being analytic inside the unit circle and those in HE outside T
[18,22,65). Then it follows from {17) and (19) that TUH'(u) = Hé and
TUH*(u) = H;. Moreover, TUUT; = z. (We shall use z to denote both e
and the corresponding multipiication operator.) Let L_(T) be the space of
bounded mxm-matrix functions on T, and let H_ and H: be the subspaces
in L_(T) of functions whose columns are in H, -and HE respectively. A
function F € H; will be called inner if F(e‘”) is a unitary matrix for
each «w € R. A similar function in H; will be called conjugate inner.
{This terminoleogy is somewhat nonstandard, the two concepts having been
interchanged for later convenience.) If F is conjugate inner, F* 1is inner.
~ For any Fe L (1), let Me: LZ(I) -+ LZ(T) -be the multiplication operator

Mf = Ff. Then, if F is inner, M, maps H, into HE, and, if F is

F . . N + . +
conjugate inner, 1t maps HZ into H2.

lw

N+

Lemma 1. [437. Let X be a proper Markovian splitting subspace with
generating processes {u,u). Then there are inner functions K and Q and
a conjugate inmner function § such that

1

z TuTﬁ = MK (21a)
TuT;- =ty (21b)

+ = Mﬁt
The functions X, @ and Q are unique modulo multiplication by a constant
unitary matria.

For the sake of continuity in exposition we shall give the proof
which is based on & standard technique in Hardy space theory [18,22,32].

Proof. Since § and S intersect perpendicularly, S*c S, i.e. U']H'(E)
c H {u). Applying T, to this we obtain z']TuH'(U) c HE, i.e.

-1 - N -1 s -
z TUT§H2<:H2 . Hence 2 TUTG maps H2 into HZ‘ Moreover,
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1 1

1Tz = Tl T, and therefore 2”
on Hé. ?onsequently there is @ K € H_ such that (21a) holds [18; p. 1857.
Since z~ TuT; is unitary, K must be inner.+ The proofs of (21b) and (21c)
follow the same pattern using H < S and H < S respectively. 0
By Corollary 2, any state space X ~ {5,5) can be written X =S o 5,

Then, if X 1is proper, X = H {u) o U']H-(U), and hence T"X"t Hé ) (KHE) =:
H{K). Moreover, (9a) can be written HH (D) = H+(U;) v UH*{u), the isomorphic
image of which under T; is H; = (EH;) v (K*H;). This holds if and only if
(K*,ﬁ)L =1, i.e. K* and Q are left coprime, or, equivalently, (K.'G")R =1,
i.e. K and §* are right coprime (18, 22]. Similarly, it can be seen that
(9b) is equivalent to (K,Q)L = 1.

TUT;, commutes with the shift

'Theorem 5. [40,43]. Let X be a proper Markovian splitting subspace with
generating processes (u,u). Llet X, Q and q* be.the inner functions
defined in Lemma 1, and let H(K) be the orthogonal complement of HéK in

HZ' Then

X = T;H(K), (22)

and X is observable if and only if (K,ﬁ’*)R =1 and constructible if and
only if (K.Q)L = 1. Moreover di = Q*du_ and du = Q*du,, where u_ and
U; are the forward and backward innovation processes respectively. )

The inner function K 1is called the structural function of X. It
plays the same role as the scattering matrix in Lax-Phillips scattering theory
[32]. By symmetry, (22) can be replaced by

- * T7 -
X = T H(K*), (23)
where H{K*):= Hz ® (K*H;).

7. Spectral Factors
We have seen that any proper state space X is characterized by a
triplet (K,Q,0*) of inner functions, defined in Lemma 1. It remains to

find a procedure to determine these inner functions.

To each white noise process {u{t); t € Z} such that H(u) = H there
corresponds a unique mxm-matrix function W whose columns are Tuyk(O),
k=1,2,...,m. Then

" . .
y(0) = [ &™) dite), (24)
-r

and consequently

N(z) () = e(2), (25)




8]
[P

A. Lindquist et al.

where ¢ is the spectral density of y. By the full-rank assumption, rank
¢ = m. Therefore W 1is an mxm spectral factor of y. Conversely, since
y is purely nondeterministic, it has a spectral representation -

y(t) = j" elotagi,), (26)

-
where dy 1is an orthogonal stochastic measure such that E{dy(w)dy(w)*} =
o(e™)d [571. Then, via (18) and du = (W')’]di, any mxm spectral factor
W defines an m-dimensional white noise process u such that H{u) = H. If
U and u, are two such processes, we have

TOTr = -1 '
uy Tu, T Mws! | (27)

. Therefore, to each proper state space X there corresponds a pair
{W,§) of mxm spectral factors (unique modulo multiplication from the left
by a constant unitary matrix) constructed as above from the generating
processes (u,u) of X. Since, for k = 1,2,...,m, yk(o) € H < H {u), the
columns of W belong to HE. Such a spectral factor is called stable. In
the same way we show that the columns of W belong to H;, i.e. W is
strictly unstable. Moreover, in view of Lemma 1 and (27), the structural

function of X is given by

K=z Wi, (28)

and
W= QW_ (29a)
W=10Qw, , (29b)

where W_ corresponds to the innovation process u_ and W; to the backward
innovation process G;. Equations (29) are the inner-outer factorizations of
W and W [18,223]. Hence we call Q the inner factor of W and Q the
conjugate inner factor of W, "

Corollary 8. {40]. A subspace X 1is a proper Markovian splitting subspace
if and only if

X = j HK) (W) "V (30)

for some pair (W,H) of mxm spectral factors such that W is stable, W
is strictly unstable, and K := W1 s inner.
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In view of Theorem 4, we say that a stable [strictly unstable] spectral
factor is minimal if the corresponding u [u] satisfies H (u) = S*fH*(G)cz 38K
cf [60]. Let Q+ be the inner factor of H+ and 5; the conjugate inner
factor of W_.

Proposition 5. [60,40]). A stable spectral factor W is minimal if and only

if its inner fagtor Q 1is a right inner divisor of Q- Similarly, a strictly
unstable spectral factor W 1is minimal if and only if its conjugate inner
factor Q is a right conjugate inner divisor of TQ_.

If the state space X is minimal, the spectral factors (W,W) in
Corollary 8 both have to be minimal, but the converse is not true. (The only
thing we can say is that a pair (W,H) of minimal spectral factors with the
properties described in Corollary 8 defines a state space X contained in the
frame space.) The following corollary is a Hardy space version of Theorem 4.

Corollary 9. [60,40,43]). There is a one-one correspondence between minimal
state spaces X and minimal stable spectral factors W. Under this cor-
respondence

) X P2y -1 it (31)

where PH2 is the orthogonal projection onto H2 and u 1is the white noise
process corresponding to W.

A theorem equivalent to Corollary 9 was first stated for the scalar
case in [60], but the proof is incomplete, as is the corresponding vector
result in [40]. A complete proof presented in [43] is based on [44]. However,
whereas the vector case is decidedly nontrivial, the scalar resuit [60] is
easy to fix~up using a theorem due to Douglas, Shapiro and Shields [11]; see
[44]). A vector version [12] of the last mentioned theorem can be used to see
that (31) is the same as H(K). See [40,43,44] for details.

8. Realizations

Let X be a proper state space wi'th generating processes (u,u}, and
let (W,W) be the corresponding spectral factors. Next we shall construct a
model of type (1) for X. This construction is presented in [34,35) and
follows the pattern of [42,43].

To this end, first note that, since KHé is a z l-invariant sub-
space of HZ‘

pH(K) =ty o atp(K)y oy 01,2, (32)

for all h ¢ Hg. where PH(K) is the orthogonal projection onto the subspace
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H(K), and A : H(K) ~ H(K) 1is the backward restricted shift Af = pl(K) =1¢
Note that A corresponds to U(X)* under the isomorphism Tu. Now, each

f € H(K) has a representation (z) = Ip.g 2% on (and outside) the unit
circle, in which, for any b € IW’, the Fourier coefficients <fk.b>,w1 equal

<f,z"kb>L (1)’ k= 0,1,2,... . Hence, since f € H(K), we have
2 -
b s <« plK), kf?’H(x)' which, in view of (32), yields

#

_ k
<fk,b>Rm = <f,A Bb>H(K)‘ (33)
where B: K" = H(K) is defined by Bb = p"(Klb.
The stable spectral factor 1 has the representation
-7 owak '
Wz) = ] Wz (34)

k=0
on T, and, since <a,,y(0)>‘rn € X forall a€ R", Wa € H(K). Therefore
R .

(33) can be applied to yield

Wb o= <a,CA¥8b> _ for all a,be R" (35)

R R
2 1 s
where C: H(K) + R 1is defined by Cf = (22)7! ] Wie ') flw)da.
Consequently, -r
R m

wkb = CABb for all b€ R (36)
This representation is the adjoint of the restricted shift realization of
Fuhrmann [19], Helton [23], Baras [7], and Baras and Brockett [6], and it was
through discussions with Professor Baras we were led to apply this technique,
first in our continuous-time paper [42].

Next we define the state process
t
x(t) = ¥ At Feu(k) . (37)

Since this is a H(K)-valued process whose covariance operator is not nuclear,
it cannot be defined as a random process in the usual sense (unless
dim H{K) < =), but only in the generalized sense described in [5). However,
all linear functionals <f,x(t)>H(K) .are well-defined random variables in

the usual sense, and
X = (<f,x(0)>H(K)I f e H(K)}, (38)

justifying the term “state process.” To see this, note that, if ¢ € X,
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£ = :0 <f ,,u(k)> where f:= T g € H(K) (Theorem 5}, and therefore, by
k=-=""-k R" u .

(33), ¢ = <f.x(0)>H(K). Then (38) is a consequence of (22).

Now since
t .
vl =1 Wk, (39)
we obtain the model

x{t+1) = Ax(t) + Bu(t+1) (40a)
y(t) = Cx({t). {40b)

It follows from Corollary 2 that

-‘] -y +

H=U H(u) @ X Ud (u), (41)

and therefore X 1 UH+(u). This characterizes the forward evolution property
of (40), the two terms in the right member of (40a) being independent; we
say that {40) is a forward system. Now consider the {deterministic)

reachability.operator R: H2 + H(K) defined by
Rf = 1 A¥Bf, (42)
k=0

[18; p. 243). This operator is well-defined and surjective. In fact, by (32),

R = 5 pHIK) ke o pH(K)e o pHIK)
k=0 k
system (40) is exactly reachable (in the sense of deterministic systems theory)

{5, 181. Moreover, for each t > 0, ker CA consists of those f-€ H(X)
H(K),-te, =0 for all a€ R™, as can be seen from
Ly(T)

is continuous. Consequently the

for which <Wa,P

{32). But, since Wa € H(K), these are precisely the functions f € H(K) such

that f 1 ztwa for all a ¢ R" . Therefore, since ztwa =,Tu<a,y(t)> m

R
and H(K) = Tux‘ we have

n ker cA® = T tx n (HF)*1. (43)
t=0 Y
The system (40) is said to be observable (in the sense of deterministic
systems theory) if nz=0 ker cat = 0; see [5,18]. Then it follows from (43)
that (40) 1s observable if and only if X +s observable (in the sense of
Section 2). (Cf [63) where A and C are defined as operators on H.)
Now, by a completely symmetric argument, we can use W and U to
obtain -
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x{t-1) = Ax(t) + Bu(t-1) (44a)
y(t) = Tx(t) - (48b)

where A: H(K*) - A(x*), B: R" - A(k*) and C: F(Kk*) - R" are defined by
H W - n — -
Af = PH(K*)Zf‘ B = PH(K*)b and Cf = (2n) 1 [ W(e m)‘f(m)dw. Moreover

-%

X = (<f';(o)>H(K*) l fe R(K*))' (45)

and, by (41), X 2 U'IHZ(E); hence (44) is a backward system. Finally, just
as in the forward setting, we show that (44) is exactly reachable and that it
is observable if and only if . X is constructible. The operators A and A
‘will be called the (forward and the backward) system generators of X. We

‘summarize these results in

Theorem 6. [34,35]. Let X be a proper-state space for y, and let {u,u)
be its generating processes. Then y is the output of an exactly reachable
forward system (40) and of an exactly reachable backward system (44), both
having the property that the linear functionals of the state . at time zero
span X. The forward system is observable if and only if X is observable,
and the backward system is observable if and only if X 1is constructible.
Moreover, At and A' tend strongly to zero as t = =,

For further details on the relations between the forward and the back-

ward systems, see [42,43].

9. State Space Isomorphism
From now on we shall assume that ¥ 1is strictly noncyclic. Recall

the definitions of U(X) 1in Section 2.

Theorem 7. [44]. Llet Xl and X2 be two minimal state spaces. Then U(X1)
and U(Xz) are quasi-similar, i.e. there are quasi-invertible (injective with
dense range) maps P: X] -+ X2 and R: X2 - X] such that

PU(X]) U(XZ)P (46a)

- U(X[IR = RU(X,) - {46b)

Corollary 10. Minimal state spaces have the same dimension.
In this context it is also interesting to note the following result

{see, e.g. [181).

Proposition 6. A state space is finite-dimensional if and only if "its
structural functions is rational.
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Since U(X) and U{X)* are quasi-similar for minimal X [44], we

also have

Corollary 11. [44]. Let (A‘,K}) and (AZ,Ké) respectively be the system
generators of two minimal state spaces, X] and XZ' Then, A‘. K&. A2 and

R

o, are pairwise quasi-similar.

Consequently all system generators of minimal state spaces have the
same Jordan form [18). This is connected with the concept of quasi-equivalence:
let XK be an msm inner function. Set Yo © 1, and, for i =1,2,...,m,
define Y; to be the greatest common inner divisor of all ixi minors of K.
Clearly Yia divides Yy so that ki: = Yi/Yi-l is a scalar inner function
for i =1,2,....,m. The functions k]’kZ""’km are the invariant factors
of X. Two inner functions are quasi-equivalent if they have the same in-
variant factors. This is clearly an equivalence relation.

Corollary 12. [44]1. Minimal state spaces have quasi-equivalent structural
functions.

From this it follows that, if y is a scalar process (m=1), minimal
state spaces have the same structural function. This simplifies the analysis
considerably in the scalar case. :

Other state-space isomorphism results can be found in [63].

10. Degeneracy
We shall say that a (strictly noncyclic) process y 1is degenerate

if ker U(HD) # 0. By quasi-similarity, this is equivalent to ker U(ﬁj)* #0
[44]. It is easy to see that the first condition can be written ’(UHD) N £ 0
and the second (U"]HD) nN #0. Now recall that the frame space HU is the
closed linear hull of all minimal state spaces and that a state space element
“in N (N*) is unobservable (unconstructible). Consequently N~ and N

are the parts of H that we normally want to discard in state space con-
struction. Degeneracy of y means that, if we shift one step forward or
backward in time, some elements of ‘these discarded spaces become part of the
- new frame space. A process y which is not degenerate will be called non-
degenerate. )

Let X be a minimal state épace. Then, in view of Proposition 3, it
is reasonable to call I:= E(H‘) X the forward {prediction) error space of
X. {This space plays a prominent role in the approach taken by Ruckebusch
[61-63].) Since S =H v X, Z= eH-)s. But (H)* and S intersect
perpendicularly, because H < S and (H')*vS = H, and therefore Z =S o H .
Hence TuZ = H(Q). and consequently, following-the recipe of Section 8, we
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can construct a H{Q)-valued random process {z(t); t € Z} (defined in the

generalized sense [5]), such that

1 = {<f,z(0)>

H(Q) | £ e H(Q), (47)

which satisfies
z(t+1) = Fz(t) + Gu(t+1), {48)

where Fi= PHQ); and 6= P Similarly we define the back-

-1[

#(Q) R 4
ward (prediction) error space of X to be Z:= E}H YX. Then T=3eH,
and therefore we can construct a H(Q)-valued random process {z{t); t € Z}
such that the linear functiorfals of Z(0) span Z and

Z(t-1) = Fz(t) + Gu(t-1), (49)

where F:= PR(E)zIH(ﬁ)

subscripts will be used to denote quantities corresponding to X_ and X,

and G:= PH(Q)l m- As before plus {+) and minus {-)
R

respectively.

Theorem 8. [34,35]. lLet X be a minimal state space, and let I and Z be
it error spaces. Then y 1is nondegenerate if and only if the two conditions

(i) ker U{X) =0

(ii) ker U(Z) = 0 and ker U(Z) = 0

both hold. 1f conditions (i) holds for one X, it holds for all. If (i)
holds for one X, it holds for all. Condition (ii) is equivalent to (i)
ker U(Z,) = 0 and to (ii)" ker p(f;) = 0.

Consequently conditions (i) and {ii) are properties of y, and if y
is degenerate either or both of them fail. The following corollaries
illustrate the main purpose of the degeneracy analysis.

Corollary 13. [34,35]. Condition (i) is equivalent to the system generators
of X being quasi-invertible. If this holds for one minimal state space

it holds for all.

Corollary 14. [34,35). Condition (ii) fails (for any minimal X) if and only
if ker F: # 0, or, equivalently, ker ?f # 0, or, equivalently, either
ker F* # 0 or ker F* # 0 for any minimal state space.
Let f € ker F*. Then the scalar random process <f.z*(t)>H(Q) =
<G:f,u+(t>hm is a white noise. Such an f 1is called an invariant direction
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in finite-dimensional stochastic systems theory {8,20,53]. This is an
important concept in connection with the solution of matrix Riccati equations
for Kalman filtering [26]. Corollary 14 states that there ekist invariant
directions if and only if condition (ii) fails. Hence, in particular, ¥y
needs to be degenerate for this to happen.

A Degeneracy of type (ii) plays a key role also in establishing cor-
respondence between the family of minimal state spaces in our present setting
and that obtained by shifting H™ to U']H‘, the second formulation allowing
a noise component in (1b); see [34,351.

Finally, the conditions of Theorem 8 can be expressed in terms of
the behavior of the inner functions (x,Q,Q*) at infinity. Note that, say,
X(=) 1is well defined being the constant term in the Laurent expansion of K.

Corollary 15, [34,35]. Let KD be the structural function of HD. Then
y is degenerate if and only if the matrix KD(m) js singular. Condition
(i) holds if and only if K(=) is nonsingular, (ii) if and only if both
Q(=) and Q{=) are nonsingular, (ii)* if and only if Q*(—) is nonsingular,
and (ii)" if and only if Q_(=). is nonsingular.

Degeneracy can alsoc be characterized in terms of the spectral density
¢ [34,35].

11. Concluding Remarks

In this paper we have considered a particular version of the stochastic
realization problem. However, the results reported here can be applied to
a wider class of stochastic realization probliems, both in discrete and con-
tinuous time, with no or minor modifications, and we refer the reader to the
cited literature for further discussion. Our object here has been to survey
the basic ideas of the theory rather than present a wealth of detail.

One of the assumptions made in the beginning of the paper is that
the given process y be Gaussian. This assumption can be dispensed with,
however, if we are willing to give up the (strict sense) Markov property
and exchange it for "wide sense Markov." Everything in the paper then remains

valid, but the generating processes are no longer Gaussian. This is the
price we need to pay to be able to stick to a linear theory. If we have a
non-Gaussian process y but require the strict Markov property, we must turn
to the nonlinear stochastic realization problem. Extensions in this direction
are presented in [33].
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