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Consider the following system of stochastic functional differential equations: 

nt 
dx(t) = 

J 
d&t, $1 x(s) dt -t da(t), 

0 
x(0) LL x0 , 

dz(t) = 
s 

t 
d,H(t, s) x(s) dt + h(t), 

” 
z(0) = 0, 

where x(t) E R”, z(t) E Ii”, the integrals are defined in the Stieltjes sense v and w 
are (vector) Wiener processes with incremental covariances R,(t) dt and R,(t) dt, 
respectively, and x,, is a stochastic variable with covariance R. . The problem 
to determine the (linear) least-squares estimate of X(T), where 0 $ 7 < T, 
given the observations {z(t); 0 < t < T} is shown to be in a certain sense equiv- 
alent to the following problem of control (* stands for transposition): 

minimize y*(O) R, y(0) + 1’ [y*(t) R,(t) y(t) i u*(t) R,(t) u(t)1 & 
0 

when 

s 

r T 
Y(t) + A*(s, t) y(s) ds = 6’(~ - t)b + H*(s, t) u(s) ds, 

t t 

where O(t) is the Heaviside step function. 
This is an extension of the well-known duality theorem of Kalman and Bucy 

to systems with time delay. 
Finally, problems with sampled observations are briefly discussed. 

1. FORMULATION OF THE PROBLEM 

In their well-known paper [I], Kalman and Bucy formulated an interesting 
principle of duality between linear least-squares filtering and control. The 
problem to estimate the state at time t of an ordinary linear stochastic system, 
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DUALITY BETWEEN ESTIMATION AND CONTROL 517 

given linear incomplete observations in additive white noise up to time t, is in 
a certain sense equivalent to a classical problem in control theory, viz., the 

linear-quadratic regulator problem. This duality principle has been extended 
by Zachrisson [2] who formulated the dual control problem of the smoothing 
(interpolation) problem corresponding to the class of systems studied by 
Kalman and Bucy. Other aspects on duality for such systems can be found 
in Refs. [3] and [4]. 

The duality theorem of this paper is an extension of that of [l] and [2] 
(filtering and smoothing). The generalization consists in introducing time 
delays in both the system and the observation process. We shall give the 
dual control problem of the most general estimation problem of this type. 
Kwakernaak [5] has solved a special problem of this kind (discrete time 

delays). Solutions are also given (although they are not very explicit) by 
Kailath [6] and Lindquist [7]. However, none of these papers discusses 
duality between estimation and control-an approach by which new insight 
can be gained also for problems (like those of [5]) which are already explicitly 
solved. The approach of this paper has been inspired by the methods of 
Zachrisson [2] and [S] (the latter reference contains a derivation akin to that 
of [2] of the original result [I]) but also by the (nonrandom) theory of linear 
functional differential equations such as it appears in for example Halanay [9], 
Banks [lo], and Hale [ll]. 

Consider the following system of linear stochastic functional differential 

equations: 

dx(t) = j” $A(t, s) x(s) dt + dv(t), (1-l) 
0 

where x(t) E R” is a state vector. A is an n x n-matrix function, such that 
A(t, s) = 0 for s > t. We further assume that there is an L, function m(t) 

such that 

(I . 1 is Euclidean norm and var stands for total variation), in order to secure 
that the Stieltjes integral in (1.1) exists a.e. and is (Lebesgue) integrable. 
Finally, v(t) is a (weighted) vector Wiener process with zero mean (h(t) = 0) 

satisfying 

E{v(s) v*(t)} = j;i’(t‘“) R,(T) dT, 

where R, is a symmetric, positive semidefinite n x n-matrix function which 
we assume is locally bounded (* stands for transposition), and x0 is a Gaussian 
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stochastic variable with zero mean and a covariance matrix R, which is 
symmetric and positive semidefinite. 

Since (1.1) is not an ordinary functional differential equation (almost all 
sample functions of v  are nondifferentiable in almost every point) we shall 
interpret (1.1) in the following wayl: 

x(t) w> = x,,(w) + j;j:, d,A(s, T) x(7, w) ds -t v(t> ~1. Cl.21 

Indeed, from Theorem 2.1 we see that there exists a unique sample continu- 
ous solution to (1.2) and thus (1. I), and this solution is given by Theorem 2.3. 
(In the sequel, we shall suppress w from notation, whenever there is no 
cause of misunderstanding.) 

Equation (1.1) can also be expressed in a more intuitive way: 

f(t) -= j: d,A(t, s) x(s) + ti(t), (1.3) 

where d is Gaussian white noise with zero mean, and 

E{ti(s) e*(t)} = R,S(s - t) 

(S is the Dirac function); but of course we shall mean precisely (1.2). Now, we 
have the following observation process: 

daft) = jt d,H(t, s) x(s) dt + dw(t), 
0 

z(0) = 0, 
U-4) 

the solution of which is defined analogously to x. The observation z(t) E R*“, 
His an m x n-matrix function, such that H(t, s) - 0 for s 3 t, and such that 

where k is an L, function. Moreover, w(t) is a vector Wiener process with zero 
mean, satisfying 

E{w(s) w*(t)} = rf”“‘“’ R,(T) dT. 

1 We assume an underlying probability space (B, 8, P), where B is the sample 
space (elements: w), I is a o-algebra of events sufficiently large for our problem and P 
is the probability measure. Furthermore, all Wiener processes are separable and thus 
we are considering the sample continuous versions. 
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We assume that R, is symmetric and positive definite and that R, and Rd 
are locally bounded. Finally, v, w, and x0 are assumed to be completely 
independent, and all deterministic functions defined so far to be Bore1 
measurable. In the same way as for X, we can write (1.4) in an intuitively 
more appealing form: 

(1.5) 

where ti is Gaussian white noise with zero mean and 

E{zb(s) c*(t)> = R,(t) S(s - t). 

Before proceeding to the formulation of the problem we should settle a point 
concerning integration: Integrals in this paper will usually be defined in the 
Lebesgue, Lebesgue-Stieltjes (LS) or Wiener-Doob-Ito (q.m.) sense. It 
will usually be clear from the context what the appropriate concept of 
integration is, or else we shall point it out. However, on one occasion in 
Section 2, when we wish to integrate a function of bounded variation with 
respect to a continuous function of unbounded variation, we shall mean the 
Riemann-Stieltjes (RS) integral. (In this case, the LS integral does not exist.) 
In order to secure that the RS and LS integrals coincide whenever they both 
exist, we assume that the functions s * A(t, s), s + H(t, s) are continuous 
on the right (for every fixed t), and that the intervals of integration will be 
open in the left end and closed in the right end, i.e., 

b 

s s 
Z-Z 

a (a,bl ’ 

Now, our problem can be stated as follows: Given the observations 
{z(s); 0 < s < t) we wish to determine the best estimate of X(T) in the least- 
squares sense, i.e., 

a(7 1 t) = E{X(T) 1 Z,}, (W 

where 2, = u{z(s); 0 < s < t} is the u-algebra generated by these observa- 
tions. Since all processes involved are Gaussian (for they have been defined 
by linear transformations of Gaussian stochastic processes)+, for every fixed 
pair (7, t) the estimate (which is unbiased, that is E~;‘(T 1 t) = EC(T) = 0) 
should be of the form 

a(7 1 t) = J; U(s; 7, t) dz(s), (1.7) 

* Integration in quadratic mean (qm.) with respect to a stochastic process with 
orthogonal increments. Compare [12, p. 4251. 

+ More precisely, x and z are limits in probability of finite linear combinations of 
o, w and x,, and hence jointly Gaussian. See (2.11) with to = 0 and (1.4). 
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where s ---f U(s; 7, t) is a square integrable n x nz matrix. (The integral (1.7) 
should be understood in the following way: 

where the first integral is defined in the LS sense and the second in q.m. 
We shall use the word smoothing whenever -r < t, and the determination 

of i(t ( t) will be named filtering. The case 7 > t (prediction) can be trans- 
formed into a filtering problem by changing the H so that H(t, s) G 0 for 
s 3 t - h, where h is the difference between the previous 7 and t. Therefore 
we shall restrict ourselves to the case T < t. 

Finally, we should point out that we can easily modify our model to include 
delays to act in the system from the very beginning. We may, for example, 
start our observations at a time t, > 0. Then a(7 1 t) should be found in the 
class: 

i’ 

t 
U(s; 7, t) dz(s), 

61 
U-8) 

whereas x(t,,) depends on x(t) for 0 < t < t, (cf. Corollary 3.1.). 

2. MATHEMATICAL PRELIMINARIES 

THEOREM 2.1 (Existence and uniqueness). The system of stochastic 
daj%rential Eqs. (1.1) has a solution x(t, UJ) with a.s. continuous (but not abso- 
lutely continuous) sample functions t + x(t, CO), almost all of which are uniquely 
determined. 

Proof. (This is a slight modification of a standard proof in the theory of 

nonstochastic functional differential equations (cf. [9]):) 
Let t, and t, be numbers 0 < t, < t, < T such that 

s 
tz 

m.(t) dt = 01 < 1, 
t1 

and define a mapping K of the complete space C’ (norm: 
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where 1 * 1 is Euclidean vector norm) of continuous functions [0, t,] -+ R” 
coinciding with v(t) on [0, t,]: 

dt) for 0 < t < t, 
(Kc7 (9 = 

xo(w) + jlj: dAs, 4 .W ds + v(t, 4 for t, < t < t, . 

I f  w is such that t + v(t, w) is continuous (this is a.s. the case), K is a mapping 

of C’ into itself. In fact, K is a contraction, for 

and 

I K& - K& / = 0 for 0 .< t < t, . 

:. II KG - KEz II < 01 II 61 - Ez II . 

Therefore, according to the principle of contraction mappings, there is a 
unique E E c’ such that 4 = A[. 

Now start with t, = 0 and C’ the space of all continuous functions 

[0, t,] --f R” for which k(O) = x,,(w). 0 ur p rocedure then defines for almost 

all w a continuous function E(t) = x(t, w) on [0, t,] (but not absolutely 
continuous, for v(t, w) has unbounded variation). Then proceed with t, equal 

to the previous t, , s t such that sz m(t) dt < 1 and C’ the space of continuous 
functions [0, t,] + R” for which f(t) = x(t, w) on [0, tl]. We continue in this 
manner to define x(t, W) on subintervals of [0, T] until t, = T. Our equation 

therefore has a unique continuous solution x(t, w) a.s., which concludes the 
proof. 

LEMMA 2.1. Let A be as defmed in Section 1 and let f : [0, T] + Rn be a 
function of bounded variation. Then the Volterra system of integral equations 

r(t) + jf A*@, t) y(s) ds -f(t) (2.1) 

has a unique so&ion y that is of bounded variation on [0, T]. 
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Proof. Define a mapping A of the space L,[O, T] into itself: 

(Ay) (t) -f(t) - 1’: A*(s, t)y(s) ds. 

Then, since 1 A*(s, t)] < m(s), we have 

l(AkyJ (9 - (A’“yA (0 

< 
s 

: m(s) l(A”-lyl) (s) - (AL--lyJ (s)[ ds 

T  T  T  
< ‘1 i’ m(d 4 s 

m(s,) ds, a.. 
t % 5 

N4 4 II y1 - yz iL 
Sk-1 

:. II Aky, - A”Y, IL < & [j' 4) ds]' II ~1 - yz Ilm 3 * 0 

and, therefore, AL is a contraction mapping for sufficiently large k. Then 
Ay = y has a unique solution in L,[O, T], for A is a continuous mapping. 
(This becomes obvious by putting k = 1 above.) Now, it is easily seen from 
the definition that this solution is of bounded variation on [0, T]. In fact, if 
0 < to < t, -=c t, < ... < t, = T, then 

~9 ti-Jl I YWI ds i I Ati) - r(ti-dl < j: $ I A*@, ti) - A*(> 
i=l 

+ $ j::, I A*h ti-,)I I y(s)1 ds + $ I f(ti) - f(ti-8 

<2 I ’ 44 I YWI ds + O~~~:Tf(t) ( ~0 
0 

independently of the subdivision, and therefore we have proved the lemma. 
Now, for each s > 0 let t - X(t, s) be the unique absolutely continuous 

n x n-matrix function defined on [s, 00) with initial value X(s, s) = I and 
satisfying 

a-q, s) ~ zzz 
s 

’ rE,A(t, 7) X(T, s) 
at .s 

a.e. (2.2) 

Then the solution of (2.1) is given by: 
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THEOREM 2.2. Let y be the solution3 of (2.1). Then for s < t: 

Y(S) = x*ct, S)Y(E) + jr [j; X*(a, s) d,A"(T, u)] y(7) dT 

- 
I 

t x*(0, s) df (u) 
s 

(2.3) 

where X is the transfer matrix defined above. 

Proof (cf. Ref. [lo]). Integration by parts gives 

Y *w -VP s) - Y *(4 X(s, 4 

= [ty*(T)q2i d7 + j” dy*(T) x(T, s). 
us s 

(2.4) 

Now, using (2.2) and the fact that A(T, a) = 0 for u > 7, we have 

s 
t 
s 

x*(a, s) d,,A*(r, o)] y(7) dT 

Lzz j’ [j” x*(0, s) d,A*(T, u)] y(T) dT 

= j x*;u, s) 4, [jr ~4 *(T, ‘-‘> y(T) dT] , 

where we have used a Fubini type theorem of Cameron and Martin [13]. 
Combining (2.4) and (2.5) ’ an d using (2.1) and the fact that X(s, s) = I we 
have (2.3), and therefore the theorem is true. 

COROLLARY 2.2. The function s + X(t, s) defined on [0, t] is the unique 
matrix solution of 

x(t, S) + j’x(t, T) A(T, S) dT = 1. 
s (2.6) 

Proof. Let yi be the solution of (2.1) with f  (t) = ei , where ei is the i-th 
unit vector. Then, from (2.3) we have, 

yr*(s) = e,*X(T, s) P-7) 

(which is valid for all T > s), i.e., the row vectors of s --+ X(T, s) are in fact 
identical to yi* for every T > s, which concludes the proof. 

s Here, and in the sequel, f will be continuous on the right. Then, since t -+ A(s, t) 
is continuous on the right, the same is true for y due to the Lebesgue dominated 
convergence theorem. 
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Thus t + X(t, s) given by (2.2) is absolutely continuous and s + X(t, s) 
given by (2.6) is of bounded variation (for s < t). For s > t, define X(t, s) X< 0. 

Since the continuous sample functions t + x(t, W) are of unbounded varia- 

tion (a.s.), the integral ~:J*(s) d x s w cannot be defined in the LS sense. ( , ) 

But if y  is of bounded variation (like the solution of (2.1)), this integral 
exists in the RS sense (cf., e.g., Ref. [14, p. 7]), and the following integration 

by parts formula is valid: 

Y*(t) 4t, WI - r*(to) 4to > w) = j:,Y*(“) dx(s, w> + j’ x*cs, w> 4(s). 
to (2.8) 

(In the sequel, the w will be suppressed from notation.) 
In the same way the stochastic q.m. integral J-i0 y*(s) dv (which can be 

defined for all square integrable y  and whose sample functions are a.s. 
continuous), can also be defined as an RS integral for almost all w whenever y  
is of bounded variation. The two stochastic processes defined by these 
integrals are stochastically equivalent and thus equal since they are sample 
continuous. In fact, q.m. convergence and a.s. convergence both imply 
convergence in probability, which determines the limit of the Riemann sum 

a.s. 

LEMMA 2.2. Let x and y  be the solutions of (1 .l) and (2.1), respectively. 
Then for t, > 0, 

y*V)x(T) = y*(to) $0) + j:" X*(T) 4 ] jl, A*($, MY ds/ 

+ jIo x*(s) df (4 + j~o~*(4 Ws). (a.s.> 

Proof. (This proof is similar to that of Theorem 2.2, but we now have to 
be a little more careful due to the fact that x is not of bounded variation). 

From (2.8) and (1.1) we have 

Y *CT) x(T) - Y *(to> 4to) 

E j:y*(s) 4 f j:j, dJ(u, T> 44 da + 441 + j; x*(s) 4s) 

= jl, Y*(S) dv(s) + j' x*(s) dy(s) + jt Y *(s) js 44, T> ~(7) ds. (2.9) 
to 0 

Now, since A(s, Q-) = 0 for 7 > s the last integral is 

= d,A(s, T) X(T) ds. 
0 
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We can regard the Stieltjes integral as an LS integral and use the Fubini type 
theorem of Cameron and Martin [13] to receive (all the conditions of the 
theorem are fulfilled): 

where we have used the fact that A(s, T) = 0 for T 3 s. Then Eq. (2.9) gives 

Now, from (2.1) and (2.10) we obtain the result of the lemma. 

THEOREM 2.3. The solution of(l.l) can be expressed in the following way 

for t 3 to: 

x(t) = x(6 to) x(to> + jr 4 1 ,I0 X(6 S) A(& T> dj x(T) + jio X(6 S) d+), 

(2.11) 
where X is the matrix function defined by (2.2) or (2.6). 

Proof. In Lemma 2.2, put T = t and y = yi as defined in the proof of 
Corollary 2.2. Then (2.11) is immediately obtained from (2.7) and Lemma 2.2. 

3. THE DUAL PROBLEM OF CONTROL 

Consider the following class of control problems P(T, 7, b): 
Determine an L, function u : [0, T] --f R” to minimize 

Y “(0) Roy(O) + jT [r*(t) R,(t) r(t) + u*(t) R,(t) W 4 (3.1) 
0 

when 

y(t) + j: A*(s, t) y(s) ds = e(T - t) b + j: H*(s, t) u(s) ds, (3.2) 
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where A, H, R, , R, and R, are defined in Section 1 and 0 is the step function 

e(t) = I; for t 3> 0, 
for t :<i 0. (3.3) 

This problem of control, for which there exists a unique L, solution (cf. 
Theorem 3.2), is equivalent to the problem of estimation posed in Section 1 
in the following sense: 

THEOREM 3.1. Let u,, : [0, t] + R w be the optimal solution to the control 

problem P(t, 7, b), 0 < 7 < t. Then, 

b*G(T / t) = 
s 

t zq,*(s) dx(s). 
0 

(Of course, u,, is also a function of t, -r and 6, but since these are consideredfixed 
in the dwl control problem, there should be no misunderstanding if they are 

suppressed porn notation.) 

Proof. Since H(s, t) E 0 for s < t, the right member of (3.2), which we 

shall call f (t), can be written 

f(t) = O(T - t) b + 11 H*(s, t) u(s) ds. 

The function f is of bounded variation. In fact, 

$I Ifk> -f(ti-dl < I b I + JI $I I H*(s, ti) - H*(s, ti-dl 1441 ds 
z 

< I b I + j-’ k(s) I $4 ds -c ~0 
0 

for any subdivision 

0 = to < t, < t, < ... < t, = T 

(k and I u j are both L, functions), With this choice of .f, the state vector of 
our control problem y  is a solution to Eq. (2.1), and from Lemma 2.2 we 
have (to = 0) 

y*(T)x(T)=y*(O)x(O) + fx”(t)df(t) + /:y*(t)d~(t). (3.4) 
0 
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Now, again using the Fubini type theorem of Cameron and Martin [13] 
and the fact that H(s, t) = 0 for s < t, we have (0 < T < T) 

j: x”(t) q(t) = j: b*x(t) dO(T - t) + j: x”(t) d, 1 j: H*(s, t) u(s) ds/ 

= - FIX + jr u*(s) j: d,H(s, t) x(t) ds (3.5) 

= - FIX + jr u*(s) dz(s) - j: u*(s) dw(s) 

where we have used (1.4). S’ mce it is clear from (3.2) that y( T) = 0, (3.4) and 
(3.5) give 

FIX - j: u*(s) dx(s) = y*(O) x(O) + Sly*(t) dv - j: u*(t) dw. 

Now, as x(O), v, and w are independent, we obtain 

E [FIX - j: u*(s) dz(s)]’ 

= Y*(O) ROY@) + j’ [r*(t) W>Y(~) + u*(t) 440 u(t)1 4 
(3.6) 

0 

which is equal to the objective function (3.1). In fact, 

E[Y “(0) -WI2 = y*(O) wa x*(o)1 Y(O) = Y*(o) ROY(O) 

E [ j: Y *Cd d&j ’ = j: Y *Cd R,(s) ~(4 ds, 

E [j; u*(s) dw(s)j2 = jr u*(s) R,(s) u(s) ds, 

and all mixed products are zero (due to independence). Thus minimizing 
(3.6) = (3.1) determines the least squares estimate of FIX, which is 
precisely 6*4(~ 1 T), to be ~~u~*(s) dx(s). This concludes the proof of the 
theorem. 

Remark. In the case of$filteving (T = T) it does not make any difference if 
we redefine y(T) to be equal to y( 2’ -) = b. So in this case, (3.2) can be 
changed for 

y(t) + jr A*(s, t)y(s) ds = b + jr H*(s, t) u(s) ds. 

409/37/=7 
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COROLLARY 3.1. I f  observations are only available starting from t, > 0, 

i.e., 21 

then the dual control problem is modi$ed by putting u(t) I : 0 for 0 4 t < t, in 

(3.1) and (3.2). 

Proof. Put 

f(t) = O(T - t) b + jIo H*(s, t) u(s) ds 

in the proof of Theorem 3.1. 

THEOREM 3.2. There exists a unique L, solution (L,([O, T], R*)) for the 
problem P(T, 7, b). 

Proof. For every u EL, , the solution of (3.2) can be expressed by means 
of (2.3): 

y(t) = - j: X*(0, t) d, I”(7 - o) b + jr H*(s, u) u(s) ds/ 

= X*(7, t) b+ - t) - j; [ j; d,H(s, u) X(0, t)] * u(s) ds, 

(3.7) 

where we have used the Fubini type theorem of Cameron and Martin in the 
same way as in the proof of Theorem 3.1. 

Therefore, the problem is of essentially the same type as the one treated 
in Ref. [18, p. 2221. Observing that I?, , R, , and R;’ are bounded, the proof 
presented there (using the parallelogram law) applies to our problem [pro- 
vided that the La-space to which y belongs is modified to take care of the 
first term of (3.1)]. 

So far our results concern a very wide class of problems. The problem 
posed in Section 1 allows for time-dependent delays, and the matrices A and 
H may have singular parts. Therefore, we shall specialize our problem some- 
what. To this end we define A and H to be 

4, s) = - i Ai(t) O(t - hi - s) - jt A&, T) dr, 
i=l s 

(3.8) 

H(t, s) = - 5 H,(t) e(t - hi - s) - j’ H,,(t, T) d7, 
i=l s 

(3.9) 
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where 0 = h, < h, < h, < ... < h, , 6 is the step function defined by (3.3), 
A,(t, T) = H,,(t, T) = 0 for 7 > t, A,, A, *a* A,, and A, are integrable, and 

4 > Hs **’ H, and Ho square integrable (A, and Ho as functions of two 
variables). Then s -+ A(t, s) and s -+ H(t, s) are continuous on the right, 
A(t, s) = H(t, s) z 0 for s > t, and all other conditions of Section 1 are 
fulfilled as well. 

Now, inserting (3.8) into (1.1) we obtain the following system equation4: 

dx(t) = [i Ai x(t - hi) + r: A,(t, s) x(s) ds] dt + dv(t), 
i==l 

for t < 0, 

and in the same way, by inserting (3.9) into (1.4), we have the observation 
process 

dz(t) = [-f H,(t) x(t - hi) + l: H,(t, s) x(s) ds] dt + dw(t), 
&=I 

(3.11) 
z(0) = 0. 

Note that some Ai and Hi may be identically zero, so there is no restriction 
in assuming the same set of delays hi in (3.10) and (3.11). (In fact, if there 
are two different sets of hi in the equations, take instead the union of these 
sets.) 

For this class of problems, the dual vector function y turns out to be 
absolutely continuous except at t = T. In fact, with A defined by (3.8) we 
have 

i 
Z- A*(s, t) y(s) ds 
t 

zzz - ; 1: 6(s - hi - t) A,*(s) y(s) ds - /:s”, A,*(s, T) dgfs) ds 

= - T Lin(t+h,.r) 
Ai* y(s) ds - ,:I: A,*(s, T) Y(S) ds dT, 

4 Really, due to the definition of the interval of integration, the right member of 
(1.1) is not affected by x0, which is the case in (3.10) for t = h, (i = 1, 2 ,..., n). 
We have allowed this change since it does not affect x. 
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where we have used Fubini’s theorem (A, is integrable). In the same way, wc 
calculate the second integral in (3.2) to obtain 

y(t) - C j;in,,mk, 3) A*(s) Y(S) ds - j ; j ;  4,% T >  ~(4 ds dT 
z t. 1 

, .T  
= e(T - t) b - ; j min(t+h T) Hi*@) u(s) ds - j”:J‘: &*(s, T) u(S) ds d7. 

I’ 

Therefore, the dual vector function y(t) is absolutely continuous on [0, T) 
and (Q-, 7’1, and we have a differential equation for it: 

j(t) = - -f Ai*(t + hi)y(t + hi) - j: A,*@, ~>Y(s) ds 

i=l 

+ f q*(t + hi) u(t + hi) +- j: &*(s, t) u(s) ds (a-e.1 
is1 

for0 <t -2 T, (3.12) 
y(~ -) -Y(T) = b, 

y(t) = 0 for t > T, 

u(t) = 0 for t 3 T. 

Then the duaZ probEem of control (corresponding to (3.10) and (3.11)) is: 
Determine u to minimize (3.1) subject to (3.12). If u,, is the optimal control, 
we have (T < T) 

b*S(T 1 T) = 1; u,,*(s) dz(s). 

By reversing time we see that (3.12) . IS actually a delay differential equation. 
We even have delays in the control. (This is a complication which only 
recently has been studied in control theory. Compare Ref. [15], where also 
other references are given.) 

4. SOME EXAMPLES 

1. Consider the filtering problem corresponding to the following x and 
z processes: 

dx(t) = [A,(t) x(t) + A,(t) 4 - 4 + j:_, 4,(4 4 4s) h] dt + W) 

for t 3 0, 
x(t) = 0 for t < 0, 

dx(t) = H(t) x(t) dt + dzu(t), 
Z(0) = 0. 
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Now, defining A,(t, S) to be identically zero for s < t - h, our problem 
belongs to the class defined by (3.10) and (3.11). Then the dual control 
problem is 

min I 1 [r*(t) W) y(t) + u*(t) W) WI dt, 

Jw = - 4*(t)Y(t) - As*@ + h)y(t + A) 

when 

4 
t+h 

&*(s, t) Y(S) ds + H*(t) U(t) for t < T, 
t 

y(T) = 6 

y(t) = 0 for t > 1’. 

A feedback solution of this problem5 by Kushner and Barnea [ 161 is given by 

u,(t) = K*(t) y,(t) + j;+hL*(s, t> yo(4 4 

where we refer to [16] for a definition of K and L. (Note that we have reversed 
time.) Then, 

M) = - [4(t) - K(t) fw1* Y&l - 4*ct + A) YoP + 4 

- 
I 

tth 

Ms> 4 - -4, t) fWl* y,,(s) & 
t 

Y,(T) = h 
Y&4 = 0 for t > T. 

If @(t, S) is the matrix solution of (2.6) with (L(t, s) = 0 for s < t - h): 

A(& s) = - [A,(t) - K(t) H(t)] qt - s) - A,(t) l9(t - h - s) 

- s t [&,(t, s) --W, s> ff(s)l 4 6 

then, from (2.3) we obtain y,,(t) = @*(T, t) b for t < T, and therefore: 

u,(t) = U*(T, t) b, 

6 We assume that all conditions on A,, Aa, A0 , H, RI, and R, (continuity, etc.) 
imposed in [16] are valid. 
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U( T, t) = @(Ii”, t) K(t) + j;in(t+b’T) @(T, s) L(s, t) ds, 

and, since 

b*f( T 1 T) = jr: u,*(s) dx(s), 

we have 

a(t 1 t) = j: U(t, s) dx(s). 

2. We shall solve the smoothing problem corresponding to 

dx(t) = A(t) x(t) dt + dv(t), 

40) = x0 , 

dx(t) = H(t) x(t) dt + dw(t), 

x(0) = 0, 

by a method which differs somewhat from that of [2]. 
First determine a feedback solution of the imbedded dual control problem 

min /r*(O) Roy(O) + jl (y*R,y + u*R,u) dt/ , 

when 

j = - A*y + H*u, t > 7. 

It is well-known (cf., for example, Ref. [17]) that 

uo = K*wYo(t)P 

where K(t) = R(t) H*(t) &r(t) and R is the solution of the matrix Riccati 
equation 

dR 
- = R, -j- AR + RA - RH*R,lHR, 
dt 

R(0) = R, . 

Then if @(t, S) is the matrix solution of 

v = (A - KH) @(t, s), 

qs, s) = I, 
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y,, is given by y,,(t) = @*(T, t) ys(7 -) and 

u,(t) = K*(t) @*b-1 OYo(T -) for t < 7. 

Furthermore, the minimum of the cost functional is 

Yo*cT -) Rb) Yo(T -> 

(cf., Ref. [17]). Also, 

Yo*(T -> a(, 1 7) = j: “o*(t) d@), 

i.e., 

Lt(T 1 T) = jb(T, t) K(t) &(t). (4.1) 
0 

Now, since y(T -) = y(T) + b, for t > 7, we have (using the previous solu- 
tion in the sense of dynamic programming) the dual control problem 

min [(Y(T) + Q* W) (Y(T) + 6 + jT (y*Ky 4 u*&u) dtl , 
7 

when 

j=-A*y+H*u, y(T) = 0. 

This problem has the following solution (cf., Ref. [17]): 

u,(t) = K*(t)y,(t) + R,‘(t) H(t) @*(T, t) R(T) b for t > 7, 

where we easily find y. to be 

ye(t) = - j’ @*(s, t) H*(s) R,‘(s) H(s) @(T, s) dd?(T) b. (4.2) 
t 

Then by changing the order of integration (permitted due to a Fubini type 
theorem for stochastic integrals (cf., Doob [12]): 

= b*R(T) j’ @*(T, S) H*(s) R,‘(s) [d%(s) - H(s) j’ @(s, t) K(t) dz(t) ds] 
7 7 

= b*R(T) j’ @*(T, S) H*(s) R;‘(S) [de+) - H(s) a(S [ S) dS] - ye*(T) a(, 1 T), 
7 
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where we have used (4.1), and, to obtain the last term, (4.2) and the fact 
that 

Since 

qs, t) = qs, T) @(T, t). 

s 
i U,,*(t) &i(t) = yo*(T -) ?(T j T) = b*f(T [ T) + J+,*(T) i(T 1 T), 

the optimal estimate is 

a(, j T) = i(T 1 T) + j’ R(T) @*(T, S) H*(s) R,‘(s) [d,+) - H(S) i(s 1 S) ds]. 

7 

This is a well-known result, and we have presented it for the sole purpose 
to demonstrate how the difficulty created by the jump condition can be 
overcome by modifying the cost functional for t > 7. 

5. A REMARK ON ESTIMATION WITH SAMPLED OBSERVATIONS 

In many practical situations we have access to the observation process at 
discrete times only. That is, at time t the following observations are available: 

4h), @z), 4k&* adt,)~ 

where 

0 < t, < t, < t, < *** t,(i) < t < &(,)+, < .*. . 

Then, for a fixed T the estimate b%(T 1 T) belongs to the class 

;c c,*x(tJ = j: U*(t) &i(t), (5-l) 

where ci is an m-vector (which depends on T and T), and (0 is defined by 
(3.3)): 

n(T) 

u(t) = c c,qti - t). (5.2) 
i=l 

All results obtained in the previous sections remain valid for this problem, 
except that we here confine our research for an optimal u to the class (5.2). 
That is, our problem is to find a vector sequence cr , ca ... cncT) forming an 
n(T) x m-vector c, such that (3.1) is minimized when the constraints (3.2) 
and (5.2) are fulfilled. 
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This problem is equivalent to minimizing a quadratic function in ci , 
i = 1, 2 ... n(T): 

c*Qc + 2b*P*c + a, (5.3) 

where Q is a positive definite and symmetric matrix, P is another matrix, 
and 01 is a real number. In fact, for control functions of type (5.2) we have 
from (3.7) 

r(t) = x*(7, t) b+ - t) + ;g jP&Tttist) ds [ 1; d,H(s, u) X(a, t)] * ci 

= X*(7, t) bO(T - t) + M(t) c. 
(5.4) 

Inserting (5.4) into (3.1) and also observing the fact that 

s 

T  

u*R,u dt = c*Rc 
0 

for a suitably chosen positive definite and symmetric matrix R, we obtain 
an expression of type (5.3) and our assertion is therefore true. So essentially 
our problem is now solved and the optimal c is given by co = - Q-lPb, i.e., 

a(, / T) = - P*Q-?%, (5.5) 

where z is the n(T) x m-vector formed by the observations x(tJ. 

Note, however, that P and Q depend on T (and on T); so in order to 
construct a recursive estimator, we shall have to look into this problem a 
little more thoroughly. But in this paper we shall not pursue this matter any 
further. 

ACKNOWLEDGMENT 

This work has been supported by the Swedish Board for Technical Development. 
The author wishes also to thank professor I,. E. Zachrisson for some stimulating 
discussions concerning the results of this paper. 

REFERENCES 

1. R. E. KALMAN AND R. S. BUCY, New results in linear filtering and prediction 
theory, Tvans. ASME, Ser. D, J. Basic Eng. 83 (1961), 95-108. 

2. L. E. ZACHRISSON, On optimal smoothing of continuous time Kalman processes, 
Information Sci. 1 (1969), 143-172. 

3. J. D. PEARSON, On the duality between estimation and control, SIAM 1. Control 4 
(1969), 594-600. 



536 LINDQUIST 

4. K. W. SIMON AND A. Ii. STUBBEHUD, Duality of linear estimation and control, 
J. Optimization Theory Appl. 6 (1970), 55-67. 

5. H. KWAKERNAAK, Optimal filtering in linear systems with time delays, IEEE 
Trans. Automatic Control AC 12 (1967), 169-173. 

6. T. KAILATH, An innovations approach to least-squares estimation, Part I: Linear 
filtering in additive white noise, IEEE Trans. Automatic Control AC 13 (1968), 
646-655. 

7. A. LINDQUIST, “A Note on a Separation Principle for the Control of Linear 
Stochastic Systems with Time Delay,” 10s Report No. R 41, Royal Institute of 
Technology, Stockholm, Sweden, 1970. 

8. L. E. ZACHRISSON, “Optimeringsmetoder for Styrda Differentialekvationer,” 
Institute for Optimization and Systems Theory, Stockholm, Sweden, 1966. 

9. A. HALANAY, “Differential Equations: Stability, Oscillations, Time Lags,” 
Academic Press, New York, 1966. 

10. H. T. BANKS, Representations for solutions of linear functional differential 
equations, J. Differential Equations 5 (1969), 399-409. 

11. J. K. HALE, Linear functional-differential equations with constant coefficients, 
Contrib. Differential Equations 2 (1963), 291-317. 

12. J. L. DOOB, “Stochastic Processes,” John Wiley & Sons, New York, 1953. 
13. R. H. CAMERON AND W. T. MARTIN, An unsymmetric Fubini theorem, Bull. 

Amer. Math. Sot. 47 (1941), 121-125. 
14. D. W. WIDDER, “The Laplace Transform,” Princeton University Press, Princeton, 

N. J., 1946. 
15. H. T. BANKS, M. Q. JACOBS, AND M. R. LATINA, “The Synthesis of Optimal 

Controls for Linear Problems with Retarded Controls,” CDS Technical Report 
70-4, Brown University, Providence, R. I., 1970. 

16. H. J. KUSHNER AND D. I. BARNEA, On the control of a linear functional-differential 
equation with quadratic cost, SIAM J. Control 8 (1970), 257-272. 

17. E. B. LEE AND L. MARIUJS, “Foundations of Optimal Control Theory,” John 
Wiley & Sons, New York, 1967. 

18. R. BELLMAN, “Introduction to the Mathematical Theory of Control Processes, 
Linear Equations and Quadratic Criteria,” Academic Press, New York, 1967. 

Printed in Belgium 


