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Some reduced-order non-Riccati equations for linear
least-squares estimation: the stationary, single-output casej

ANDERS LINDQUISTt

The problem of determining the Kalman-Buey filter for an n-dimenaional single­
output model is the topic of this paper. Both the discrete-time case and continuous­
time cuae are considered, The model processes are assumed to be stationary. It
is shown that, under certain regularity conditions, only n first-order difference or
differential equations are required for determining the error covariance function,
and hence also the filter gain, rather than -!n(n+ I) equations as with the Riccati
approach or 2n as in the previous non-Riccati algorithm. This reduction is achieved
by constructing a system of simple integrals for the 2n non-Riccati equations. The
reduced-order algorithms have non-trivial steady-state versions. which are equivalent
to the algebraic equations obtained by spectral factorization. The stationary and
single-output assumptions are for convenience. In fact, the basic method works
also in a more general setting.

1. Introduction
This paper is concerned with recursive linear least-squares filtering of

lumped, stationary stochastic processes in both discrete and continuous time.
Such problems have traditionally been approached by means of Kalman-Bucy
filtering techniques, w.hich require the solution of an n x n matrix Riccati
equation, n being the order of the model. Due to symmetry this amounts
to solving in(n + 1) first-order difference or differential equations to determine
the n x m matrix gain function, where m is the number of outputs. Recently,
however, a new type of algorithm has been developed which, whenever m-e-n,
requires much fewer dynamic relations. In fact, the discrete-time version
(Lindquist 1974 a) contains 2mn+ !m(m+ 1) first-order difference equations,
whereas only 2mn first-order differential equations are required in continuous
time (Kailath 1973). The continuous time version could be regarded as an
extension of the Chandrasekhar-type results of Casti et al. (1972) and Casti
and Tse (1972). A similar discrete-time algorithm for ARMA models, con­
taining 2(n + 1)m2 equations, is due to Rissanen (1973). The reader is
referred to Lindquist (1975 a) for a discussion of the relat-ion between these
results.

It is possible to reduce the order of these equations even further to obtain
an algorithm with only mn first-order equations, both in continuous and
discrete time. This reduction is the topic of the present paper. However,
to make our presentation more transparent, we shall only consider the single­
output case (m.= 1) here. The generalization to m » 1 is decidedly non-trivial,
and we shall present it elsewhere together with modifications for non-stationary
models.
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822 A. Lindquist

The reduction of the non-Riccati algorithm will be performed in several
steps. First, we shall develop a parameter-free version of the algorithm with
the property that the dynamic equations do not depend on the system para-

I

meters other than through the initial conditions. This is precisely the property
of Rissanen's algorithm. In fact, the discrete-time version of the parameter­
free algorithm is essentially identical to Rissanen's scalar-output equations.
(In the multi-output case things are not so simple, in that Rissanen's algorithm
contains more equations.) Secondly, we shall derive a system of time­
independent integrals for the dynamic equations. In continuous time this
provides us with n static relations between the 2n differential equations; in
discrete time n + 1 static relations between 2n + 1 difference equations.
Thirdly, after applying a suitable transformation, we shall use the integrals to
reduce the number of dynamic relations, leaving us with only n. This amounts
to inverting a Hurwitz matrix in continuous time and a sum of a Toeplitz
and a Hankel matrix in discrete time. The discrete-time equations can be
reduced even further if either the measurement noise is zero or the system
matrix is singular. (This phenomenon is also observed in the theory of
constant direction due to Bucy et al. 1970.) Finally, we demonstrate that
the reduced system of n dynamic equations is sufficient for determining not
only the filter gain but the complete Riccati solution.

It is well established (Willis and Brockett 1965, Rugh and Murphy 1969,
Buelens and Hellinckx 1974) that the algebraic Riccati equation can be
reduced to the n algebraic equations of the spectral factorization. What we
have done is to oonstruct the ' transients' of these equations. Indeed, the
n algebraic equations are the steady-state version of our reduced-order system.
In this context we may note that the original non-Riccati algorithm (Kailath
1973; Lindquist 1974 a) has no non-trivial steady-state solution.

So far we have focused our attention on the number of first-order dynamic
equations contained in each algorithm. This question has a theoretical
interest but has little practical relevance. Indeed, in any computational
procedure the number of arithmetic operations is more interesting. In this
context we must recognize the fact that the reduction presented in this paper
is bought at the expense of greater algebraic complexity. Therefore, the
original non-Riccati algorithm may well be preferred from a computational
point of view. If so, the integrals could nevertheless be used to check the
solutions' on-line', and re-initiate the algorithm in the case of numerical
divergence.

The paper consists of two parts. In § 2 the continuous-time equations
are developed, whereas § 3 is devoted to the discrete-time case.

2. The continuous-time case

2.1. Problem formulation
Consider the usual continuous-time, lumped, stochastic. single-output model

x=Ax+Bv; x(O)=xo

y=c'x+w

(2.1 )

(2.2)

where x is the n-dimensional state process and y the scalar observation process.
Prime (') denotes transpose. The stochastics of the model is provided by the
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Recursive linear least squares filtering 823

stochastic vector X o and the white noise processes v and w (v(t)ERP, w(t)ER),
all of which are mutually uncorrelated, have zero mean and the following
second-order properties ;

E{xoxo'}= Po

E{v(s)v(t)'} =1O(s - t)

E{w(s)w(t)} = 8(s - t)

(2.3)

(2.4)

(2.5)

where 8 is the Dirac (generalized) function. The n x n system matrix A, the
n x p matrix B and the n vector c are constant. Moreover, we assume that
(x, y) is (wide sense) stationary. That is, A is a stability matrix, i.e. all the
zeros of the characteristic polynomial

det (s1- A) =zn +a1zn - 1+ a"zn-2+ ... +an (2.6)

have negative real parts, and the Liapunov equation

(2.7)

(2.8)

(2.9)

holds.
It is well known that the linear least-squares estimate i(t) of x(t) given

the data {y(s); 0"; s"; t} is generated by the Kalman-Bucy filter

d
A

~ = Ai(t) +k(t)[y(t) - c'i(t) l}
i(O) = 0

whereby the problem is reduced to determining the n-dimensional gain vector
function k. This is usually done by solving the matrix Riccati equation

P=AP+PA' -PCC'P+BB'}

P(O)=Po

for the n x n error covariance matrix P, in terms of which the gain function

k(t) = P(t)c (2.10)

is formed. Since P is symmetric, in(n + 1) coupled scalar equations need to
be solved.

Recently another procedure to determine the gain k has been proposed
which only requires 2n scalar first-order equations (Kailath 1973, Casti 1974,
Lindquist 1974 b). This non-Riccati algorithm consists of the two n-vector
equations

k= -(c'q*)q*; k(O)=Poc

q*=(A-kc')q*; q*(O)=Poc

(2.11)

(2.12)

In this paper we shall demonstrate that these equations can be reduced even
further, leaving us with only n first-order differential equations. In our
analysis, the characteristic polynomial

Q(t, z): = det (z1 - A + k(t)c') = zn+ ql(tlz n - I + ... + qn(t)

of the feedback matrix
A -k(t)c'

(2.13)

(2.14)

6.2
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824 A. Lindquist

will play an important role. Note that (2.14) is the coefficient matrix in
both the filter eqn. (2.8) and in (2.12).

In the sequel we shall assume that (A, c) is observable, i.e. that the n x n
matrix

[

e' An_I]

M = e'An-2

e'

is non-singular. If, in addition, (A. B) is controllable. i.e.

N=(B. AB. A2B, ...• An-IB)

(2.15)

(2.16)

has full rank. (A, B. c) is a minimal realization (see. e.g. Brockett· 1970).
Later. in § 2.4. we shall need to impose this rather natural condition.

2.2. A parameter-free version of the non-Riecati algorithm
For the moment. let A be the companion matrix

-al 1 0 0

-a2 0 0
I'(c) = ... __ ..............-.-.-----------------_. (2.17)

-an _ 1 0 0 1

-an 0 0 0

where a is the vector (a l • a2, ... , an)' of coefficients of (2.6). and let c be the
unit vector

h= (1. O. O•. , .• 0)' (2.18)

This is no restriction. Indeed. if (A, c) is an arbitrary observable pair. there
is a non-singular matrix

such that

h'=c'T

(2.19)

(2.20)

(2.21 )

and therefore all relations in § 2.1 remain valid with (A, c) exchanged for
(T'(c), h), if only at the same time Po and P are transformed as

and B together with all vectors as

B>-+T-IB

First observing that

r(z)=J-zh'

(2.22)

(2.23)

(2.24)
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Recursive linear least squares filtering

where J is the shift matrix

010 0

825

o 0 o

o 0 0 1

o 0 0 0

we see that the feedback matrix (2.14) can be written

J -ah' -kh' = r(k+a)

Hence we have the weJl-known relation

(2.25)

(2.26)

k=q-a (2.27)

where the components ql' q2' ... , qn of the vector q are defined by (2.13).
Then we can rewrite (2.11) and (2.12) as

q= -ql*q*; q(O)=Poh+a

q*=Jq*-ql*q; q*(O)=Poh

(2.28)

(2.29)

To see this, first observe that r(q) is the coefficient matrix of (2.12). Then
use (2.24) to obtain (2.29). To derive (2.28) differentiate (2.27). In the
foJlowing lemma we shall collect these observations, reformulated in the
general setting where (A, c) is not necessarily of the form (2.17) and (2.18).

Lemma 2.1

Let (A, c) be observable. Then the gain vector function (2.10) is

k(t) = T[q(t) - a] (2.30)

where T is the transformation (2.19) and ql(t), q2(t), ... , qn(t) are the co­
efficients of the characteristic polynomial (2.13). The vector function q
satisfies the system of differential equations

q= -ql*q*; q(O)=T-lPoc+a (2.31)

q*=Jq*-ql*q; q*(O)=T-lPoC (2.32)

Hence we have obtained a parameter-free version of (2.11) and (2.12)
which exhibits its dependence on the systems parameters only in the initial
conditions, the differential equations themselves being 'universal'. Each
system, characterized by (A, B, c) provides a set of initial conditions for
these differential equations. As we shall see in the next section, there are n
simple functions <PI' <P2' ... , <Pn such that <p;(q(t), q*(t)):; constant for i =

1, 2, ... , n. In the classical theory of differential equations (e.g. Moulton
1930) such relations are called integrals.

2.3. Integrals of the non-Riccati system

To facilitate the formulation of the integrals, define the auxiliary poly­
nomial

(2.33)
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826 A. Lindquist

Equations (2.31) and (2.32) can be reformulated in terms of the polynomials
Q and Q*. In fact, it is easily seen that

Q(t, z) = - ql*Q*(t, z)

Q*(t, z) = zQ*(t, z) - ql*Q(t, z)

(2.34)

(2.35)

where the dot denotes differentiation with respect to t. We may note that
these differential equations are identical to certain continuous analogues
(Krein 1955) of Szego's polynomials orthogonal on the unit circle. However,
the initial conditions are quite different in that Q(O, z) and Q*(O, z) are poly­
nomials. We have previously (Lindquist 1975 a) used Krein's equations to
derive the non-Riccati algorithm (2.11) and (2.12).

Lemma 2.2
The polynomials (2.13) and (2.33) satisfy the following equation for all t

Q(t, z)Q(t, - z) - Q*(t, z)Q*(t, - z) = D(Z2) (2.36)

"where D(z) = L diz n - i is a constant polynomial.
i=O

The proof of this lemma is immediate; just differentiate the left member
of (2.36) and use (2.34) and (2.35) to see that all terms cancel. Clearly (2.36)
must be a polynomial in Z2. To determine D we may just take t =0 in (3.36)
and insert the initial conditions. However, the formula thus received will
contain Po, a quantity which we shall later eliminate from the algorithm.
Therefore, in § 2.5, we shall derive an alternative expression for D which
depends explicitly on (A, B, c) only.

Identifying coefficients of z in (2.36), we obtain n integrals for the system
(2.26) and (2.27). We shall use these to reduce the order of the algorithm.
Taking t = 00 in (2.36), we obtain the spectral factorization formula

Q(oo,z)Q(oo, -Z)=D(Z2)

for the steady-state filter (Willis and Brockett 1965,
fact, Q*(t, z)->O as 1->00. (See the end of § 2.6.)

2.4. Solution of the integrals
Let

U(t, z) = zn +ul(t)zn-l + +un(t)

V(t, z)=zn+vl(t)zn-l+ +vn(t)

be the monic polynomial functions defined by

U(t, z) =Q(t, z) - Q*(t, z)

V(t, z) = Q(t, z) + Q*(t, z)

(2.37)

Brockett 1970). In

(2.38)

(2:39)

(2.40)

(2.41)

Lemma 2.3
Let (A, B, c) be a minimal realization. Then Uti, z) and V(I, z) are

stability polynomials for all t;;> O.
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Recursive linear least squares filtering 827

Proof

Since (A, c) is observable, it is no restriction to assume that A = I'(c) and
c=h. It can be shown (Kailath 1973, Casti 1974, Lindquist 1974 b) that

p = - q*q*' (2.42)

and therefore the Riccati eqn. (2.9) can be written

-q*q*' = r(a)P+ Pr(a)' -kk' + BB'

Since

(2.43)

(2.44)T(c) = r(u) + (u - a)h'

and q*=k-(u-a), we may reformulate (2.43) to obtain

r(u)P + Pr(u)' + (u- a)(u - a)' + BB' = 0 (2.45)

Hence for each fixed y and u=u(t), P(t) satisfies the Liapunov eqn. (2.44).
We shall now proceed much along the same lines as in Brockett (1970, p. 148)
to show that for each such u, which is kept constant,

x=r(u)'x

is asymptotically stable. To this end, use (2.45) to see that

d- de [x(t)' Px(t)] = [(u.- a)'x(t) J2 + x(t)' BB'x(t) '" 0 (2.46)

where P is the constant non-negative definite solution of (2.45). Now (2.41)
cannot be identically zero on any interval (i, i + I) unless x(i) = 0, for if this
were so, in view of (2.44) we would have

x=Ax; B'x=O

on (i, i + I), which contradicts the assumption of controllability. Therefore,

xli)'Px(i) - x(i + 1)' Px(i + 1) '" -llx(i) 11 2

for some e > 0, which does not depend on i. This gives us

00

- 1: Ilx(i)112:o;;~;(0)'Px(0)
i=O

(2.47)

and hence x(t)->O as t-oo. Moreover, from (2.46), we see that the function
x(t)' Px(t) is non-increasing, and from (2.47) that P is positive definite. Hence
Ilx(t)11 :0;; >.llx(O)11 for some >.. This establishes the required asymptotic stability.
Consequently, all eigenvalues of r(u(t)) have negative real parts, i.e. V(t, z)
is a stability polynomial. The stability of V(t, z) is proved in the same
way.•

Remark 2.4

For t = 0 the Liapunov eqn. (2.45) is the same as (2.7); for t = 00 it becomes
the algebraic Riccati equation. Clearly V(oo, z)= V(oo, z)=Q(oo, z) is also
a stability polynomial, for the proof is valid for t = 00, too.•

Now reformulate (2.36) in terms of V and V to obtain

V(t, z)V(t, -z)+ V(t, z)V(t, -z)=2D(Z2) (2.48)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ri
st

ol
] 

at
 0

7:
49

 0
5 

A
ug

us
t 2

01
5 



828 A. Lindquist

Then, identifying coefficients of like power in z, we have

n

L (-I)iu2i_jVi+u2i=di; i=I,2, ... ,n
j=l

or in matrix form

H(u)v=d-H(O)u

where H(u) is the Hurwitz matrix

-u1 1 0 0 0

-ua u2 -u1 1 0
H(u)=

-up u4 -ua u 2 0
.. ~....-..._._.._......_.._-_._. __..._._._.._._._-_._.---_._._._._._---

(2.49)

(2.50)

(2.51)

o 0

of the polynomial U(t, -z). Since
has no opposite roots. Therefore,
'implies that H(u(t)) is non-singular.
v:

o 0 (-1) nun

U(t, z) is stable (Lemma 2.3), U(t, -z)
Orlando's formula (Gantmacher 1959)

Consequently, we can solve (2.50) for

v(t) =H(U(t))-l[d - H(O)u(t)] (2.52)

In § 2.6 we shall use this relation to reduce the order of the non-Riccati
algorithm. First, however, we shall investigate similar redundancies in the

. matrix Riccati equation.
A fast procedure for solving (2.48) may be designed by means of the

Euclidean algorithm (see § 4).

2.5. Formulae for the error covariance

The (symmetric) matrix Riccati eqn. (2.9) and the non-Riccati eqns.
(2.31) and (2.32) together constitute a system of !n(n+ 1)+ 2n first-order
differential equations. We have already found n integrals for this system
(Lemma 2.2). The following lemma provides us with another !n(n + 1).

Lemma 2.5

Let (A, c) be in companion form (F'(c), h). Let qo=.l, qo* =. 0, ao= 1, and
let P ii and B ij be zero whenever some index is 0 or n+ 1. Then the solutions
of (2.9), (2.31) and (2.32) satisfy

Pi+l, itt) + Pi, Hl(t) =qi(t)qj(t) - q;*(t)q/(t) - ajaj - (BB')ji (2.53)

for all t;;, 0 and all i,j = 0, 1, 2, ... , n.

Proof

In view of (2.10) and (2.27)
Ph=q-a (2.54)

which gives us (2.53) for the case that either i or j is zero. To see that (2.53)
is true for i, j = 1, 2, ... , n, we note that we can write the Riccati equation

JP+PJ' =qq' -q*q*' -BB' -aa.' (2.55)
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Recursive linear least squares filtering 829

which is the same as (2.53). To see this, just insert (2.24), (2.10) and (2.54)
into (2.43).•

We shall solve the integrals (2.53) for P. For later reference we shall
express the solutions in terms of u and v.

Lemma 2.6

Given all the assumptions of Lemma 2.5, the solution P of the Riccati
eqn. (2.9) is given by

PIt) = I1(u(t), v(t), B) (2.56)

where

"I1i j (u" v, B) = L (- 1)k-j[!Ui+j_I_kVk + !Vi+j_I_kUk
k=j

- ai+j_I_kak - (BB')i+j_I_k k] (2.57)

in which we have taken U o= Vo= 1 and Vi = U i = 0 for i < 0 and i > n. More­
over, the coefficient vector d = (dl , d2, ... , dn)' of the polynomial D, defined
in Lemma 2.2, is o(B), where

n

0i(B) = L (- l)j[a2i_pj + (BB')2i_j, j]
j-O

(2.58)

Proof

Relations (2.56) and (2..57) follow immediately from (2.53) upon exchanging
qiqj - qi*q/ for !uivj+ !viuj and performing the appropriate summation. It
is easy to see that (2.53) holds for all (i, j) provided that we define P ij and
B ij to be zero whenever an index is less than one or greater than n. Hence
P ij equals the right members of (2.57) for all (i, j). In particular, by noting
that P 2i+I, 0 == 0 for i = 1, 2, ... , n, we obtain an alternative derivation of
(2.49) and the expression (2.58) for d.•

2.6. The reduced-order non-Riccati system

We shall now apply the linear transformation

u=q-q*

v=q+q*

defined by (2.40) and (2.41), to the system (2.31) and (2.32).

(2.59)

(2.60)

Lemma 2.7

The vector functions u and V satisfy the system of first-order differential
equations

1i=!r(u)(u-v); u(O)=a

v=!r(v)(v-u); v(0)=2T-IPoc+a

where r is defined by (2.24).

Proof

Substracting (2.32) from (2.31), we obtain

u= - r(u)q*; u(O) = a

(2.61)

(2.62)

(2.63)
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830 A. Lindquist

Then insert q*= -!(u-v) to obtain (2.61). Equation (2.62) is derived in
the same way.•

The function v can be eliminated from (2.61) by means of (2.52). This
will leave us with n first-order differential equations to determine k and the
error-covariance P. We collect this result in the following theorem.

Theorem 2.8

Let (A, B, c) be a minimal realization. Then the gain function (2.10) is
given by

k(t) = !T[u(t) + H(U(t))-l(d - H(O)u(t:)) - 2a]

where u is the unique solution of the system

if, = !r.(u)[u -H(U)-l(d - H(O)u)]

u(O)=a

(2.64)

(2.65 a)

(2.65 b)

of n first-order differential equations, T is the constant matrix (2.19), and
d = o(T-lB), 0 being defined by (2.58). The matrix functions rare Hare
given by (2.24) and (2.51) respectively. Moreover, the solution P of the
Riccati eqn. (2.9) is

P(t) = TII(u(t), H(U(t))--l(d - H(O)u(t)), T-lB)T' (2.66)

where II is the matrix function (2.57). Everything above remains true if
the initial condition (2.55 b) is exchanged for

Proof

Insert (2.52) into

u(O)= 2~r-lPoC + a

k = !T ('u + v - 2a)

(2.67)

(2.68)

[which is a consequence of (2.30) and {2.59) and (2.60)], (2.61) and (2.57) (and
perform transformations (2.22) and p~.23) where necessary) to obtain (2.64),
(2.65) and (2.66) respectively. For each fixed t ~ 0, the inverse of H(u) exists
for u = u(t) and, by continuity, in some neighbourhood thereof (Lemma 2.3).
Therefore the right member of (2.66 a) is differentiable and hence locally
Lipschitz. Consequently, (2.65) has a unique solution. Since (2.48) is
symmetric with respect to u and v, we have

u = H(V)-l[d - H(O)v] (2.69)

formed in analogy with,(2.52). From (2.62) and (2,69) it follows that v, too,
satisfies the differential eqn. (2.65 a); however, with the initial condition
(2.67). Since (2.57) and (2.68) are symmetric in u and v, we may exchange
u for v in (2.64) and (2.66) .•

The initial condition (2.55 a) is particularly simple; we do not need Po
as with eqns. (2.11) and (2.12). This should be an advantage, since usually
(A, B, c) is given, whereas Po has to be solved from the Liapunov eqn. (2.7).
Since d is also expressed in terms of (A, B, c), we have completely removed
Po from the algorithm. The initial condition (2.H7) is supplied merely for
completeness.
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Recursive linear least squares filtering 831

Note that like the Riccati equation, but unlike the original non-Riccati
algorithm (2.11) and (2.12), the reduced-order system (2.155) has a steady­
state version obtained by putting 1.i = 0, namely

u =H-l(U)[d - H(O)u] (2.70)

In fact, (2.42) being non-positive ensures the convergence of p(t) to zero as
t-+ root Hence, in view of (2.42), q*(t) will also tend to zero, as will q(t).
Consequently, u(t) will tend to q(co) and the right member of (2.65 a) to a
constant, which must be zero. Since, un ( co) ~ U( co; 0) i: 0 (Remark 2.4),
r(u(ro)) is non-singular. Therefore, u(ro) satisfies (2.70). The steady-state
gain k( co) and the solution P( co) of the algebraic Riccati equation are obtained
by inserting u( co) into (2.64) and (2.66). Finally, we may note that the
steady-state eqn. (2.70) is equivalent to the spectral factorization formula
(2.37).

3. The discrete-time case
3.1. Problem formulation

In the discrete-time setting the n-dimensional system lprocess x and the
scalar observation process yare generated by

x(t + 1) = Ax(t) + Bv(t); x(O)= X o

y(t) = c'x(t) +w(t)

(3.1 )

(3.2)

(t = 0, 1, 2, ... ), where xo, v and w have zero mean, are mutually uncorrelated,
and have the following second-order statistics:

E{xo xo'}= Po

E{v(s)v(t)'} = I~lst

E{w(s)w(t)} = a8st

(3.3)

(3.4)

(3.5)

Here Sst is the Kronecker symbol (taking the value one if s = t and zero
otherwise) and a is a non-negative constant. The system parameters (A, B, c)
are constant and all matrices have the same dimensions as in § 2.

Again we assume that (x, y) is (wide sense) stationary, i.e. the charac­
teristic polynomial (2.6) has all its zeros inside the unit circle, and Po satisfies
the discrete Liapunov equation

P o= APoA' + BB' (3.6)

Let T(t) be the tx t Toeplitz matrix

Tij(t)=c'Ali-jIPoc+aSi_j (3.7)

To ensure that the random sequence y has full rank even if a = 0, we assume
that

det T(t) > 0; t = 1, ~2, 3, ...

Condition (3.8) is always fulfilled when a> O.

(3.8)

t In fact, since P(t) is monotone non-increasing and bounded from below by
zero, it tends to a limit as i-s-co. Then p(t) tends to a limit 'also, which must be zero.
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832 A. Lindquist

The linear least-squares estimate x(t) of x(t) given the data {y(O), y( 1), ... ,
y(t - I)} is generated by the Kalman filter

x(t + 1) = Ax(t)+ _1_ k(t)[y(t) - e'x(t)])
go(t)

x(O) =0

(3.9)

Therefore it remains to determine the n-dimensional gain vector sequence
k and the scalar sequence go. This is usually done by solving the matrix
Riccati equation

f(t + 1) = A[P(t) - P(t)e(e' P(t)e + <x)-ie'P(t)]A' + BB'}

P(O)= Po

for the n x n matrix sequence P, in terms of which we have

k(t) = AP(t)e

go(t) = c'P(t)e + ix

(3.10)

(3.11)

(3.12)

[The matrix P(t) is the covariance of the estimation error x(t) - x(t), and
go(t) is the variance of the innovation process y(t) - c'x(t). Condition (3.8)
ensures that go(t) > 0 for all t. (See below).]

The discrete-time analogue of the non-Riccati algorithm (2.11) and (2.12)
can be written (Lindquist 1974 a)

where

k(t + 1) =k(t) - y,Ag*(t); k(O) = A Poe

g*(t+ 1)=Aq*(t)-y,k(t); g*(O)=APoe

1 ,
Y =- eg*(t)

I go(t)

(3.13)

(3.14)

(3.15)

(3.16)

(also, see Kailath et al. (1973) which contains certain extensions of the results
of Lindquist (1974 a)). It can be shown that (3.8) is equivalent to the
condition

lytl<l, t=0,1,2, ... (3.17)

In fact, given the connections with Szego's polynomials orthogonal on the
unit circle explained in Lindquist (1974 a, 1975 a). this equivalence is an
immediate consequence of Theorem 8.1 in Geronimus (1961). Therefore,
since go(O) =det T(l) > 0, go(t) > 0 for all t.

In § 3.3 we shall demonstrate that the system (3.13)-(3.15) of 2n+ 1 first­
order difference equations has n + 1 easily solvable 'integrals', which can
be used to reduce the order of the system to n. To this end, we shall first
derive a parameter-free version of the non-Riccati algorithm (3.13)-(3.15).
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Recursive linear least squares filtering 833

3.2. A parameter-free version of the non-Riccati algorithm

The discrete-time version of (2.31) and (2.32) consists of the 2n+ 1
recursions

qo(t+ 1)=qo(t)-YIlI*(t); qo(O)=c'Poc+cx (3.18)

q(t+ 1)=q(t)-y,Jq*(t); q(O)=T-IAPoc+qo(O)a (3.19)

q*(t+l)=Jq*(t)-YIl(t); q*(O)=T-IAPoc (3.20)

where q(t) and q*(t) are n-dimensional vectors, and

Lemma 3.1
Let (A, c) be observable. Then the gain parameters qo and k in the

Kalman filter (3.9) are given by (3.18) and

k(t) = T[q(t) - qo(t)a] (3.22)

respectively, where T is defined by (2.19) and q by (3.19). The last com­
ponent of q is constant, i.e.

Proof
Assume for the moment that A = r(a) and c = h as defined in § 2.2. Then

(3.16) becomes (3.21), and consequently, (3.18) is the same as (3.15). Note
that T=I, and let q be defined by (3.22). Then (3.13) yields

q(t + 1) - qo(t + l)a = q(t) - qo(t)a- y,Jq*(t) + YIlI *(t)a

which, in view of (3.18), is the same as the recursion (3.19). Inserting (3.22)
into (3.14), we have

q*(t + 1) =Jq*(t) - ql*(t)a - YIl(t) + Yllo(t)a

which by (3.21), gives us recursion (3.20). Next, let (A, c) be an arbitrary
observable pair. Then transformations (2.20)-(2.23) must be performed.
This leaves all recursions intact, but changes the initial conditions to those
exhibited in (3.18)-(3.20). Also (3.22) is obtained. It is clear from (3.19)
that qn is constant. To determine this constant, observe that the initial
condition of (3.19) can be written

the nth component of which is cxan .•

Remark 3.2
If (A, c) = (I'(c), h), the filter recursion (3.9) may be written

A A 1 A

x(t + 1) =Jx(t) +- q(t)[y(t) - y(t)] - ay(t)
qo(t)
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834 A. Lindquist

where fi(t) = h'x(t), and therefore the standard procedure yields the. following
recursion in y ;

where

n-l tl-l

fi(t+l)- L "Ii+l(t+l)[y(t-i)-fi(t-i)]= - L ai+ly(t-i)
iCEO 1=0

(3.24)

(3.25)

The predictor (3.24) has been studied by Rissanen (1973) who derived a fast
algorithm for the coefficients "Ii(t). In fact, by introducing the new vector
sequences

Zij=qj-i(i-j)

Zi/ = qj-i*(i)

the parameter-free version (3.18)-(3.20) of the non-Riccati algorithm (3.13)­
(3.15) is seen to be essentially identical to Rissanen's algorithm. This should
clarify the connection between the results of Rissanen (1973) and Lindquist
(1974 a) as far as single-output processes are concerned. In the multi-output
case (m> 1), things are more complicated in that the numbers of equations
in the two algorithms do not match. (Also see Rissanen 1975.).

3.3. Integrals for the non-Riccati system

Let Q, and Q,*, t=O, 1, 2, ... , be the polynomials

Q/(z)=qa(t)zn+ql(t)zn-I+ ... +qn(t)

Q/(z) = ql*(t)zn-I +q2*(t)zn-2 + ...+ qn*(t)

Then eqns. (3.18)-(3.20) can be written in the following form;

Q'+l(z) = Q,(z) - 'Y,zQ/*(z)

Q'+l*(z) =zQ,*(z) - 'Y1Q,(Z)

(3.26)

(3.27)

(328)

(3.29)

These recursions are identical to those found in the theory of polynomials
orthogonal on the unit circle (Geronimus 1961, Akiezer 1965). However,
whereas the orthogonal polynomials have initial values I and increase in
degree with t, Q, and Q,* have polynomial initial conditions and constant
degree.

Proposition 3.3

Let (A, c) be observable. Then the characteristic polynomial of the feed­
back matrix

A __1_ k(t)c'
qa(t)

1 .
equals - Q/(z), i.e.

qa(t)

Q,(Z) =qa(t) det [ZI- A +_1_ k(t)c']
qa(t)

(3.30)

(3.31)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ri
st

ol
] 

at
 0

7:
49

 0
5 

A
ug

us
t 2

01
5 



Recursive linear least squares liltering 835

Proo]

Since the determinant is invariant under the similarity transformation
(2.20), we may exchange (A, c) for (T'(c}, h) in (3.31). Hence, the right
member of (3.31) equals

qo(t) det [ZI - r (_1_ q(t)) ]
qo(t)

which is the same as Q,(z).•
We shall now proceed to construct an ' integral' for the system (3.28) and

(3.29).

Lemma 3.4
Let Q/(z) and Q/*(z) be defined by (3.26) and (3.27). Then there is a

constant polynomial

such that

for all t.

J
- [Q,(z)Q,(llz)-Qt*(z)Q,*(llz)]=t[D(z)+ D(J/z)- D(O)]
qo(t)

(3.32)

(3.33)

Prool

By using the recursions (3.28) and (3.29) we see that

Q,+1(z)Q ,+1( JIz) - Q,+1*(z)Q '+1*( liz) = (I - d)[Q ,(z)Q,( liz) - Q,*(z)Q ,*( J Iz)]

which, in view of (3.15), proves the lemma.•
By identifying coefficients of z' in (3.31), we obtain the following n + 1

integrals for the system (3.18)-(3.20).

/I-j

L [qj+i(t)qj(t) - qj+i*(t)q;*(t)) = !diqo(t); i = 0, J, 2, ... , n
j=O

(3.34)

where we have defined qo* to be identically zero.
Unlike the situation in continuous time, here the degree of the poly­

nomial D determines how far the order of the system (3.18)-(3.20) may be
reduced. In fact, if the degree of D is less than n, certain components of q
and q* will become zero after a few time-steps.

Lemma 3.5

The degree of D is n if and only if ex>0 and A is non-singular. If D has
degree p<n (i.e. di=O for i>p and dp#O), qi(t)=O for i>p and t~n-i,

qi*(t)=O for i>p and t~n-i+ I, and qp(t) = !dp for t~n-p.

Proo]

Reformulate (3.34) to obtain

qn(t) = !dn
1 i

q,,-i(t) = !d"_i - -(t) .L [qj+n_i(t)q/t) -qj+n_i*(t)q;*(t)]
qo )~ 1

fori=I,2, ... ,n

(3.35)

(3.36)
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836 A. Lindquist

Moreover. from (3.20) and (3.21) we have

qi*(t + 1) = qi+1*(t) - :::~:: qi(t) (3.37)

where qn+1*= O. In view of (3.23) and (3.35). dn = 2lXan• and therefore the
first statement of the lemma is true. for det A = an' If dn = O. qn == 0, and
consequently. by (3.37). qn*(t) =0 for t;;, 1. Then. by (3.34), qn-l(t) = ldn-1
for t;;,1. Likewise. if dn_1=0, qn_l(t)=O for t;;,l. and qn_l*(t)=O and
qn_2(t) = ldn-2 for t;;, 2. This procedure carried out in n - p steps proves the
lemma..' ,

Lemma 3.5 implies that only 2p of the recursions (3,18)-(3.20) are needed.
We should however remember that p c.n. only if either there is no measure­
ment noise or A is singular. Such models can be reduced to remove these
properties. and therefore we can safely ignore them in our subsequent analysis.

Since Q,*(z)-+O as t-s co (Cf. the discussion in § 2), (3.31) has the steady­
state version

Q,(z)Q ,(I/z) = MD(z) + D(I/z) - D(O)] (3.38)

This is the spectral factorization equation corresponding to the discrete-time.
algebraic Riccati equation. (Cf. the discussion at the end of § 3.6.)

3.4. Solution of the integrals
To facilitate the solution of the 'integrals we introduce. in analogy with

the continuous-time case, the polynomial sequences

1 '
U/(z)=(t') [Q,(z)-Q,*(z)] (3.39)

qo . •

V/(z)=Q/(z)-Q,*(z) (3.40)

Note that U, is a monic polynomial with coefficients as in (2.38), whereas V,
has leading coefficient

(3.41)

(3.42)

Moreover. let u=(ul , 1l2, ... , u,y and v=(v1, V2' ... , Vn)'.

Lemma 3.6

Let (A, B, c) be a minimal realization, and .let IX> o. Then for each
t = 0, 1, 2..... 00. U t is a stability polynomial, i.e. all its zeros have moduli
less than one.

Proof
It can be shown (see, e.g. Lindquist 1975 a) that

1
P(t + 1) = P(t) - - q*(t)q*(t)'

qo(t)

Now, since (A, c) is observable, we may without restriction take A = r(a)
and c=h. Then the' Riccati eqn. (3.10) together withJ3.42) gives us

·11
P-- q*q*' = f(a)Pf(a)' -- kk' + BB'

qo qo
(3.43)
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Recursive linear least squares filtering

which, in view of (2.44), (3.11) and (3.12), and

q*=k-qo(u-a)

can be reformulated as

P= r(u)pr(u)' +ct(u-a)(u-a), + BB'

837

(3.44)

Therefore, for each fixed t (which, since the limits exist, may be co) and
u = u(t), P(t) satisfies the Liapunov eqn. (3.42). We shall show that, as a
consequence of this, r(u) is a stability matrix, or, which is an equivalent
statement,

(3.45)

is asymptotically stable. Then U I is a stability polynomial. To this end,
use (3.42) to see that

i+n-l

x/PX i -xi+ n' PXi+n= L [ct((u- a)'x;)Z +x/ BB'x;);;, 0
;=1

(3.46)

However, (3.46) cannot be zero. For it if were, in view of (2.44) and (3.45),
we would have

x;+l=A'x;; B'x;=O forj=i,i+l, ... ,i+n-l

which violates the assumption of controllability. Therefore, (3.46) must be
greater or equal to €IIXill zfor some €> 0 which does not depend on i. Hence,

00

€ L Ilx;nll z::;; xo'PXo
;~o

(3.47)

and therefore xi---+O as i---+ co. The asymptotic stability IS now established
in the same wayas in Lemma 2.3.•

Now apply to the transformation (3.39) and (3.40) to (3.33) to obtain

U ,(z)V ,(1/z) + U ,( l/z) V ,(z) = D(z) + D(I/z) - D(O) (3.48)

which gives us the following n + 1 equations in the coefficients of U, and V,:

tj-i "

that is

S(u(t))v(t) = d

(3.49)

(3.50)

u , Uz un 1 u l Uz Un

u , Uz u 3 0 0 1 u 1 U n - l
S(u) = +

Uz U3 U4 0 0 0 U n _ 2
.~-_..._._--------------.,....._-------- ._----_._..._--~----------. __._-----------.

(3.51 )

CON.

Un 0 0 o o 0 0 I

6G
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838 A. Lindquist

The two matrices in (3.51) are the Hankel and the Toeplitz matrix respec­
tively for the sequence

To proceed we shall need the following lemma, the proof of which is
postponed to § 3.5.

Lemma 3.7

The Liapunov equation

P = r(u)Pr(u)' + G (3.52)

has a unique solution if and only if S(u) is non-singular.
Now, since r(u(t)) is a stability matrix (Lemma 3.6), (3.52) with u = u(t)

does have a unique solution, and consequently the inverse of S(u(t)) exists.
Hence (3.50) can be solved for v to yield

v(t) = S(u(t))-Id (3.53)

(3.54)

We may note that there are more effective ways to solve the polynomial
eqn. (3.48) than to convert it to a system of linear equations. (See § 4.)

3.5. Formulae for the error covariance

The discrete-time version of Lemma 2.4 reads:

Lemma 3.8

Let (A, c) be in the companion form (I'(c), h). Then the system of first­
order 'difference equations consisting of (3.10), (3.18), (3.19) and (3.20) has
the following set of integrals:

1
PHI. j+1 - Pij =qo [qiqj - qi*q;*] - a.aiaj - (BB')ij

which holds for t ~ 0, 1, 2, ... and i, j =0, 1, 2, ... , n, provided that we extend
the definitions of P, B and a as in Lemma 2.5.

Proof
In view of (3.Il), (3.12) and (2.24), we may write (3.22) (with T=l) as

JPh=q-a.a (3,55)

which gives us (3.54) for the case that either i or j is zero. To see that (3.54)
is also true for i, j = 1,2, ... , n, insert (2.24) and (3.22) into (3.43) and use
(3~55) to obtain

1
JPJ' -P=- [qq'-q*q*']-a.aa' -BB'.

qo

Lemma 3.9

Given all the assumptions of Lemma 3.8, we have

P(t) = n(u(t), v(t), B) (3.56)
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Recursive linear least squares filtering

where
II +i-j

nij(U, v, B) = L [",akak+j_ i + (BB'k, Hj-i - !UkVk+j-i
k=i

839

(3.57)

Here Ui and Vi are taken to be zero whenever i < 0 or i > n. Moreover, the
coefficients d= (do, d" ... , dn)' of (3.32) are

d = 8(B) (3.58)

where
n-j

8i (B ) = 2 L [",ajaj+i + (BB')j. j+;]
j=O

(3.59)

Proof

To see that (3.56) is true, just exchange (I No) [qiqj-qi*q/J for !UiVj+
!vjUj in (3.54) and perform the appropriate summation. By taking i = 0 in
(3.57), which then equals zero, we obtain an alternative derivation of (3.49),
and therefore (3.58) follows.•

Proof of Lemma 3.7
Apply the method of Lemmas 3.8 and 3.9 to (3.52) to obtain

,/ +i-j

Pij = L [akPI. k+j-i+1 + PI, k+lak+j-i - Pllakak+j_i - Gk• Hj-i]
k=i'

(3.60)

for i, j = 0, 1, ... , n, where P i j = Gi j =0 whenever some index is zero or n + 1,
and ao= 1. Now taking i = 0 in (3.60), we have

S(a)z=b

where b = (bo' b i , ... , bn)' is given by

n-j

bi = L Gj,j+i
j~O

and z = (zo, Zl' ... , zn)' is related to P through the relation

(3.61)

(3.62)

(3.63)

Once z is known, we can also determine P (and vice versa). Indeed, the first
column of P can be determined from (3.63), whereupon the rest of P is given
by (3.60). Therefore (3.52) has a unique solution if and only if (3.61) has a
unique solution.•

This proof is constructive and it provides us with an algorithm to solve a
Liapunov equation. An analogous algorithm for the continuous-time case
(involving the inversion of the Hurwitz matrix B(a)) can be obtained using
the methods of Lemmas 2.4 and 2.5. This algorithm proves the continuous­
time counterpart of Lemma 3.7, which states that the existence of B(a)-l
is necessary and sufficient for the Liapunov equation to have a unique
solution. (Cf. Lehnigk 1966, p. 44.)

6G 2
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840 A. Lindquist

3.6. The reduced-order non-Riccati system

Let eo, e1, ... , en be the unit vectors in RM., and let f: Rn->Rn be the
function

e;'S(u)-18(T-lB)
fi(U) = e

o'S(u)-18(T-IB)'
i= 1,2, ... , n

where Sand 8 are defined by (3.51) and (3.59) respectively.

(3.64)

Theorem 3.10

Let (A, B, c) be a minimal realization, and let IX>O. Then the gain
vector sequence in the filter eqn. (3.9) is given by

I
qo(t) k(t) = !T[u(t) + f(u(t)) - 2a] (3.65)

where u is the solution of the system of n first-order equations

u(t + I) = [2 +u1(t) - fl(U(t))]-I[(I +J)u(t) + (I -J)f(U(t))]}
(3.66)

u(O)=a

The error variance qo is given by

and the solution P of the matrix Riccati eqn. (3.10) by

P(t) = Tn(u(t), qo(t)f(u(t)), T-lB)T'

where n is defined by (3.53).

(3.67)

(3.68)

Proof

Apply the transformations (3.39) and (3.40) and (3.15) to the recursions
(3.28) and (3.29) to obtain

U 1+1 = !(I- y,)-I[(1 +z)U,+~ (1- z) V,]
qo

which can also be written

1
u(t+ 1)=!(1_y,)-I[(l+J)u(t)+- (I -J)v(t)] (3.69)

qo(t)

Since Lemmas 3.6 and 3.7 apply, we can use (3.53), which together with (3.58)
. and (3.41), yields (3.67) and

v(t) =qo(t)f(u(t)) (3.70)

where the argument of 8 has been adjusted to account for the fact that Lemma
3.9 must be applied to the transformed triplet (F'(c), h, T-IB). Therefore, in
view of the fact that y = !(I /Qo)v1 - !u1, (3.66) holds. It is clear from (3.19)
and (3.20) that u(O) =a. Equation (3.65) follows from (3.22) and (3.70).
Finally, (3.68) is obtained from Lemma 3.9 after applying the transformations
(2.20)-(2.23).•
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Recursive linear least squares jiltering

Equation (3.66) has the steady-state version

u=j(u)

To see this, just put u(t+ l)=u(t)=u in (3.66) to obtain

r(u)[u -j(u)] =u-j(u)

841

(3.71 )

(3.72)

With an argument analogous to the one in the continuous-time case, we can
show that P being non-increasing ensures the convergence of u(t) to u( OJ) =
qo( OJ)q(OJ) as t-> OJ, and that u( OJ) must satisfy (3.72). However, by Lemma
3.6, r(1t(OO)) is a stability matrix, and hence it has no eigenvalue equal to one.
Consequently, u(OJ) satisfies (3.71).

If either A is singular (an = 0) or there is no measurement noise (oe = 0),
according to Lemma 3.5, un(t) and vn(t) will be zero for t?> 1. In fact, if D
has degree p, for i=p+1,p+2, ... ,n, ui(t)=Vi(t)=O whenever t?>n-i+l.
Therefore it is possible to construct a reduced-order algorithm with even
fewer equations. However, this will be the topic of a future study.

4. Concluding remarks
We have attempted to provide some further theoretical insight into the

structure of the non-Riccati algorithms (2.11) and (2.12) and (3.13)-(3.15).
To this end we have derived a set of integrals for each of them. The integrals
have been used to reduce the number of first-order dynamic equations.
Unlike the original non-Riccati algorithms, these reduced-order systems have
non-trivial steady-state versions, which are equivalent to the algebraic equa­
tions of the spectral factorization. Therefore, in a certain sense, these
equations provide a link between Wiener and Kalman-Bucy filtering tech­
niques.

The reduced-order systems contain an inverse of a Hurwitz matrix (in
continuous time) or the sum of a Toeplitz and a Hankel matrix (in discrete
time). Fast algorithms for these inversions can be constructed by applying
the Euclidean algorithm as it appears in Berlekamp (1968) to the polynomial
relations (2.48) and (3.48) respectively. (The author is indebted to Professors
Eakin and Sathaye for pointing out this.) Nevertheless, in the end we may
find that computational considerations will cause us to retain the original.
non-Riccati system and instead use the integrals to control the convergence.
In any case, we think that the results of this paper will prove valuable in
studying the numerical properties of the algorithms.

In our analysis, the assumption of stationarity is used essentially only to
secure that the decompositions (2.42) and (3.42) hold. The appropriate
modifications for the non-stationary case will be discussed elsewhere. The
relations to the inverse problem of stationary covariance generation (Anderson
1969) is presently studied by G. Picci and the author.
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842 Recursive linear least squares filtering

Note added in proof.-It can be shown (Lindquist, 1976) that Theorems 2.8
and 3.10 still hold when the controllability assumption is removed.
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