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Abstract. This paper collects in one place a comprehensive theory of stochastic realization for con-
tinuous-time stationary Gaussian vector processes which in various pieces has appeared in a number of our
earlier papers. It begins with an abstract state space theory, based on the concept of splitting subspace. These
results are then carried over to the spectral domain and described in terms of Hardy functions. Finally,
differential-equations type stochastic realizations are constructed. The theory is coordinate-free, and it
accommodates infinite-dimensional representations, minimality and other systems-theoretical concepts being
defined by subspace inclusion rather than by dimension. We have strived for conceptual completeness rather
than generality, and the same framework can be used for other types of stochastic realization problems.
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1. Introduction. The following inverse problem is of central importance in stochas-
tic systems theory. Given a stationary Gaussian vector process {y(t); }, find a
vector-valued stationary Gaussian Markov process {x(t); } of smallest possible
dimension so that

(1.1) y(t) Cx(t)

for some matrix C, and determine a stochastic differential equation for x. This is the
stochastic realization problem and the representation is called a minimal stochastic
realization.

This problem, first formulated by Kalman [21] in 1965, has generated a rather
extensive literature. Most notable among the early contributions are the papers by
Anderson [2] and Faurre [11], the main focus of which is the realization of spectral
factors and the Yakubovich-Kalman-Popov lemma. The more recent work by
Ruckebusch [39], Lindquist and Picci [25], and Pavon [36] is geared toward the
characterization of Markovian representations in terms of the information carried by
the given process. During the last decade, the bulk ofthe papers on stochastic realization
theory have been concerned with geometric state space construction in Hilbdrt space.
Here the forerunners are Akaike [1] and Picci [37], whereas the most comprehensive
contributions are due to Lindquist and Picci [26]-[32] and Ruckebusch [40]-[44]. A
more extensive bibliography can be found in our survey paper [24].
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There are both conceptual and practical reasons why this problem is important.
On the conceptual side, a theory of stochastic realization should give a firm foundation
of the idea of state and state space models. Clearly this is of central importance in
setting stochastic systems theory on a sound mathematical basis. The purpose of this
paper is to present such a theory in which the idea of state is defined through a
fundamental property of conditional independence (splitting), a natural generalization
of the property of state in the deterministic theory. This point of view provides a
general framework for stochastic modeling in which problems of stochastic systems
theory can be set.

Important areas for potential application of this theory include identification,
stochastic model reduction, and stochastic control, and there is preliminary evidence
that the basic ideas presented here will prove to be fruitful. Moreover, there are already
problems in estimation theory which have been successfully tackled by such an
approach. Some cases in point are smoothing [49], interpolation [51], and, in general,
problems with a noncausal information flow. Possible extensions ofthe theory presented
here to the nonlinear (non-Gaussian) case will provide solution to even wider areas
of important applications. For example, realization theory of finite-state processes
would provide powerful technics to solve important problems in communication theory.

Stochastic realization theory is not a generalization of deterministic input-output
realization theory. Characteristic of the stochastic problem is the fact that there are
many different (minimal) causality structures which describe the same external
behavior, the basic problem being to classify all of them. Note that a similar problem
is encountered in J. C. Willems’ deterministic realization theory [52] for "signals", a
theory which has many points of contact with ours.

This invited paper collects in one place a reasonably self-contained treatment of
the geometric theory of stochastic realization which in various pieces has appeared in
a number of our previous papers [26]-[32], some of which are published in volumes
of limited availability. We have strived for conceptual completeness rather than general-
ity. Consequently, many of the results presented here have generalizations in various
directions, some straightforward and others more nontrivial. The basic conceptual
framework, however, is the same.

The need for a geometric theory of stochastic realization is illustrated by the
problem formulation above. As it stands, the problem may not be meaningful unless
the given process has a rational spectral density and hence a finite-dimensional
representation is possible. In the general case, a representation of type (1.1) exists
only under certain technical conditions (which we do not want to introduce at the
beginning). Moreover, the concept of minimality needs a natural dimension-free formu-
lation which also covers the infinite-dimensional situation. Finally, a geometric theory
is coordinate-free and hence allows us to factor out, in the first analysis, the properties
of the realizations which depend only on the choice of coordinates and may unduly
complicate the picture.

To this end, let us reformulate the above problem in terms of Hilbert space
geometry. Let {y(t); R} be a stationary Gaussian stochastic vector process which is
mean-square continuous and centered. Consider the space H of all finite linear
combinations of the random variables {yk(t); R, k-1, 2,’’’, m}. Endowed with
the inner product (, r/):= E{:r/}, where E{. } denotes mathematical expectation, is
a pre-Hilbert space. Let H be the Hilbert space obtained by taking the closure of H;
this is known as the Gaussian space of y [35]. A standard argument [38, p. 15] shows
that there is a group { U, 6 } of unitary operators on H such that U,y,(s) y(s + t)
for all s, E and k 1, 2,..., m. Since y is mean-square continuous, the group
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{Ut; tR} is strongly continuous. We shall use the notation EXh to denote the
orthogonal projection of h H onto a subspace X of H. This notation is motivated
by the fact that EXh coincides with the conditional expectation E{A [f} where is
the g-field generated by the random variables in X [9].

Consider the class of subspaces X of H with the properties
(i) yk(O) e X fork=l,2,...,m;
(ii) X is Markovian in the sense that

(h EXh, I EX/) =0 for h X-,/z X+

where X- and X+ are the closed linear hulls of { UtX; <-_ 0} and { UtX; >- 0}
respectively;

(iii) X is minimal in the sense that if X1 is a subspace of X and X satisfies (i)
and (ii), then X X.

The term Markovian is motivated by the fact, as we shall see below (Proposition
2.1), that (ii) is equivalent to each of the two conditions

(1.2a) EX-h EXh for h X+,
(1.2b) EX/h EXh for h X-.

For reasons to be reported in 3 (Proposition 3.1), a subspace X satisfying (i) and
(ii) will be called a Markovian splitting subspace.

What is then the connection between such subspaces and the stochastic realization
problem stated above? Let us for the moment assume that X has finite dimension n,
and let {x, x2, , x,} be a basis in X. Then, in view of property (i), there is an m n
matrix C {co} such that yi(0)= Y9=1 cijx for i= 1, 2,..., m. Consequently,

(1.3) y(t)- Cx(t)

where {x(t); R} is the n-dimensional stationary stochastic process defined by setting
Xk(t) := UXk for k 1, 2,’.., n. Under suitable geometric conditions on X .(to be
introduced in 3) this process is purely nondeterministic [38]; for the sake of this
example, we shall assume that this is the case. Since

(1.4) span {x,(t), x2(t),’"., x,(t)},

condition (1.2a), shifted by U,, is equivalent to

(1.5) E{x,(s)l-/}=E{Xk(S)]t} fors>_-t, k=l,2,..-,n

where - and , are the o--fields generated by {Xk(’/’); T t, k= 1,2,’.’, m} and
{Xk (t); k 1, 2, , n } respectively. Consequently x is a vector Markovprocess. Finally,
as we shall see below, condition (iii) insures that the dimension n is as small as possible.
The condition X c H is not implied by the original problem formulation, but it is not
unnatural since the process y is the only thing given. Such realizations are called
internal [25]. However, several of the applications mentioned above require that we
consider the noninternal situation when H is imbedded in a larger Hilbert space.
Although many of our results remain valid in the noninternal setting and others can
be generalized [43], [44], we shall restrict ourselves here to a simple prototype problem.

It is well known that a vector Markov process of the type described above has a
representation

(1.6) x(t) I eA(t-)Bdu(cr)

In this paper a subspace is assumed to be closed.
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where A and B are matrices, u is a vector-valued orthogonal increment process with
components in H, and the integral is defined in quadratic mean [11]. Together with
(1.3) this yields a forward stochastic realization

dx Ax dt + B du,
(1.7)

y= Cx.

The forward property is characterized by X c H-(du), where H-(du) is the
subspace generated by the components of the past increments {u(t)-u(s); t,s<=O}.
By symmetry and (1.2b), there is also a representation

(1.8) x(t) e(-t) dfi(cr)

which corresponds to a backward stochastic realization

dx -Ax dt + B df,
(1.9)

y Cx.

This realization is backward because Xc H+(da), the subspace generated by the
components of the future increments {a(t) a(s); t, s >= 0}. Characterizing Markovian
representations in terms of pairs of realizations, one evolving forward and one back-
ward, is one of the key ideas in [25] and in the present work. It is well known and
easy to show that the transfer functions

(1.10a) W(s) C(sI-A)-IB,

(1.10b) ff’(s) C(sI + )-1/
are rational spectral factors of y, W having all its poles in the left and W all its poles
in the right half plane.

It follows from finite-dimensional stochastic realization theory [2], 11 ], 12] that
(1.7) is a minimal stochastic realization if and only if (a) it is reachable, i.e.
[B, AB, A2B, .] is full rank, (b) it is observable, i.e. [C’, (CA)’, (CA2)’, .] is full
rank (where prime denotes transpose), and (c) W has minimal degree (among spectral
factors). Likewise (1.9) is minimal if and only if (a)’ it is controllable, i.e.
[B-, B-, fi.2/,...] is full rank, (b)’ it is constructible, i.e. [C’, (Crib)’, (Crib2)’, .] is full
rank2, and (c)’ if" has minimal degree. As can be easily checked, x(0) being a basis
in X automatically takes care of conditions (a) and (a)’, and hence they will not occur
in the geometric theory. Conditions (b), (c), (b)’ and (c)’ will be given natural geometric
and function theoretic characterizations below which hold also in the infinite-
dimensional case. We shall see, for example, that minimality is equivalent not only to
(b) + (c) or to (b)’+ (c)’ but also to (b) + (b)’.

This paper divides naturally into three parts. The first part, consisting of 3-5,
is devoted to a characterization of the class of Markovian splitting subspaces and an
analysis of their systems-theoretical properties. Section 2 is a preliminary in which we
define the concept of perpendicular intersection, introduced in [29].

In the second part, consisting of 6 and 7, the geometry is described in terms
of Hardy spaces, and the Markovian splitting subspaces are characterized by pairs
(W, W) of spectral factors. This part of the theory has some connections with Lax-
Phillips scattering theory [23].

Using the terms controllable and constructible instead of reachable and observable when referring to
a system evolving backwards is in agreement with accepted terminology in systems theory [22].
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Finally, in 8-10, we assign to each Markovian splitting subspace X two stochas-
tic realizations, a forward one with transfer function W and a backward one with
transfer function W, having their systems-theoretical properties prescribed by X.
Moreover, we study the relationships between realizations corresponding to different
splitting subspaces.

2. Perpendicular intersection. Let A, B and X be subspaces of a real Hilbert space
H. We shall say that A and B are conditionally orthogonal given X if

(2.1) (a-EXa, fl-EXfl)=O foraA, flB.
This will be denoted A_LBIX. When X is the trivial subspace, i.e. X 0, this reduces
to the usual orthogonality A3-B. Conditional orthogonality is orthogonality after
subtracting the components in X. We write A v B to denote the vector sum, i.e. the
closure of {a 4- flla A, fl B} and AB to denote orthogonal direct sum; A) B is
the subspace C c A such that B c A; B is the orthogonal complement of B in
H, i.e. B+/-=HB. Finally, EAB {EArl fl B}. This space may not be closed, and
we shall write ff, AB to denote the closure.

PROPOSITION 2.1. The following statements are equivalent.
(i) A+/-B X.
(ii) B+/-AIX.
(iii) (A v X)+/-BIX.
(iv) for 
(v) (A v X)X+/-B.

(vi) EArl EAEXfl for fl B.
Proof. The equivalence between (i), (ii) and (iii) follows directly from the defini-

tion. Since (fl-EXfl)3-X, relation (2.1) may be written (a,-EXfl)=O. Therefore,
(iii) is equivalent to (fl Ex)_LA v X, i.e. EAX( EXfl) 0, which is precisely (iv).
Moreover, (i) is equivalent to (fl-EX)3-A, i.e. EA(fl-EX[3)=O, which is the same
as (vi). Finally, set Z:=(AvX))X; then AvX=X@Z, i.e. EAvXfl=EX+EZfl.
Hence (iv) is equivalent to EZfl =0 for/3 B, i.e. Z3-B. This is (v).

PROPOSITION 2.2. Let A 3- BIX. Then

(2.2) A B c X.

Proof. Let A A n B. Then A 3_A[X, i.e.
PROPOSITION 2.3. Let A and B be subspaces of H. Then

(2.3) A3_ BI.AB.
Moreover, any X A such that A 3_ BIX contains AB.

To prove this we need the following decomposition.
LEMMA 2.1. Let A and B be subspaces of H. Then

(2.4) A= ffAB@(An B-).

Proof. Let a A and /3 B. Then (a, EArl) (a, fl). Consequently, if a 3_ ff.AB,
then a B+/-.

ProofofProposition 2.3. IfX A, AA_BIX is equivalent to A)X 3_ B (Proposition
2.1). In particular, this is satisfied by X ffAB (Lemma 2.1). In general, AX
B+/-, i.e., X ff,AB (Lemma 2.1).

Suppose A 3_ BIX. Then it follows trivially from the definition that, if A A and
B1 B, then A13_ BIlX. A more interesting question is how far A and B can be expanded
while remaining conditionally orthogonal given X.
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THEOREM 2.1. Let Ao and Bo be subspaces such that Ao v Bo- H, and suppose that
Ao,L BolX. Let A Ao and B Bo. Then A,L BIX if and only if

Ac Aov X,
(.5)

B Boy X.

If the upper bounds are attained, i.e. A Ao v X and B Bov X, then X A B.
Proof. By Proposition 2.1, (Ao v X)_L (Bov X)IX. Therefore, A-L BIX whenever

(2.5) holds, Conversely, assume that A+/-BIX. Then (A v x)+/-nolX, and therefore
ZA_BolX when Z:= (Av X))(Aov X), i.e. Z,L(Bov X)X (Proposition 2.1). But,
by definition, Z-L (Ao v X) and therefore Z,L Ao v Bo H, i.e. Z 0. Consequently
Av X Aov X, i.e. the first of relations (2.5) must hold. The second follows by
symmetry. If A Ao v X and B Bov X, then X A B. But by Proposition 2.2,
ABX. HenceX=AB.

The following proposition describes the geometry of the maximal spaces in
Theorem 2.1.

PROPOSITION 2.4. The following conditions are equivalent.
(i) A_L BIA c B.
(ii) EAB A B.
(iii) E BA A B.
(iv) EAB EBA.
Proof. First, suppose that (i) holds. Then, by Proposition 2.1 (iv), EAB EAnB

A B, which is (ii). Condition (iii) follows by symmetry, exchanging A and B. Hence
(iv) follows. Conversely, (ii) or (iii) and Proposition 2.3 imply (i). (Note that (ii)
implies that EAB is closed and therefore ffAB EAB.) Finally, if (iv) holds, EAB,
and hence AB, is contained in A B. But, by Propositions 2.2 and 2.3, A B ff AB.
Hence A B ff, AB. Consequently (i) holds (Proposition 2.3).

We shall say that two subspaces A and B satisfying the conditions of Proposition
2.4 intersect perpendicularly. As we have seen, perpendicular intersection corresponds
to maximal A and B in Theorem 2.1. The upper bound is also attained in the inclusion
ABX of Proposition 2.2. Note that, for any pair (A, B) of perpendicularly
intersecting subspaces, EAB is closed.

THEOREM 2.2. Let A and B be subspaces such that A v B H. Then the following
conditions are equivalent.

(i) A and B intersect perpendicularly.
(ii) B +/- A.
(iii) H A-O)(A B)B+/-.
(iv) EA and E commute.

Proof. Set X:=AcB. If (i) holds, X=ff,AB, and hence AX,LB (Lemma 2.1).
But, since X B and A v B H, (AX)B H, and therefore AX B-, i.e.
A X 03 B. Hence both (ii) and (iii) follow. Each of the conditions (ii) and (iii) implies
the existence of a subspace X with the property H A+/-O)XB+/-, so that if A e H,

(2.6)

and

(2.7)

EAEBA EXEA + EBEBA ExA

EBEAA EXEAA + EAIEAA ExA

and therefore (iv) follows. It just remains to prove that (iv) implies (i). But, EAEnH--
EEAH yields EAB--EnA, i.e. A and B intersect perpendicularly (Proposition
2.4). [1
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3. The geometry of splitting subspaces. Let H be a real separable Hilbert space,
let { Ut; } be a strongly continuous group of unitary operators on H, and let H-
and H+ be subspaces enjoying the invariance properties

(3.1a) UtH-c H- for t-<_0,

(3.1b) UtH+ C H+ for t_->0

and together spanning H, i.e. H-v H+= H.
Although these are the only assumptions needed for the geometric theory of 3-5,

the situation we have in mind is the one delineated in the Introduction: H is the
Gaussian space of an m-dimensional stationary Gaussian vector process, which is
mean-square continuous and centered, and { U R} is the group of shifts: Uyk(S)
yk(S + t). Moreover,

(3.2)
H-:= span {Yk (t); _--< 0, k 1, 2," , m},

H+:= span {yk(t); t_-->0, k= 1, 2,’ , m}

where span {. } denotes closed linear hull. Hence we shall refer to H- and H+ as the
past space and the future space respectively.

We shall say that X is a splitting subspace if H- and H/ are conditionally
orthogonal given X, i.e. H-_t_ H+Ix. According to Proposition 2.1, this is equivalent
to each of the two conditions

EH-vXA ExA for A H-,
(3.3)

E+vxA=EXA forAH+.
Consequently, a splitting subspace X can be thought of as a "memory" or a "sufficient
statistic" containing all information about the past needed in predicting the future,
or, equivalently, all the information about the future required to estimate the past.
Splitting subspace is a concept originally introduced by McKean [34] in a somewhat
more restricted sense. A splitting subspace is said to be minimal if it contains no proper
subspace which is also a splitting subspace. The spaces H, H- and H+ are splitting
subspaces, but in general they are not minimal.

A subspace X is said to be Markovian if the subspaces X- and X+ generated by
{ UtX <= 0} and { U,X -> 0} are conditionally orthogonal given X, i.e. X-_t_ x/lx.
This is condition (ii) in 1, and, as mentioned there, it is equivalent to each of the
conditions (1.2) (Proposition 2.1).

We shall now reformulate the geometric problem of 1, justifying the name
Markovian splitting subspace introduced there.

PROPOSITION 3.1. The subspace X satisfies the conditions
(i) yk(O) X, k 1, 2,’", m,
(ii) X is Markovian

if and only ifX is a Markovian splitting subspace.
Proof (if): Since X is a splitting subspace, it follows from Proposition 2.2 that

H- H/ X. But yk(O) H- H/ for k= 1, 2, , m, and therefore (i) follows.
Condition (ii) is part of the assumption. (only if): Condition (i) implies that H-= X-
and H+= X/. Hence the splitting property of X follows from the Markovian
property.

The following characterization of the class of splitting subspaces will be of central
importance in what follows.
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THEOREM 3.1. [28], [29]. A subspace X is a splitting subspace if and only if
(3.4) X=S&S

for some pair (S, S) of perpendicularly intersecting subspaces such that S H- and
H+. The correspondence X (S, ) is one-one, S and being given by

S=H-vX,
(3.5) = H+vX.

Proof. (if)" Suppose that S and intersect perpendicularly. Then S_I_ ;IX where
X=S (Proposition 2.4). But, since SH- and H/, this implies that
H-_t_ H+IX, i.e. X is a splitting subspace. (only if)" Suppose H-_t_ H+IX. Let S and
be defined by (3.5). Then, by Theorem 2.1, S_I_ IX and X S $. This implies that

S and S intersect perpendicularly (Proposition 2.4).
(one-one)" Suppose that S and S are perpendicularly intersecting subspaces such

that S H- and H/. Then X S is a splitting subspace, i.e. H-_L H/IX. We
need to show that S= H-v X and = H/v X. But S contains H- and X, and
contains H/ and X; hence S H- v X and H/ v X. On the other hand, S_I_

(Proposition 2.4), and therefore S H-v X and H/v X (Theorem 2.1), establish-
ing the required equalities.

COROLLARY 3.1. [28]. In Theorem 3.1, (3.4) can be exchanged for X Es or
X=ES.

Proof. Follows immediately from Proposition 2.4.
We shall write X---(S, $) to exhibit the unique pair (S, S) corresponding to X.

The geometry of Theorem 3.1 can be illustrated as in Fig. 1. It also illustrates
COROLLARY 3.2. [28]. A subspace X is a splitting subspace if and only if there are

subspaces S H- and H/ such that

(3.6) H= S+/-O)X+/-.

The pair (S, S) is the same as in Theorem 3.1, i.e. X .--(S, S).
Proof. (if): Relation (3.6) implies that +/- S, and therefore S and intersect

perpendicularly (Theorem 2.2). Also, by Theorem 2.2 (iii), X--S $. Then the rest
follows from Theorem 3.1.

FIG.
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(only if)" In view of Theorem 3.1, it only remains to show that, if S and S intersect
perpendicularly, (3.6) holds with X--S c S. But this follows from Theorem 2.2.

Equation (3.6) is analogous to the decomposition in terms of incoming and
outgoing subspaces in Lax-Phillips scattering theory [23]. Adding the invariance
conditions of Theorem 3.2 below, +/- corresponds to the incoming and S+/- to the
outgoing subspace. The parallels will be more apparent in 7, as we turn to Hardy
space representation.

The splitting subspace X---(S, g) is said to be proper if both S+/- and g+/- are full
range. Since S+/- and gl are the pieces of H in (3.6) which we discard, properness is
to a certain extent an indication that the splitting subspace X offers nontrivial data
reduction; H, H- and H+ are not proper.

THEOREM 3.2. [28]. Let X--.(S, S) be a splitting subspace. Then X is Markovian

if and only if

(3.7a) UtSc S fort<=O,

(3.7b) UtS c S for >- O.

Proof. (if)" Since X c S, (3.7a) implies that UtX S for t_-< 0, i.e. X- S. In the
same way, (3.7b) implies that X+c q. Therefore, since S 3_ glX, we have X-3-
(only if)" Suppose that X---(S, S) is a Markovian splitting subspace. Then yk(O) E X
for k 1, 2, , m (Proposition 3.1), and therefore X- H- and X/ H/. Moreover,
X- 3_ X+IX, and consequently X X- c X/ (Theorem 2.1). Hence X- and X/ intersect
perpendicularly (Proposition 2.4). Then, by Theorem 3.1, X---(X-, X/) is a splitting
subspace. But then, in view of the one-one correspondence X <-> (S, S), we must have
S- X- and X+, which clearly have the required invariance properties.

From Theorems 3.1 and 3.2 we see that H---(H, H), H---(H-, H) and H+-
(H, H/) are Markovian splitting subspaces, but they are not in general minimal.

Given an arbitrary splitting subspace X- (S, S), how do we find a minimal one
contained in it?

LEMMA 3.1. Let X.--(S, S) and Xo’--(So, So) be splitting subspaces. Then Xo X
if and only if So S and So S.

Proof. The if-part follows from (3.4) and the only-if part from (3.5).
To obtain a minimal splitting subspace, then, we would need to reduce S and S

as far as possible, while preserving the splitting geometry of Theorem 3.1. By Theorem
2.2, S and , intersect perpendicularly if and only if g+/- S or, equivalently, Sx
Therefore, in order that S D H-, H/, and S and intersect perpendicularly, we
must have

(3.8a) S D H- v ,+/-,
(3.8b) q H/v S+/-.

We must therefore reduce S and S without violating these conditions. The following
theorem describes one procedure to do this.

THEOREM 3.3. [29]. Let X’-.(S, ) be a splitting subspace. Set S-o := H+v S+/- and
--3_So := H-v So. Then Xo" (So, o) is a minimal splitting subspace such that Xo X. IfX

is Markovian, then so is Xo.
Proof. By definition, So D H-, S-o D H/, and c So, i.e. So and o intersect

perpendicularly (Theorem 2.2). Hence Xo’--(So, So) is a splitting subspace (Theorem

A subspace M of H is full range if the closed linear hull of the shifted spaces UtM" } is all of H.
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3.1). Also, S+/- c o, i.e. - c S, and H- c S, and therefore So c S. Moreover, (3.8b) may
be written So S. Consequently Xo X (Lemma 3.1).

Next, we show that Xo is minimal. To this end, suppose that XI-’-($1, $1) is a
splitting subspace such that X Xo. Then, by Lemma 3.1, S So and S So. However,
from the splitting geometry (3.8) we have

(3.9a) Sl H-v

(3.9b) 1 H+ v S-.
Since S-o, :i = -, and therefore (3.9a) yields S = So. Hence S So. Further-

more, X Xo c X implies that S S (Lemma 3.1), i.e. Si = S-, which together with
(3.9b) yields $1 So. Thus S1 So. Consequently X Xo, establishing the minimality
of Xo.

It remains to shown that if X is Markovian then so is Xo. In view of Theorem
3.2, this amounts to showing that

(3.10a) U,So So for <= 0,

(3.10b) UtSo So for >_- 0

follows from (3.7). It is well known and easy to show that if a subspace M is invariant
under an operator T, i.e. TM M, then the orthogonal complement M+/- is invariant
under the adjoint T*, i.e. T*M- M+/-. Then, noting that U,* U_t, we see that (3.7a)
can be written UtS+/- S- for >=0, which together with (3.1b) yields (3.10b). In the
same way, (3.10b) and (3.1a) yields (3.10a).

From this we see, as we could expect, that for minimality we must have equality
in (3.8a) and in (3.8b).

COROLLARY 3.3. [28]. A splitting subspace X-.-. (S, S) is minimal if and only if
(3.1 la) q H+ v S-,
(3.11b) S H- v -.

Given S, (3.11a) is the smallest subspace containing H+ and intersecting S
perpendicularly. Likewise, given S, (3.11b) is the smallest subspace containing H- and
intersecting +/- perpendicularly. It follows from Theorem 3.3 that these minimality
conditions remain the same if we restrict our analysis to Markovian splitting subspaces.
Therefore the properties "minimal" and "Markovian" can be studied separately.

COROLLARY 3.4. [29]. A Markovian splitting subspace which contains no Markovian
splitting subspace as a proper subspace is a minimal splitting subspace.

The existence of minimal splitting subspaces, finally, is insured by Theorem 3.3.
COROLLARY3.5. Each (Markovian) splitting subspace contains a minimal

Markovian splitting subspace.
Applying Theorem 3.3 to the Markovian splitting subspaces H----(H-, H) and

H+ H, H+), we obtain4 the minimal Markovian splitting subspaces H+/----

(H-, H+ v (H-)-) and H-/+.(H-v (H+)-, H+). Introducing

(3.12a) N-:= H-c (H+)1,

(3.12b) N+ := H+ c (H-)1,

we may write4 H-/+.--(H-, (N-)-) and H+/-.-. (( N+)+/-, H+). Moreover, by Corollary

4 Recall that, for any subspaces A and B, (A v B) A+/-c B+/-.
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3.2, H-= H//-O) N- and H/= H-//)N/, i.e., in view of Lemma 2.1, we have

(3.13a) H+/-= ff, H-H+,
(3.13b) H-/+=H/H-.

Consequently H//- and H-// are the forward and backward predictor spaces.
From Proposition 2.3 we see that H//- is the only minimal splitting subspace contained
in H-, and H-// is the only one contained in H/.

Hence we have identified two minimal splitting subspaces, but where do we look
for the others? To answer this question, first note that, since H-= H+/-03 N- and
H+ H-/+ O) N+,
(3.14) H N-0) H[]03 N/

where H[] is the frame space

(3.15) H[] H+/- v H-/+.

Since (N/)- H- and (N-)Z H/, H[] is a splitting subspace (Corollary 3.2), which
is Markovian (Theorem 3.2), but in general nonminimal.

THEOREM 3.4. [26]. The frame space H[] is the closed linear hull of all minimal
splitting subspaces. IfX is a minimal splitting subspace, then

(3.16) H- H+ c X c H[].

Proof. Let X---(S, S) be a minimal splitting subspace. Then it satisfies (3.11). But,
S D H- and H/, or, equivalently, $1 (H-)- and - (H/) +/-, which together
with (3.11) yields c (N-)- and Sc(N+)-. Hence X H. In view of (3.15), the
minimal splitting subspaces span H. The relation H- c H/ X follows from Proposi-
tion 2.2.

Consequently, as far as minimal splitting subspace construction is concerned, only
the frame space H[] is of interest; the spaces N- and N/ in the decomposition (3.14)
may be discarded. This observation is of importance in many applications, such as,
for example, smoothing [4]. The point here is that, whenever y has a rational spectral
density, H[] is finite-dimensional while of course H is not.

In the event that the past space H- and future space H/ intersect perpendicularly,
H=H-H/, and hence, by Theorem 3.4, there is a unique minimal splitting
subspace. In the finite-dimensional case, this happens if and only if y has a rational
spectral density the numerator polynomial of which is constant.

The special role played by the minimal splitting subspaces H//- and H-// is
further underlined by the following result. In 4 and 7 we shall identify H//- and
H-// as the minimum and maximum elements in a certain lattice of splitting subspaces.

THEOREM 3.5. [30]. Let X (S, ) be a splitting subspace. Then H-X H//- if
and only ifX _L N- and ff H/X H-/+ if and only ifX _L N+.

Proof. Applying the projection EH- to X--ES (Corollary 3.1) and noting that
H-c S, we obtain//-X =//-. But H+, and hence/H-X H+/-. Conversely,
suppose that : X. Then, since H- H+/- N-, EH- EH+/- E-. But, since
X +/- N-, the last term is zero, and consequently En- H+/- Hence ffS-x H+/-.
This establishes the first part. The second follows by symmetry.

4. Observalility, constructilfility, and minimality. Let X be a splitting subspace,
and consider the orthogonal decomposition

(4.1) X ff,XH+O)[X c (H+)+/-]
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given by Lemma 2.1. An element in the subspace X (H/) +/- cannot be distinguished
from zero by observing the future {y(t); t->_ 0} and is therefore called unobservable, in
analogy with deterministic systems theory [22, p. 52]. The splitting subspace X is said
to be observable if the unobservable subspace is trivial, i.e. X (H/)-= 0. Likewise,

(4.2) X ff_.XH-[X (H-)+/-]

and we call X constructible if the unconstructible subspace X c (H-)+/-= 0.
The above definitions of observability and constructibility, introduced by

Ruckebusch in [42], are in complete agreement with the corresponding concepts in
deterministic systems theory. To illustrate this point, let us consider the finite-
dimensional stochastic system (1.7), which can be solved to yield

(4.3) y(t) C eAtx(O)+ C eA(’-)B du(r).

Now, X is observable if and only if/XH/ X, i.e.

(4.4) Xk(0) span {33,(t); >-- 0, 1, 2,. ., m}

for k= 1,2,..., n, where yk(t):= EXyk(t). For t>=O, (t)=CeAtx(O), since then the
components of the second term in (4.3) are orthogonal to X. Therefore {93(t); t->0} is
the output of the linear dynamic system

Az, z(O) x(O),
(4.5)

=Cz, t>--O.

The question of observability of X is thus reduced to determining if x(0) can be solved
in terms of {)3(t); >-0} which happens if and only if (4.5) is observable in the usual
sense of deterministic systems theory [22]. Similarly, X is constructible if and only if
x(0) can be solved in terms of {)3(t); <-0}. But, from the backward system (1.9), we
see that {(t); t<-0} is the output of

-,, (0) x(0),
(4.6)

39=C, t-<_0

and therefore X is constructible if and only if (4.6) is.
In the general setting, observability and constructibility can be characterized as

follows.
THEOREM 4.1. [28]. Let X--.(S, S) be a splitting subspace. Then X is observable if

and only if
(4.7) = H+ v S+/-

and constructible if and only if
(4.8) S H- v

Proof. The observability condition X (H/)+/-=0 is equivalent to X-v H/= H,
which, in view of Corollary 3.2, can be written (S+/- ,+/-) v H/ H. Since H/

this is equivalent to (H/ v S+/-) +/-= H, which is the same as (4.7). The proof of the
constructibility part is analogous.

The following result, first presented in [42] in a somewhat different formulation,
is an immediate consequence of Corollary 3.3 and Theorem 4.1.

COROLLARY 4.1. (Ruckebusch). A splitting subspace is minimal if and only if it is
both observable and constructible.
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This statement may at first sight seem analogous to the central result in classical
deterministic realization theory that a realization is minimal if and only if it is both
observable and reachable. However, as we shall see below, it is in fact of quite a
different nature, involving both the forward and the backward realization. This was
indicated in 1. In terms of the discussion there, Corollary 4.1 states that X is minimal
if and only if conditions (b) and (b)’ both hold.

Defining the observability map :X H/ to be : EH/:, the decomposition
(4.1) of X into an observable and an unobservable subspace is seen to be identical to
the well-known relation

(4.9) X range * ker

[48, p. 205], where *: H/X is the adjoint operator *A ExA, and ker denotes
null space. Consequently X is observable if and only if is one-one or, equivalently,

* maps onto a dense subset of X. The splitting subspace X is said to be exactly
observable if * is onto.

Similarly (4.2) can be written

(4.10) X =range fig*q)ker fig

where fig:X H- is the constructibility map fig EH-. The splitting subspace X is
constructible if and only if fig is one-one or, equivalently, fig*" H-X maps densely
onto; it is exactly constructible if fig* is onto.

According to Proposition 2.1 (vi), the splitting property H-_L H/IX is equivalent
to G fig*, where, G: H- H+ is the map G EH+. This can be described by the
commutative diagram

G
H- H+

X

Such a factorization is said to be canonical if the first map (here fig*) has a range which
is dense in X and the second map (here ) is one-one. In view of Corollary 4.1, we
can summarize this in

PROPOSITION 4.1. Let G: H- H/ be the map GA EH/A. Then a subspace X is
a splitting subspace if and only if the diagram (4.11) commutes. This splitting subspace
is minimal if and only if the factorization is canonical.

A splitting subspace X is exactly canonical if it is both exactly observable and
exactly constructible. These conditions are technical and do not occur in the minimality
criteria. However, certain results are much easier to prove in the finite-dimensional
case (Theorem 4.3 is a case in point), and the reason for this is that the attribute
"exact" is redundant in this case. Thus the technical difficulties are due to the lack of
exactness rather than to infinite dimensions. The following lemma, found in [43, p. 28],
relates exact canonicity to G having a closed range.

LEMMA 4.1. (Ruckebusch). If G has a closed range, then all minimal splitting
subspaces are exactly canonical. If one splitting subspace is exactly canonical, the G has
a closed range.

Proof. Recall that if a map has a closed range, then so does its adjoint [48, p. 205];
this will be used several times in the proof. Let X be a minimal splitting subspace.
Then G--fig*, and CO*H- is dense in X (Proposition 4.1). Clearly GH-=
qg*H-c X. We want to show that, if GH- is closed, then GH-=X so that ,
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and hence *, has a closed range, i.e. X is exactly observable. To this end, let : X
be arbitrary. Then there is a sequence {:n} in *H- such that Cn . But GH-,
and, since is continuous, ,- tg: GH-. Hence X GH- as required. In the
same way, we use the adjoint factorization G* *, which is also canonical, to prove
that X is exactly constructible. Conversely, assume that X is exactly canonical. Then
CO.H-= X, and therefore, since X is closed, GH-= *H- is closed. [3

The following theorem ties together the geometric concept of minimality with that
based on dimension.

THEOREM 4.2. All minimal splitting subspaces have the same dimension.

Proof. Let us first assume that G has a closed range. Let X1 and X2 be any two
minimal splitting subspaces. Then there are two canonical factorizations G 1*22* (Proposition 4.1) which are in fact exactly canonical (Lemma 4.1). Consider the
commutative diagram

Xl

in which * and 2" are onto and 1 and 2 are one-one. Then, using the argument
of Kalman [22, pp. 256-258], we see that there is a bijective map from X to X2 (dotted
arrow). Consequently X and X2 are isomorphic vector spaces, and therefore they
have the same dimension. It remains to consider the case in which G does not have
a closed range. But then, by Lemma 4.1, no minimal splitting subspace is exactly
canonical, and consequently all are infinite-dimensional. Therefore, since H is a
separable Hilbert space, all X have dimension No.

Next we shall give an alternative characterization of the class of minimal
Markovian splitting subspaces which involves only the space S [or the space S], and
consequently, as we shall see below, only the forward [or the backward] realization.
As a preliminary, first note that Theorem 4.1 has the following corollary.

COROLLARY 4.2. The subspace X is an observable splitting subspace if and only if
there is a subspace S D H- such that

(4.12) X ffSH+.

It is a constructible splitting subspace if and only if there is a subspace H/ such that

(4.13) X= ff,H

The subspaces S and S are those of Theorem 3.1, i.e. X .--(S, $).
Proof. Suppose that X---(S, ) is an observable splitting subspace. Then X ES

(Corollary 3.1), which together with the observability condition (4.7) yields (4.12).
Conversely, suppose there is an S H- such that (4.12) holds. Define q:= H/v S+/-.
Then S and q intersect perpendicularly (Theorem 2.2) and X ESq. Hence X
is a splitting subspace (Corollary 3.1) which is observable (Theorem 4.2). The rest
follows from the symmetric argument.

There are now two representations for the class of minimal Markovian splitting
subspaces, one based on (4.12), the other on (4.13). We shall only state the first, the
second being the symmetric one. Phrased in terms of the finite-dimensional analysis
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of 1, Theorem 4.3 states that minimality is equivalent to conditions (b)/ (c); this we
shall see in 7.

THEOREM 4.3. [31]. Assume that N- and N+ are full range. Then X is a minimal
Markovian splitting subspace if and only if
(4.14) X= ffSH+

for some S satisfying the invariance condition (3.7a) and

(4.15) H-cSc(N+)-.
The correspondence X- S is one-one, S being given by S H-v X.

Consequently, the class of minimal Markovian splitting subspaces forms a lattice,
induced by the subspaces S" the greatest lower bound ofX and X2 is the X correspond-
ing to S 71 $2; the least upper bound corresponds to S v $2. Hence X < X_ if and
only if S c S. This lattice has the minimum element H+/-, corresponding to S- H-,
and the maximum element H-//, corresponding to S (N+)z.

To establish Theorem 4.3 it just remains to prove that an observable splitting
subspace X---(S, ) is minimal if and only if S (N+) +/-. Then the rest follows from
Corollary 4.2 and Theorem 3.2. The only-if part of this statement is immediate. In fact,
since S H- v X (Theorem 3.1), it follows from Theorem 3.4. The proof of the if-part,
however, is more difficult. It can be found in [31]; also see Theorem 7.3 below. (Note
that the proof in [28] is incorrect.)

However, in the special case that the map G has a closed range, the proof is easy.
Then G maps onto H-//. Moreover, since X S_t.N/, X H-// (Theorem 3.5).
Consequently, we may without restriction replace (4.11) by

G
H- H-/+

X

In this diagram, G is onto. Furthermore, since from the diagram X GH-, is
onto. By observability, ff is one-one and therefore the inverse if-1. H-/+ X is well
defined and onto. Consequently, *=-G is onto, i.e. X is constructible; hence X
is minimal (Corollary 4.1).

5. Reconciliation with systems theory. We wish to pinpoint the similarities and the
differences between the state space constructions in deterministic and stochastic realiz-
ation theory from an abstract systems-theoretical point of view. To this end, let us first
briefly review some basic concepts of the standard state space construction in deter-
ministic systems theory [22], [15].

Consider an external description of a continuous-time, constant, linear dynamical
system ;, which we illustrate as a "black box"

with input u and output y. Let U be a space of input functions u which are identically
zero for > 0, and let Y be a space of output functions y which are identically zero
for <0. Let F: U- Y be the (linear) restricted input-output map defined by E.
(Consequently, we apply the inputs up to time zero and observe the outputs from time
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zero on.) The input space U is invariant under the operation (o-,u)(r)= u(r+ t) of
shifting the function a distance t-> 0 to the left, i.e. o-,U c U for => 0.

Two inputs ul, u2 U are (Nerode) equivalent if the corresponding outputs FUl
and Fu2 coincide, i.e. Ul u2 ker F. Then a minimal state space is obtained by forming
the quotient space X U/ker F. If R is the projection onto the quotient space, there
is an injective map O so that the diagram

F
U Y

X
commutes [46, p. 23]. Hence we have a canonical factorization off through the minimal
state space X. (A noncanonical factorization will yield a nonminimal realization [22].)
The semigroup { eat >= 0}, determining the dynamics of the realization, is then isomor-
phic to the family of maps making the diagrams

R

U >X
commute.

In the stochastic realization problem only the output process is given, and therefore
the choice of input space is somewhat arbitrary. While the minimal state space in the
deterministic theory is essentially unique, there are many solutions to the stochastic
problem, each minimal Markovian splitting subspace X (S, S) giving rise to a minimal
state space. As it turns out, each such state space is best described by two realizations,
one evolving forward in time having S as input space and H+ as output space, and
another evolving backward with S as input space and H- as output space. In 6 we
shall see that (under suitable conditions) there are two orthogonal increment processes
u and t7 such that S H-(du) and g H+(d). These processes, called the generating
processes of X, will be the input processes of respectively the forward and the backward
realization of X.

THEOREM 5.1. Let X be a subspace of H, and set S := H-v X and := H/v X.
Then X-- (S, S) is a splitting subspace if an.d only if the diagrams

r+ H+
r_

S H-

X X

commute, the maps being defined as F+A EH+/, F_/ E/-/-A, A ExA, ’{A ExA,
TA EH/A, and cCA EH-A with domains as indicated. If one diagram commutes, then
so does the other. The left factorization is canonical if and only if X is observable, the
right one if and only ifX is constructible, and both if and only ifX is minimal. The maps

and are always onto. Moreover,

(5.1a) X Sker F/,

(5.1b) X Sker F_

with equality in (5.1a) if and only if the left factorization is canonical and equality in
(5.1b) if and only if the right factorization is canonical.
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Note that and c are the observability and constructibility maps defined in 4.
Following standard terminology in systems theory, is the teachability map and St"
the controllability map.

Proof. By Proposition 2.1 (vi), the left factorization F/ is equivalent to
H/ _t_ SIX and the right one F_ cff, to H- _1_ glX. But these conditional orthogonality
conditions are both equivalent to H-_t_ H/IX (Proposition 2.1), the splitting property.
Since X c S and X c S, and ff" are obviously onto. Therefore the left factorization
is canonical if and only if is one-one, i.e. X is observable, and the right one is
canonical if and only if c is one-one, i.e. X is constructible. Then, the minimality
statement follows from Corollary 4.1. Since ker F/ S fq (H/)x, it follows from Lemma
2.1 that S)ker F+ ff.SH+. But, in view of the splitting property (3.3), ff.SH+= ff.XH+,
which is the observable subspace of X; see (4.1). Hence (5.1a) holds, and there is
equality if and only if ff.XH/= X, i.e. X is observable. The proof of the symmetric
statement involving (5.1b) is analogous. D

Observing that S)ker F/ and S)ker F_ are representations ofthe quotient spaces
S/ker F/ and S/ker F_ respectively, the analogy with the deterministic construction
is apparent. Note, however, that in order for X to be a minimal splitting subspace,
and hence correspond to a minimal state space, both diagrams need to be canonical.
This is because the input space in the stochastic problem is not fixed but may change
with X.

Some of the geometric results of 3 and 4 can be inferred directly from the
diagrams. Clearly we always have

(5.2) ker c ker F/

with equality if and only if is one-one. In fact, except for the elements in ker
which are sent to the zero point in X and onto the zero point in H/, there may be a
subset of $ whose image in X is nontrivial but then mapped onto the zero point of
H/. This happens if and only if fails to be one-one. However, ker SX q+/-
(Corollary 3.2), and therefore (5.2) can be written +/-c S fq(H+)- or, equivalently,

H/ v Sx, i.e. (3.8a). Equality yields the observability condition (4.7). Likewise, the
corresponding relation between ker $’/" and ker F_ yields the constructibility condition
(4.8).

Construction of semigroups for the stochastic problem requires that X is
Markovian, in which case the input space S is invariant under the shift { U,*; >= 0}
and S is invariant under { Ut; t-> 0} (Theorem 3.2). These shifts play the role of
{trt; _-> 0} in the deterministic theory.

THEOREM 5.2. [30]. Let X’--(S, S) be a Markovian splitting subspace. For each
>- O, let U(X)" X X be the compressed shift U,(X) ExU, and Ut(X)*" X X

its adjoint Ut(X)*:= EXu_,. Then, for >-_0, the diagrams

S "’X S X

S X S X

commute. Moreover, { Ut(X) _-> 0} and { Ut(X)* >- 0} are strongly continuous contrac-
tion semigroups, and for each s X and >-O,

(5.3a) ESu,= U,(X),

(5.3b) E U_t. U,(X)*.

IfX is proper, both Ut(X) and Ut(X)* tend strongly to zero as t-)c.
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Proof Let _-> 0 and h 6 S-. Then, since XS+/- (Corollary 3.2),

(5.4) EXu, ExUtEXX + EXUtES’.
Here the last term is zero, for UtS+/- c S 3_ X (Theorem 3.2 and Corollary 3.2). Therefore,

(5.5) EXutx ExUtEXX,
and consequently YU, U,(X)Y as required. Also, since S _1_ q]X and U,, e q, the left
member of (5.5) can be exchanged for ESuvx. Therefore, since X c $, (5.3a) follows.
The symmetric argument yields U* U,(X)*Yt and (5.3b). Since U,U U,+, it
follows from (5.5) that G(X)U(X)= G+(X), i.e. {G(X); t->_0} is a semigroup,
which is strongly continuous since { U,} is. Clearly U,(X) is a contraction, for U, is
unitary. If X is proper, f ,o U,S =0 and hence, in view of (5.3a) and the identity
ESut UtE t*’s, we get u,(x)ll- IlE-’Sll-o as to proving the last statement
of the theorem. The family { Ut(X)*; >= 0} is merely the adjoint semigroup with the
same properties. ]

Following the pattern of this section, in 8 and 9 we shall assign to each proper
Markovian splitting subspace X two realizations with the systems-theoretical properties
of Theorem 5.1, a forward one with input space S and semigroup {Ut(X)*} and a
backward one with input space S and semigroup {Ut(X)}. Therefore we shall call
{ Ut(X)*; >- 0} and { Ut(X); >- 0} the forward and backward Markovian semigroups
of X respectively.

6. Generating processes. By representing the random variables as Wiener integrals
we shall next derive functional models for the geometric results presented above.

To this end, let us first define a p-dimensional Wiener process on the real line ff
to be a real centered Gaussian vector process {u(t); R} which has (almost surely)
continuous sample functions and independent (and hence orthogonal) increments such
that

(6.1) E{du(t) du(t)’}= Idt.

Although we shall only be interested in the increments of u, it is convenient to set

u(0)=0. Defining H(du) to be the Hilbert space generated by the components of

{u(t)- u(s); t, s R}, we have the orthogonal decomposition

(6.2) H(du) H-(du)(R) H+(du)

where H-(du) and H+(du) are the subspaces corresponding respectively to the incre-

ments {u(t)-u(s); t, s<=0} and {u(t)-u(s); t, s>=0}.
It is well known [38] that to any / H(du) there is a function f in (), the

space of p-dimensional real vector functions square-integrable on , such that

(6.3) r/= E fi(-t) du,(t),
i=1

where the integral is defined in quadratic mean. We shall write (6.3) as

(6.4) rl I_of(- t) du(t)

i.e. we shall think of the function f as a row vector and the process u as a column
vector; this convention will be maintained through the rest of the paper. Let Iu" ()-
H(du) be the map defined by (6.4), i.e. r/= I. Then (If,, Ig)= -oof(t)g(t)’ dt, the
inner product off and g in 20(), i.e./ is ar isometry. Since it is also onto, Iu is unitary.
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It is not hard to see that the vector process

1 f e-iCt-- 1
du(t)(6.5) t(ito) := -- it

defined on the imaginary axis U, has much the same properties as u with

(6.6)
1

Idto,E{d(ito) dt(ito)*} 2---
and therefore we can think of it as a vector Wiener process on the imaginary axis. Also,
it is well known [38, p. 147] that, for each f 2p(),

where to f(ito) is the Fourier transform

(6.8) f(i,,,)= fo e-"’f(t) dt

extended to all of () in the usual manner [10], [38]. The space 2p(U) of all such
f is a Hilbert space with inner product

f , - f ito ff, (- ito )’ dto,

and the map if: p2()_ 2p() defined by f= ;f is unitary. (We define f in the style
of the Laplace transform in order to conform with usual nomenclature in systems
theory.) In view of (6.7), the map In: p() H(du) defined by

(6.9) Iaf f_f(ito) dt(ito)

is also unitary, and the diagram

H(du)

commutes. Taking f(-t) to be the indicator function of the interval 0, t], (6.7) yields
the spectral representation

(6.10) u(t)=f e’’-lito d(ito).

If we let f vary over all functions in p() which vanish on the negative [positive]
real axis, (6.4) generates H-(du)[H+(du)]. This motivates the introduction of the

2 2 2 2Hardy s.paces p and p. Let p [p] be the subspace of those f() for which
f:= -lf vanishes on the negative [positive] real line. Then, H-(du)=Ia and
H+(du) Ia -2, i.e.

(6.11) ()

Here * denotes conjugate transpose.
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is the isomorphic image of (6.2) under I1. Clearly f(2p=(itog(-ito)lg 2p}, and
therefore is sometimes called the conjugate Hardy space. The Hardy spaces
and 2p can also be defined as bona fide function spaces of functions analytic in the
open right and left complex half planes respectively, the limits ofwhich as the imaginary
axis is approached perpendicularly are the elements of and 2p as defined above
[14], [18], [45]. Therefore the functions of 2p will sometimes be called analytic and
those of coanalytic. In the same way we define pp to be the space of all
p p-matrix-valued functions bounded and analytic in the open right half plane, or,
alternatively, as the corresponding subspace of pp(U). Here we shall think of these
functions as defined on the imaginary axis, but it is useful to keep the other interpretation
in mind.

Our program now is to assign to each proper Markovian splitting subspace
X.--(S, S) a pair (u, t) of Wiener processes on the real line such that H-(du)= S,
H+(dt) , and H(du) H(df) H. Through the isomorphisms Ia and I we shall
then transform the geometry of 2-5 to the Hardy space in which the appropriate
mappings take a particularly simple form.

Recall that the given m-dimensional process {y(t); } is stationary, Gaussian,
mean-square continuous, and centered. From now on, we shall also assume that y is
purely nondeterministic in the (strong) sense that both (H-) +/- and (H+)- are full range.
Then, y has a spectral representation

(6.12) y(t)= f_ et dfi(ito)

where {33(s); s U} is an independent-increment process such that

1
(6.13) E {d( io dfi( ito )*} -- dP( iog do.

Here the m m-matrix function , is the spectral density of y, and 33 is given by

1 fr e-i.,_l
(6.14) )3(/to)= lim

T-o it
y(t) dt,

where the limit is in quadratic mean [9].
Since y is purely nondeterministic, ,(ko) has a constant rank p_-< m (for almost

all o), and it admits a factorization

(6.15) W(s) W(-s)’ (s)

where W is an m xp-matrix function whose rows belong to (fl) [38, p. 114]. There
are many such W, and we call them full-rank spectral factors. More specifically, the
condition that (H-)[ H/) +/- is full range implies that there are W with rows in (e).

To each full-rank spectral factor W we associate a unique p-dimensional Wiener
process (on the real line), namely (6.10) with

(6.16) dt W-/

where W-/ is any left inverse of W, i.e. a p x m-matrix function such that W-LW L
Although, in general, W has more than one left inverse, u is uniquely determined by
(6.16). In fact, let W-L and w-L+A be two left inverses. Then A W=0, and con-
sequently, because of (6.15), AA* dto= 0, and therefore the uniqueness is established.
For example, we may take W-L= (W’W)- W’. Despite the fact that ww-L I in
general, WW-L d= d, i.e.

(6.17) d= Wda.
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To see this, form E{(I- WW-L) d d*(I- WW-’)*}, which, in view of (6.13) and
(6.15), equals zero.

The class 07/of Wiener processes u defined in this way is characterized as follows.
PROPOSITION 6.1. [28]. Let u be a vector Wiener process defined on the real line.

Then u ell if and only if H(du)= H. In this case, for each

(6.18 U,Ia lax,

where X,: 2p() 2p() is multiplication by e i’’.
Proof. First suppose that u . Then, by (6.17),

(6.19) y(t) f e i,OtWd

and consequently, in view of (6.7), yk(t)H(du) for k=l,2,...,m. Hence Hc
H(du). On the other hand, it follows from (6.10), (6.16) and (6.14) that H(du)c H,
and therefore H(du)= H. Conversely, assume that H(du)= H. Then, by (6.7), there
exists a matrix function W with rows in 2p(]) such that y(0)= j Wda. From this it is
seen that W is a spectral factor and that d)3 Wda, but it remains to show that W is
full rank. However, since H(du)c H, for each R, there is a matrix function G, such
that u(t) = G,d; i.e. u(t)= G,waa. Hence, by (6.10), G,W=(e"’-l)/itoI for all

R. Consequently, W must have full rank.
COROLLARY 6.1. Let u all. Then, for k 1, 2,. , p,

(6.20) Ut[Uk(r)-- Uk(tr)] Uk(’r+ t)-- Uk(O’+ t)

and consequently UtH-(du) is the subspace generated by the components of (u(r)-
u(cr)1% cr <= t).

Proofi In view of (6.10),

eO eiO
(6.21) u(r) u(cr) | dt

and therefore (6.20) follows from (6.18).
How are the processes in 0?/related to each other? It is immediately clear that, if

u and u2 correspond to the spectral factors W1 and W2 respectively, then

(6.22) da2 W
The p p-matrix function WW is uniquely defined (independent of the choice
of left inverse), because, just as above, dt2= P d and dt2= P d imply that
(P1- P2)(P P2)* 0, i.e. P P. Also, it follows from (6.15) that the values of WLW
on are unitary matrices. Therefore we can think of u being obtained by passing u
through a filter with the transfer function WW:

(6.23a) W W

In engineering language, such an object is called an all-pass filter Moreover, for any
f p(B), Ia2f IafcVL W, i.e.

(6.23b)

where, here as in the sequel, Mq: 2() - 2() denotes multiplication from the right
by Q, i.e. Mof=fQ.
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Clearly, if W is a full-rank spectral factor, then so is WT for any constant unitary
p xp matrix T. However, the corresponding processes in 0// are related to each other
by a trivial coordinate transformation, and therefore we shall regard them as equivalent.
The transformation (6.23) is interesting only if WLW1 is nonconstant.

A matrix function Q Ypp with the property that Q(ito) are unitary matrices for
almost all to is said to be inner [14], [18], [45]. In particular, WLW1 is inner if it
belongs to Ypp. The following lemma, which is a corollary of a famous theorem by
Beurling, generalized to vector functions by Lax [14], [18], [45], states that the all-pass
filter (6.23a) is causal if and only if WW1 is inner.

LEMMA 6.1. [28]. Let ul and u2 be two processes in ql, and let W1 and W2 be the
corresponding spectral factors. Then WW1 is inner if and only if
(6.24) H-(du2) c H-(dul).

Proof Set Y := I-lal H-(du2). Since UtH-(du2) c H-(du2) for <= 0 (Corollary 6.1),
XtY C Y for -<_ 0 (Proposition 6.1). A subspace with this property is called invariant.
Moreover, since H-(du2) is full range, then so is Lr, in the sense that the closed linear

--1 2hull of {Xt; t} is all of p(fl). Since Ial H-(dUl)= Yfp, (6.24) is equivalent to
: Yf. Now, by the Beurling-Lax theorem, the invariant full range subspaces of
are precisely the subspaces of the form y(2pQ where Q is inner. But, in view of (6.23b)

yf2p W/W1. Therefore, if W W1 is inner, (6.24) holds. Conversely, if (6.24) holds,
WIw must be inner. In fact, if 2pQ1 ,Q2 where both Q1 and Q2 take unitary
values in fl, then Q TQ2 where T is a constant unitary matrix [18].

Referring to the alternative definitions of 2p and 2p, a full-rank spectral factor
with rows in will be called analytic, and one with rows in 2p coanalytic. Let
and + respectively be the corresponding subclasses of .

LEMMA 6.2. [28]. Let u . Then, u all- ifand only ifH-(du) H-, and u all +

if and only ifH/ du H/.
Proof By definition, u q/- is equivalent to Wk yf2p for k 1, 2, , m, where

Wk is the kth row of the spectral factor W corresponding to u. Under the isomorphism
Ia this is equivalent to

(6.25) yk(O) H-(du) for k= 1, 2,..., m.

For this to hold it is clearly sufficient that H- H-(du). Conversely, suppose that
(6.25) holds. Then, in view of Corollary 6.1, yk(t)c H-(du) for t--<_0 and k=
1, 2,. ., m. This implies that H-c H-(du). The proof of the symmetric statement is
analogous.

We are now in a position to tie together the results of this section with the geometric
theory presented in the beginning of the paper. The link is provided by the following
theorem.

THEOREM 6.1. [28]. (i) Let S be a subspace such that S H- and S+/- is full range.
Then

(6.26) US c S for <- O

ifand only if there are an analyticfull-rank spectralfactor Wand a corresponding u -such that

(6.27) S= H-(du).

The spectral factor W and the process u are unique modulo multiplication from the right
(respectively the left) by the same constant unitary matrix.
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(ii) Let be a subspace such that D H/ and +/- is full range. Then

(6.28) UtS c S for >- O

ifand only if there are a coanalyticfull-rank spectralfactor Wand a corresponding 71+

such that

(6.29) g=H+(du).

Here W and enjoy the same uniqueness properties as in i).
Proof. (i) Let v 0?/be arbitrary, and let V be the corresponding spectral factor.

(Since there are full-rank spectral factors [38, p. 114], q/is nonempty.) Set := I-S.
In view of Proposition 6.1, (6.26) is equivalent to

(6.30) XtY for t_-< 0.

Moreover, since both S and S+/- are full range, then so are and Lr- (in the sense of
the proof of Lemma 6.1). Therefore, there is a p p matrix function ito - Q(ito) taking
values which are unitary matrices such that Q [18]. Define W:= VQ-1. Clearly
W is a full-rank spectral factor; let u a// be the corresponding element in a//. The
function Q is unique up to multiplication by a constant regular matrix 18] and hence
the same is true for W and u. Then, by (6.23b), I-Ia MQ, i.e. IMQ Ia. Therefore,
since S I, we have S IMoygEp Iay(2p H-(du). Since S D H-, Lemma 6.2 implies
that u o1/-. This concludes the if-part of (i); the only-if part follows immediately from
Corollary 6.1. The proof of (ii) is analogous. Vq

Consequently, each proper Markovian splitting subspace X (S, S) is completely
determined by a pair (u, ti) of Wiener processes, one in 0-//- and the other in 0//+; in fact

(6.31) X H-(du) fq H+(d).

The processes are called respectively the forward and backward generating processes
of X.

7. Hardy space representation of Markovian splitting subspaces. The goal of any
description of dynamic phenomena is to obtain differential (or difference) equation
representations of the relevant state variables, such as (1.7) and (1.9). To achieve this
goal, in this section we go through an intermediate step in which the basic objects
representing the dynamics are pairs of transfer functions W, W), one causal and the
other anticausal. We shall arrive at a concrete coordinate-free state-space description
in terms of analytic functions which can be computed from W and W. The appropriate
mathematical setting for representing causal and anticausal transfer functions is the
theory of Hardy spaces. Notice that, while in the finite-dimensional setting differential
equations can be obtained through straightforward algebraic calculations involving
the appropriate analytic functions ( 8), the general situation requires considerably
more care ( 9). The advantage of working with transfer function descriptions, i.e. the
Hardy space setting, is that very detailed structural information about the state-space
representations is obtained without having to introduce unnecessary finite-dimension-
ality conditions from the beginning.

Our next task is therefore to transfer the splitting subspace geometry to the Hardy
space setting. To this end we need the following lemma.

LEMMA 7.1. [29]. Let Ul, u26 be such that H-(dUl) v H-(du.)= H, and let W
and W2 be the corresponding spectral factors. Then H-(du) and H+(du2) intersect
perpendicularly if and only if WfLW1 is an inner function.
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Proof. By Theorem 2.2 (ii), H-(dUl) and H+(du2) intersect perpendicularly if and
only if H-(du2)c H-(dul). But this is equivalent to wLwI being inner (Lemma
6.1).

As we have seen, each proper Markovian splitting subspace X (S, S) is character-
ized by a pair of generating processes (u, if); we have S= H-(du) and = H+(d).
Let (W, W) be the corresponding pair of spectral factors. The condition S H- is
equivalent to W being analytic, H+ to being coanalytic (Lemma 6.2), and the
perpendicular intersection of S and $ to

(7.1) K := ff’-LW

being inner (Lemma 7.1). The function K is called the structural function of X and
will play a major role in what follows. It corresponds to the scattering matrix in
Lax-Phillips scattering theory [23].

Now, by Corollary 3.2, we have X=Sx, i.e. X=H-(du)H-(df), and
therefore, in view of (6.23b), laX 2p(K). (Remember that I is unitary, and
therefore orthogonality is preserved.) Define (J) := (pJ) for any inner function
J. Then

(7.2)

Together with d W-td this yields a representation in terms of y. Consequently,
we have established the following Hardy space version of Theorem 3.1.

THEOREM 7.1. [28]. A subspace X is a proper Markovian splitting subspace if and
only if

(7.3) X=I_og(ff’-W)W-d
for some pair W, W) offull-rank spectralfactors such that Wis analytic, W is coanalytic,
and K := fie-Wis inner. The correspondenceX- W, if’) is one-one (modulo multiplica-
tion from the right by constant unitary matrices).

Instead applying Ia to X S+/- (Corollary 3.2), we have the symmetric rep-
resentation

(7.4) X=I_(K*)d
where e(j):= ’ppj for each conjugate inner function J. (A function J is conjugate
inner if its inverse J* is inner.) Consequently, since d ff’-td, we can replace (7.3)
by

(7.5) X=f_(W-Iff’)ff’-1d
in Theorem 7.1.

Which pairs of spectral factors W, W) correspond to minimal splitting subspaces ?
To answer this question we need to take a closer look at the classes of analytic and
coanalytic full-rank spectral factors.

By assumption, H- satisfies the conditions of Theorem 6.1 (i), and hence there
is a u_ 07/- such that

(7.6) H-(du_) H-

This is the (forward) innovation process of y. Let W_ denote the corresponding analytic
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spectral factor. Since dfi W_ d_, (6.12) yields Ilay(_ t)- xtaW_ for any row vector
a in Rm, and therefore applying 1 =lu_ to (7.6) we obtain

(7.7) span {xtaW_ < O, a "} 2

Such a function W_ is called outer [14], [18]. There is only one spectral factor with
this property. Consequently, we shall call W_ the outer (or minimum phase) spectral
factor.

All other analytic full-rank spectral factors have the property H-(du) H-, where
u is the corresponding process in - (Lemma 6.2), i.e. H-(du) H-(du_). Therefore,
Q :- W=LW is inner (Lemma 6.1) so that we have the inner-outer factorization

(7.8) W= W_Q.

To see this, use the following lemma.
LEMMA 7.2. Let W1 and W2 be full-rank spectral factors. Then

(7.9) W1W-L W2 W2.

Proof. Form W1W-/W- WE)( W1W-WE W)*. Since WE WE* W1W*, we see
that this is zero.

Likewise, Theorem 6.1 (ii) implies that there is a t+ + such that

(7.10) n+(d+)--n+.
This is the backward innovation process of y. The corresponding spectral factor W+
satisfies

(7.11) span {xta I/+ >-- 0, a ’} p
and is therefore called the conjugate outer spectral factor. In the same way as above,
we show that any coanalytic full-rank spectral factor W can be written

(7.12) W W/Q

where :=/ is conjugate inner. The factorizations (7.8) and (7.12) are unique
(modulo trivial coordinate transformations).

Consequently each proper Markovian splitting subspace is characterized by a
triplet (K, Q, Q*) consisting of the structural function K and the forward and backward
spectral inner factors Q and t*. These define three causal all-pass filters with the
following inputs and outputs.

(7.13a) .>

(7.13b)

We shall call (K, Q, (*) the inner triplet of X.
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Our question on minimality can now be answered in terms of certain coprimeness
conditions on these inner functions. Before turning to this, let us define a few concepts.
If P1 and P2 are inner functions, then so is P3 := PIP2; P1 is a left inner divisor of
P3(PIP3 for short) and P2 is a right inner divisor of P3(P21RP3)" (These notations will
also be used for conjugate inner functions.) Two inner functions are left (right) coprime
if they have no nontrivial (i.e. nonconstant) common left (right) inner divisor. If
and P2 are right (left) coprime, then there is no cancellation in the factorization
P P1P2* (P P*P2); we say that it is coprime. If there is such a factorization of P, it
is unique (modulo multiplications from the right (respectively the left) by a constant
unitary matrix) 14].

THEOREM 7.2. [29]. The proper Markovian splitting subspace X with inner triplet
(K, Q, *) is observable if and only if K and * are left coprime and constructible if
and only if K and Q are right coprime.

Proof. Let (u, iT) be the generating processes of X. Then the constructibility
condition $= H-v q+/- can be written H-(du)= H-(du_)v H-(df). Applying IS to
this, and using (6.23b), we obtain =(Q)v (K) which holds if and only if Q
and K are right coprime [18]. In the same way we see that the observability condition= H/v Sx is equivalent to the conjugate inner functions t and K* being right
coprime, which is the same as K and t* being left coprime.

The interplay between the past and the future of y can be described by the all-pass
filter

(7.14)

transforming the forward innovation process u_ into the backward innovation process
t+; it has the transfer function To := ff.L W_. This is not a causal all-pass filter, unless
H- and H/ intersect perpendicularly. For each proper Markovian splitting subspace
X with inner triplet (K, Q, Q*), the function To has the factorization

(7.15) To= QKQ*.

In view of Lemma 7.2, this follows by simple calculation, but it can also be seen by
putting the boxes in (7.13) in series, after having reversed (7.13b) and (7.13c). By
Theorem 7.2 and Corollary 4.1, X is minimal if and only if there is no cancellation
in (7.15), i.e. the factorizations T:= QK and T:- KQ* are coprime.

What has been established so far in this section holds under the assumption that
X is proper. Therefore, we may ask under what conditions at least all minimal splitting
subspaces are proper.

THEOREM 7.3. [28]. Set To := IYC’_Iw_, and let N- and N+ be given by (3.12).
Then the following statements are equivalent.

(i) All minimal splitting subspaces are proper.
(ii) Both N- and N+ are full range.
(iii) There are inner functions J, J2, J3, and J4 such that

(7.16) To JJ*2 J*3 J4.

Proof. (i)=>(iii)" The predictor space H//- is a minimal splitting subspace such
that Q= L Hence the second of the factorizations (7.16) follows from (7.15). In the
same way the first of relations (7.16) follows from the fact that H-// is a minimal
splitting subspace with Q= L (iii)=>(ii)" The first of relations (7.16) yields W_J2=
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W+J1. Since J1 is inner, the spectral factor W := W_J2 is analytic. Let u 0-//- be the
corresponding generating process. Since ff’_/W J is inner, H-(d/)c H-(du), i.e.
H/= H+(d+) H+(du). Moreover, since u -, H-(du) H- (Lemma 6.2), or,
equivalently, (H-)- = H+(du). Hence, N/ := H+ f’) (H-)- H/(du). Therefore, since
H/(du) is full range, then so is N/. The second relation (7.16) yields W_J*4 fie+J*3.
Here if" := ff’+J3* is a coanalytic spectral factor, and therefore the corresponding
satisfies H+(dff) H+, or, equivalently (H+)- H-(df). Also, I/’-LW_ J4 is inner,
and hence, by Lemma 6.1, H-(d)c H-. Consequently, N-:= H-f)(H+)+/- H-(d),
showing that N- is full range. (ii)(i)" Let X (S, S) be a minimal splitting subspace.
Then, from the proof of Theorem 3.4, we see that S c (N/) +/- and c (N-)+/-, i.e.
Sx N/ and - N-. Therefore, if N/ and N- are full range, then the same must
be true for S+/- and q+/-. Hence X is proper.

A unitary function To has the property (7.16) if and only if it is strictly noncyclic,
i.e. the orthogonal complement in of the range of the Hankel operator Hro" 2p 2p
defined by HTof PTof (where PZ denotes the orthogonal projection onto ) is
full range [14, p. 254]. Therefore, with a slight misuse of notation, we shall say that
the process y is strictly noncyclic if the conditions of Theorem 7.3 hold. For example,
a scalar process y with spectral density (ito)= (1 +to2)-3/2 will not satisfy these
conditions; in this case H//-= H- and H-//= H/ [10, p. 99]. However, it can be
shown that all processes with rational spectral density are strictly noncyclic.

COROLLARY 7.1. Suppose that y is strictly noncyclic. Then the predictor spaces H+l-

andH-//, defined by (3.13), are proper. Let (K_, Q_, O*_) and (K+, Q+, O*+) respectively
be their inner triplets. Then Q_ I and Q/ I; the other inner functions are the unique
solutions of the coprime factorizations

(7.17) To= O_K_= K/Q*+.

Proof. The factorization (7.17) was derived in the first part of the proof of Theorem
7.3. Since H//- and H-// are minimal, the coprimeness follows from Theorem 7.2
and Corollary 4.1.

Now, in 3, we saw that H//----(H-, (N-)I), and hence its generating processes
are (u_, tT_), where u_ is the innovation process of y and

_
/ is determined,

through Theorem 6.1, by

(7.18) H+ dfft_) N-) +/-.

The analytic spectral factor is the outer spectral factor W_, and the coanalytic one is
if/’_ := if’+ (_. In the same way, H-// has generating processes (u/, +), where u/ //-

is defined by

(7.19) H-(du+)=(N+)-
and t+ is the backward innovation of y, and its spectral factors are W+ := W_Q+ and
W/, the conjugate outer spectral factor.

Next, we shall take a closer look at the minimal Markovian splitting subspaces
of a strictly noncyclic process y.

THEOREM 7.4. [31]. Suppose that y is strictly noncyclic. Let X.--.(S, S) be a
Markovian splitting subspace. Then the following conditions are equivalent.

X is minimal.
(ii) X is observable and S (N+)-.
(iii) X is constructible and c(N-)-.
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The proof of this theorem6, which can be found in [31] and will not be repeated
here, is based on the observation that the structural functions of any two X satisfying
(ii) or (iii) have the same invariant factors. The invariant factors of a p p inner
function K are scalar inner functions kl, k2,’", kp defined in the following way. Set
3’0 1, and, for 1, 2, , p, define yi to be the greatest common inner divisor of all

minors of K. Then set ki := yi/y- for 1, 2, , p. Clearly these functions are
inner, for Yi-1 divides y. (Two inner functions with the same invariant factors are
called quasi-equivalent 14].) Consequently we have the following important corollary,
the significance of which will become evident in 10.

THEOREM 7.5. [31]. Suppose that y is strictly noncyclic. Let K1 and K2 be the
structuralfunctions of two minimal Markovian splitting subspaces. Then K1 and K2 have
the same invariant factors.

To illustrate this result, let us consider the following example [31]. Let y be a
two-dimensional process with the rational spectral density

1 [ 17-2s2 -(s+ 1)(s-2)](s)=(s2-1)(s2-4) -(s- 1)(s+2) 4-s2

Then it can be seen that the structural function of H+/- is

s-1 [s-l.2 1.6 ]K-(s)=(s+ 1)(s +2) 1.6 s+ 1.2

and that the one of H-/+ is

s -1 [s-70/37 24/37 ]K/(s)=(s+ 1)(s+2) 24/37 s+70/37

These functions look quite different, but they have the same invariant factors, namely

s-1 (s- 1)(s-2)
k(s)- and k2(s)

s+l (s+ 1)(s+2)’
and are therefore quasi-equivalent.

In the scalar case (m 1), quasi-equivalence reduces to equality.
COROILArV 7.2. Suppose that y is scalar and strictly noncyclic. Then all minimal

Markovian splitting subspaces have the same structural function.
Conditions (ii) and (iii) of Theorem 7.4 suggest the following definitions for

minimality of spectral factors [41]. An analytic full-rank spectral factor W is minimal
if the corresponding ua//- satisfies the condition H-(du)c(N+)+/-; a coanalytic
full-rank spectral factor if" is minimal if its a 0-//+ satisfies H+(d)c (N-)+/-. These
definitions are justified by the following result.

COROLIAr’ 7.3. Let y be strictly noncyclic. Then there is a one-one correspondence
between the class of minimal Markovian splitting subspaces X and the class of minimal
analytic (coanalytic) spectral factors W[ W] (modulo multiplication from the right by
constant unitary matrices). The correspondence X W IX W] is that of Theorem 7.1.

Proof In view of Theorem 7.4 and the observability condition = H+v S+/-

(Theorem 4.1), there is a one-one correspondence between minimal X---(S, $) and
u - such that S= H-(du)= (N+)", i.e. to minimal analytic spectral factors. Here
the correspondence u S is by Theorem 6.1 and is hence modulo the transformations
described there. The proof of the symmetric statement is analogous. U

Theorem 7.4 was first stated in [28], but there is a nontrivial gap in the proof. The same incomplete
argument was used in [41], [43].
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Note, however, that a Markovian splitting subspace X need not be minimal even
if both its analytic and coanalytic spectral factors are minimal; the only thing we can
say in this case is that X c H[], the frame space.

In 8, we show that, if W[ W] is rational, it is minimal if and only if its degree
is minimal. This is the concept of minimality mentioned in 1.

The scalar version of the following result is due to Ruckebusch [41].
PROPOSITION 7.2. [41], [28]. Suppose that y is strictly noncyclic. Then (i) W:= W_Q

is a minimal analytic spectralfactor ifand only ifQILQ+; and (ii) W:= W/Q is a minimal
coanalytic spectral factor if and only if

Proof. Let u /- be the Wiener process of W. Then, by definition, W is minimal
if and only if H-(du)c H-(du+), which is equivalent to P:= W-W+ being inner
(Lemma 6.1). Now, in view of Lemma 7.2, Q/:= WW+ wsww-W+= QP.
Therefore, W is minimal if and only if QILQ+. This establishes (i); (ii) is proved in
the same way.

Now, by Corollary 7.3 and Proposition 7.2, there is a one-one correspondence
(modulo trivial transformations) between minimal Markovian splitting subspaces X
and left inner divisors Q of Q/. This provides a parametrization {XQ; QIQ+} of the
class of minimal Markovian splitting subspaces which introduces a natural partial
ordering of this class, under which XQ, < Xo2 if and only if QIIQ2. Here there are a
minimal element XI H+/- and a maximal element Xo+-- H-/+. Obviously this is the
lattice structure described in the end of 4. (A similar parameterization can of course
be obtained in terms of the conjugate inner functions t such that

Given a left inner divisor Q of Q/, how do we determine Xo? The inner triplet
(K, Q, t)*) can be determined from the factorization (7.15) as described in the following
lemma.

LEMMA 7.3. Suppose y is strictly noncyclic. Let Q be a left inner divisor of Q+, and
define T := To Q. Then, T has a unique modulo constant unitaryfactors) coprimefactoriz-
ation

(7.20) T QK

where K is inner, Q is conjugate inner and K and Q* are left coprime. Moreover, K, Q, Q*)
is the inner triplet of Xo.

Proof Let (K, Q, Q) be the inner triplet of XQ. Then (7.20) follows from (7.15).
Since Xo is observable, K and Q* are left coprime (Theorem 7.2). As pointed out
above, the coprime factorization is unique, in the sense described in the lemma [14].
Since we do not distinguish between equivalent inner triplets (differing only by constant
unitary factors), the lemma follows. [3

(For the relationship between the factorization (7.20) and the corresponding
Hankel operators, the reader is referred to [30].) Consequently, in view of Theorem
7.1, we have the following representation theorem for the class of minimal Markovian
splitting subspaces.

THEOREM 7.6. Suppose that y is strictly noncyclic. Then a subspace X of H is a
minimal Markovian splitting subspace if and only if

(7.21) X=f_oo(K)O*d_
for some Q]Q+, where K is the inner factor in the coprime factorization (7.20) and u_

is the innovation process of y.
An alternative formulation of this theorem goes as follows. (Here P denotes

orthogonal projection onto the subspace r and/e the closure of pe.)
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THEOREM 7.7. [28]. Suppose that y is strictly noncyclic. Then a subspace X ofH is
a minimal Markovian splitting subspace if and only if

It:X3 Q 2(7.22) X= [P (pTo)] dfi_

for some left inner divisor Q of Q/.
Proof. We need to show that XQ is given by (7.22). Let u - be the forward

generating process of XQ, and let W be the corresponding analytic spectral factor.
Then W-Iw_ Q*. Now, in view of Corollary 4.2 and (7.10),

(7.23) Xo

By (6.23b), H-(du) and H+(dfi+) correspond, under the isomorphism Ia, to 2pQ.
and To respectively, and therefore (7.22) follows from 7.23).

Of course, there are also backward versions of Theorems 7.6 and 7.7 in which
plays the role of Q.

8. Stochastic realizations: the finite-dimensional case.
PROPOSITION 8.1. Let X be a proper Markovian splitting subspace. Then X is

finite-dimensional if and only if its structural function K is rational.
Proof. Let (u, fi) be the generating processes of X. Then, by Corollary 3.1, X

En-au)H+ dfi ), the isomorphic image of which under IS is pep( K ). Consequently,
X is isomorphic to the range of the Hankel operator HK" 2p- p defined by Hrf
PfK, which, by [14, Thm. 3.8, p. 256], is finite-dimensional if and only if K is
rational. [3

Now, let X be a finite-dimensional, but not necessarily minimal, Markovian
splitting subspace with structural function K and generating processes (u, fi). Then K
is rational, and there is a coprime factorization

(8.1) K(s) (s)D(s)-’
where D and D are real invertible p x p polynomial matrices which are right coprime,
i.e. any common right divisor is unimodular7 [14], [47]. The matrix polynomial D and
D are unique (modulo a common unimodular factor). To maintain the symmetry
between the past and the future in our presentation we also note that

(8.2) K*(s) D(s)D(s)-’.
The following result shows that (K), the isomorphic image of X under Ia, consists
of rational functions which are strictly proper, i.e., in each component, the numerator
polynomial is of lower degree than the denominator polynomial.

THEOREM 8.1. [29]. Let the inner function K have the polynomial-matrix-fraction
representation (8.1). Then

(8.3) (K) {gD-[g IP[s] gD- strictly proper}

where RP[s] is the vector space ofp-dimensional row vectors of polynomials.
For the proof we need the following lemma.
LEMMA 8.1. If K is rational, the space (K) consists of strictly proper rational

functions.
Proof Set k:=det K. Then kc pK [14, p. 187], and consequently (K)c

(kI). Therefore, it is no restriction to study the scalar case p 1. In fact, if K is

A matrix polynomial is unimodular if it has a polynomial inverse.
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rational, then so is k. So, if we can prove that the scalar (k) consists of rational
functions, the same holds true for (kI) and thus for (K). A scalar rational inner
function k is a finite Blaschke product [14], [18], i.e. a finite product of coprime
functions ki(s):= (s-si),(s+ g)-,, where, for each i, s is a complex number, g its
complex conjugate, and vi an integer. Then 2k fq iaEk, and hence (k)= Vi(k),
so it is enough to show that any (ki) consists of rational functions. To this end, we
quote from 10, p. 34] that

(8.4) e(s)
1 s,

s+g +g_l
j=0,1,2,.

is an orthogonal basis in 2. However, ejki ej/,, and hence 2ki is spanned by
{e,, e,+,,...}. Therefore, (k) is the span of {eo, el,’", e,_,}, which is a space of
strictly proper rational functions. Consequently, the same is true for (K), as
required. [q

Proof of Theorem 8.1. It is not hard to show that

(8.5) (K {f ,1fK* ,2p}
[18, p. 75]. In view of (8.2), this may be written

(8.6) (g)-- {gO-l 2plgD- 2.
Since gD-l (K) is rational (Lemma 8.1), then so is g. Any rational g such that
gD-l gEp and gE3-1 2p must be analytic in the whole complex plane, and hence
g RP[s]. By Lemma 8.1, gD-1 is strictly proper. [q

COROLLARY 8.1. [29]. Let X be a finite-dimensional Markovian splitting subspace
with structuralfunction (8.1). Then the corresponding spectralfactors Wand Ware strictly
proper rational. In fact,

(8.7a) W(s)- S(s)D(s)-1,

(8.7b) ff’(s) N(s)ff)(s)-
for some m p-matrix polynomial N.

Proof. By the definition (7.1), W ff’K (Lemma 7.2), i.e. if" WK*, and there-
fore, in view of (8.5) and the fact that W is analytic and W is coanalytic, the rows of
W belong to (K). Hence, by Theorem 8.1, W is strictly proper rational and has a
representation (8.7a). However, (7.1) and (8.1) yield WD WD, which is precisely N.
Hence (8.7b) follows. Since W is square-integrable, it must be strictly proper. 0

It is important to note that the factorization (8.7) need not be coprime. The
significance of this will be made clear below.

We proceed to construct a basis in X. To this end, we shall choose the arbitrary
D

unimodular factor in (8.1) so that (i) if n is the degree of the ith column of r3], then
nl

__
n2.t_... + np n, where n is the common degree of det D and det D; and (ii) D

and D are column proper, i.e. the highest-degree coefficient matrices Dh and Dh are
full rank; here Dh (Dh) is the constant matrix whose ith column consists of the
coefficients of s n’ in the ith column of D (D). It is always possible to choose D and
D in this way, and there are procedures to achieve it [13], [20], [47]. With this
representation, we have

(8.8a)

(8.8b)

D(s) D{diag {s",, s"2, s"p}+ DoII(s)},

D(s) D{diag {s",, s"2,..., s"p}+ DoII(s)}

where diag {s",, s", , s% } is the p p matrix with s",, s", , s% on the diagonal
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and zeros elsewhere, the n p-matrix polynomial rl(s) is the transpose of

(8.9) II(s)’ := sn2-, ., s, 1

S rip-l, S, 1

(where empty spaces are zeros), and Do and Do are constant p n matrices.
LEMaA 8.2. [29]. The n rows of the n p matrix ll(s)D(s)- of rational functions

form a basis in (K).
Proof. The rows of IID-1 are clearly linearly independent. It remains to show

that they span (K). In view of Theorem 8.1, this amounts to showing that gD-1 is
strictly proper for precisely those g RP[s] which can be written all(s) for some row
vector aR", i.e. for those gP[s] with deg gi< ni for i= 1,2,... ,p. By Cramer’s
rule, [D(s) -1] )i+JA

ij (-1, j(s)/A(s), where A:=detD and A is the determinant of
the matrix obtained by deleting row j and column in D. Hence, A is a sum of
products of one element from each of all columns of D except the ith, and consequently
deg A =< n- ni. Since Dh is full rank, for each i, there is a j such that equality holds.
In fact, in each column of D there is a row j such that deleting row j and column
in Dh leaves a nonsingular matrix. Hence in forming Ai there is at least one product
that contains only factors of highest degree. Since deg A n, gD- is therefore strictly
proper if and only if deg g < n for 1, 2,. , p as required.

THEOREM 8.2. [29]. Let X be afinite-dimensional Markovian splitting subspace with
structural function (8.1) and spectral factors (8.7). Then, for each , the components
of the random vector

(8.10) x(t)=Ioe’O"II(io)N(io)-d
form a basis in UtX. Moreover,

(8.11) y(t) Cx(t),

where the matrix C is uniquely determined by identifying coefficients of like power of s in

(8.12) N(s)= CII(s).

The process x also has the representations

(8.13a) x(t)=I_oe’’tH(io)D(io)-ld,
(8.13b) x(t) I ei’tII(iw)(io)- d

where u, ) are the generating processes of X.
Proof In view of Lemma 8.2, it is immediately clear from (7.2) that

{x(0), x(0),..., x,(0)}, as defined by (8.13a), is a basis in X. Then, it follows from
(6.18) that {Xl(t),x2(t),’’", xn(t)} is a basis in UtX for each t. From (6.16) and
(8.7a) we have that D- dt N- d33, and hence (8.10) and (8.13a) are equivalent. The
equivalence of (8.13a) and (8.13b) follows from dt= K dt and (8.1). In the proof of
Corollary 8.1, we saw that the rows of W belong to (K). Therefore, by Lemma 8.2,
there is an m n matrix C such that W(s)- CII(s)D(s)-l; hence, in view of (8.7a),
(8.12) holds. It is easy to see that C is uniquely determined by this relation. Inserting
this expression for W in (6.12)+(6.17) and observing (8.13a) we have (8.11).
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In particular, it follows from Theorem 8.2 that

(8.14) UtX {ax(

which is precisely (1.4). Hence x is a state process of X.
It remains to find two Markovian representations for the state process x, a forward

one generated by u and a backward one driven by ti. To this end, we define the n n
matrices A and A and the n p matrices B and B as

a:=J-II(O)Do, a:=-J+n(O)Do,
(8.15)

B := II(O)D’ / := II(O)E3
Here J is the block diagonal matrix

(8.16) J=diag{J,,,J,,... ,J,,}
where J is the k k shift matrix with ones on the superdiagonal and zeros elsewhere.
The pair [J, II(0)] is known as the Brunovsky canonical form, and {n, n2," ", rip} are
known as its indices.

THEOREM 8.3. Let {x(t); R} be the stateprocess (8.10) ofthe Markovian splitting
subspace

(8.17) X {ax(O)la
and let A, B, A, and B be defined by (8.15). Then A and A have the same eigenvalues,
all located in the open left half plane, and [B, AB, AB, .] and [, , 2,...]
have full rank. Moreover, x has the two representations

(8.18a) x(t) f-oo ea’-)B du(o’),

(8.18b) x(t) f-oo e’(-’)B da(tr)

where u, ) are the generating processes ofX and the integrals are defined in quadratic
mean.

Proof A simple calculation yields (sI-J)II(s) II(0) diag {s",, s"2,. , s"p}, and
consequently (sI A)II(s) BD(s), i.e.

(8.19) H(s)D(s)-’ (sI- A)-’B.
It is well known and easy to show that [B, AB, AZB, .] has full rank, and therefore
(8.19) has degree n [20], [47]. Consequently det D(s) and det (81-A) have the same
zeros, i.e. the eigenvalues of A and the zeros of det D(s) coincide. In the same way,
we see that

(8.20) H(S)D(S)-1= (sI +

and therefore, since [B-, /, fifl/,...] is full rank [20], [47], the eigenvalues of are
the zeros of det D(-s). In view of (8.1), det K det D/det D, which is a finite Blaschke
product [14], [18]. Such a function has all its poles in the open left half plane, and
the zeros of its numerator polynomial are related to those of its denominator polynomial
by a simple change of sign. Consequently, the zeros ofdet D(s) and det D(-s) coincide,
i.e. A and A have the same eigenvalues, and they are located in the open left half
plane. The rows of (8.19) belong to (Lemma 8.2), and the inverse Fourier transform
of (itoI-A)-B is eA’B for >=0 and zero otherwise. Consequently, in view of (6.7)
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and (6.18), (8.18a) follows from (8.13a). In the same way, (8.18b) follows from (8.13b).
In fact, (iwI +,)-1 has inverse Fourier transform e-at for t-< 0 and zero otherwise,
its rows belonging to p.

Therefore, given a finite-dimensional Markovian splitting subspace X with generat-
ing processes (u, t), there are a forward stochastic realization

Ef dx Ax dt + B du,
(8.21a)

y= Cx

and a backward one ,. dx x dt + ; dft,
(8.21b)

[y= Cx

such that (8.17) holds; this follows from (8.11) and (8.18). We shall call them the
standard (forward and backward) realizations of X. The fact that is forward and
is backward is seen from (8.18), but it can also be illustrated by (3.6) rewritten as

(8.22) H= H- da O)Xq) H+ du ),

i.e. the components of the state x(O) are orthogonal to the future increments of u and
to the past increments of iT.

From Theorem 8.3 it also follows that E is always reachable and E is always
controllable, with these terms defined as in 1. The circumstances under which E is
observable and E is constructible is described by the following theorem.

THEOREM 8.4. Let X be a finite-dimensional Markovian splitting subspace with
spectralfactors W, W) and standard realizations (8.21). Then, W is the transferfunction
of ,, and the following conditions are equivalent.

(i) X is observable.
(ii) E is observable.
(iii) Thefactorization W ND- ofCorollary 8.1 is coprime, i.e. N and D are right

coprime.
Symmetrically, W is the transfer function of E and the following conditions are

equivalent.
(iv) X is constructible.
(v) E is constructible.
(vi) The factorization IY= Nff)-1 is coprime.
Proof We shall only consider the first part. The second follows by symmetry. In

view of (8.12), (8.19) and (8.7a), we have

(8.23) W(s)= C(sI-A)-IB

and consequently W is the transfer function of E. Then, the equivalence of (ii) and
(iii) follows from [14, p. 41] or [20, p. 439], so it only remains to show that (i) and
(ii) are equivalent. With $ H-(du), it follows from (8.17a) and (8.11) that

(8.24) ESay( t) clC eatx(O)
for any row vector a R’, and consequently

(8.25) ff, SH+=span {aCeat’, t>O, a

By Corollary 4.2, the left member of (8.25) equals X if and only if X is observable.
On the other hand, E is observable if and only if the range of {ea’tc’; t-->0} is dense
in " [22]. Therefore, it follows from (8.17) that (i) and (ii) are equivalent, lq
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We shall say that a finite-dimensional stochastic realization is minimal if there is
no other realization with a state process x of smaller dimension. Together with Theorem
8.2, the following result implies that E and E are minimal if and only if X is minimal.

THEOREM 8.5. A finite-dimensional splitting subspace is minimal if and only if its
dimension is minimal.

Proof. Let X be a splitting subspace. First, assume that there is a splitting subspace
X1 of smaller dimension than X. By Corollary 3.5, X contains a minimal splitting
subspace X2. Since dim X_-<dim X < dim X, Theorem 4.2 implies that X is non-
minimal. Second, suppose that X is not minimal. Then it contains a minimal splitting
subspace as a proper subspace (Corollary 3.5), and thus X cannot have minimal
dimension. 0

By Theorem 8.4 and Corollary 4.1, it is not enough for the stochastic realization
E to be both reachable and observable to be minimal as is the case in deterministic
realization theory; for this to happen the backward realization E must be constructible
also, or, alternatively, the analytic spectral factor W must be minimal in the sense
described in 7. In the finite-dimensional case under discussion, minimality of spectral
factors can be related to their degrees, as the following result shows.

COROLLARY 8.2. Let X be a finite-dimensional Markovian splitting subspace with
spectral factors W, W). Then

(8.26) dim X deg W

with equality if and only ifX is observable, and

(8.27) dim X >_- deg W

with equality if and only if X is constructible. Moreover, W[ W] is minimal if and only
if its degree is as small as possible.

Proof. By Theorem 8.2, dim X equals n, the degree of det D. But, since W ND-deg W-<_ n, with equality if and only if N and D are right coprime, which, in view of
Theorem 8.4, holds if and only if X is observable. Now, suppose that X is observable.
Then, deg W dim X. Since W is minimal if and only if X is minimal (Corollary 7.4)
and X is minimal if and only if dim X is minimal (Theorem 8.5), W is minimal if
and only if deg W is minimal. The proofs of the statements concerning W are
analogous. 0

In view of Theorem 7.4, we have also established the following result.
COROLLARY 8.3. Let X be a finite-dimensional Markovian splitting subspace with

spectral factors (W, W) and standard realizations (8.21). Then the following conditions
are equivalent.

X is minimal.
(ii) E is minimal.
(iii) E is observable and W is minimal.
(iv) E is minimal.
(v) ,E is constructible and W is minimal.
(vi) E is observable and E is constructible.
As an application of Theorem 8.4, let us give an alternative characterization of

the class of minimal Markovian splitting subspaces in the case that y is a scalar process.
Then, N, D, and D are scalar and D(s)= D(-s), for K is a finite scalar Blaschke
product. Minimality of X requires that both Condition (iii) and Condition (vi) in
Theorem 8.4 are satisfied, i.e. N(s) and O(s):= D(s)D(-s) are coprime. This is clearly
equivalent to coprimeness of 0(s):= N(s)N(-s) and O(s). Therefore, we can charac-
terize the class of minimal Markovian splitting subspaces in the following way.
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Write the rational density of y as = q/0 where q and q are coprime
polynomials. For each polynomial solution N of

(8.28) N(s)N(-s) q(s)

form

(8.29) X N(s) deg g < deg d33

where deg g < n means that g is a polynomial of degree less than n. It follows from
(8.10), (8.17), and what has been said above that this procedure produces precisely
the minimal splitting subspaces of y.

9. Stochastic realizations: the general ease. In 8, given a Markovian splitting
subspace X of finite dimension n, we constructed a state process {x(t); e } taking
values in " and forward and backward ditterential equation representations for it.
The main point of this construction is a convenient choice of basis in X. In this basis
the matrix representations eA and ea ofthe Markov semigroups { U(X)*} and { U(X)}
can be found almost by inspection from the matrix fraction representation (8.1) of the
structural function K. This immediately leads to the forward and backward realizations
(8.21) of the process y in the familiar state space form. So, in the finite-dimensional
case, the passage from any solution ofthe abstract realization problem, i.e. a Markovian
splitting subspace X---(S, S) and a corresponding Markov semigroup { U,(X); R},
is merely a question of coordinatization.

On the other hand, the theory developed up to 8 is absolutely independent of
any restrictions of the dimension of X. The natural question to ask at this point is thus
the following. Given a Markovian splitting subspace of possibly infinite dimensions,
when is it possible to obtain differential equations representations for {y(t); R} of
the type (1.7) and (1.9) ?

This is basically a representation problem in which one seeks a global description
in terms of local or infinitesimal data. As such it has no meaningful solution in general.
Obtaining differential equation representations for a process with nonrational spectrum
necessarily involves restrictions of a technical nature (essentially smoothness condi-
tions) on the underlying spectral factors. The elucidation of these conditions is one
ofthe goals ofthis section. Note that there are several possible mathematical frameworks
for infinite-dimensional Markov processes as solutions of stochastic differential
equations (e.g. [17] and [49]), all of which coincide when specialized to the finite-
dimensional case. Here we shall work in a setting which looks most natural to us, but
other approaches are possible.

The problem dealt with in this section might seem relevant only from a purely
theoretical point of view. However, we remark that many engineering problems involve
random processes with nonrational spectra, e.g. turbulence, wave spectra, gyroscopic
noise, etc. In practical problems, these spectra must be approximated, and finite-
dimensional approximate realizations must be constructed. Understanding the exact
structure of the infinite-dimensional state space models for these processes is probably
the best way to gain insight into the approximation process and to design efficient
finite-dimensional filters.

An important feature of the construction in 8 is that x(0) is a basis in X so that
the state space ", i.e. the space in which the state process {x(t); } takes values,
and the splitting subspace X have the same dimension (and are therefore isomorphic).
Choosing the state space in this way insures that the forward realization is reachable
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and the backward realization E is controllable. Of course we could have achieved the
same thing by taking as the state space any vector space f isomorphic to X such as,
for example, an n-dimensional vector space of polynomials in the style of Fuhrmann
[14], thereby obtaining a coordinate-free representation.

In this section we shall assume that X is a possibly infinite-dimensional (not
necessarily minimal) proper Markovian splitting subspace with spectral factors W, W)
and generating processes (u, t). As before, it is reasonable to take as the state space
a Hilbert space isomorphic to X. In this paper, we shall choose := I*X as the state
space of the forward realization and := I*aX as the state space in the backward one.
then, by (6.7), (7.2) and (7.4), = *9g(K) and f=*’(K*) where K is the
structural function of X.

As explained in 5, the forward realization should, in an abstract sense, be a
stochastic dynamical system with input u and semigroup { U,(X)*; >=0}. With our
present choice of state space we should therefore take

(9.1) eA’:=I*Ut(X)*I.
Of course, as should be, {eA’;t 0} is a strongly continuous contraction semigroup
on (Theorem 5.2), and the infinitesimal generator A is in general an unbounded
operator with domain @(A) dense in .

In the same way, the backward realization should have input t and a semigroup
isomorphic to { U,(X);t >= 0}. We take

(9.2) e’: I*aU,(X)Ia

defining a strongly continuous contraction semigroup on the state space of the
backward realization.

It remains to determine maps B"P -+ and C" a_+, for the forward realization
and /:P and t" a_+,- for the backward realization having the appropriate
properties. We would like these maps to be bounded.

We begin with the forward realization. Let s X be arbitrary, and let f be
the corresponding point in the state space, i.e. sc I. Then

(9.3) U,=I_oof(-cr) du(cr+t)=I_of(t-cr)du(r).
But, f 9g(K)c , and therefore f vanishes on negative real line so that

(9.4) U’sC f f(t-cr) du(o’).

Consequently, since S H-(du), (5.3a) yields

(9.5) U’(X) sc I0oo f(t-cr) du(r).

It follows from (9.1) that U,(X):=/ eA*f, and hence

(9.6) (ea*’f)(r)={fo(t+r) frr->0’forr<0.

Therefore, whenever defined, A*f is the derivative of f in the ,2 sense [3].
Now, following a standard construction [3], define Lr to be the domain @(A*)

of the unbounded operator A* equipped with the graph topology

(9.7) (f, g) (f, g} + (A’f, A’f}
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where now (f, g):= o f(t)g(t)’ dt is the inner product in . Since an infinitesimal
generator such as A* is a closed operator with a dense domain [48], Y is a Hilbert
space which is densely embedded in T. The topology of Y is stronger than that of ,
and therefore all continuous linear functionals on are continuous on Y as well.
Consequently, we can think of the dual space * as embedded in the dual space Y*.
Then, identifying * with , we have

(9.8)

where L is dense in which in turn is dense in *. We shall write (f, f*) to denote
the value of the functional f** evaluated at f Lr (or, by reflexivity, the value at

f* of f regarded as a functional on Y*). Clearly, the bilinear form (f, f*) coincides
with the inner product (f, f*) whenever f* . Since A*f is the derivative of f, 2 is
a subspace of the Sobolev space Hi(R+), and * is a space of distributions [3].

Next, define D:- to be the differentiation operator on . Then Df- A*f for
all f Z, but, since IlDfll <-II/ll, O is a continuous map. Its adjoint D*:-* is
the extension of A to T, because (f, D*g)=(A*f g). We collect some well-known
properties of D in the following lemma.

LEMMA 9.1. The map (1-D):2 f is bijective, and it has a bounded inverse
I D)-

_ . Moreover,

(9.9) fll --< I1( I D)fll = _-< 2 fll .
Proof Since {Ut(X); t_>0} is a strongly continuous contraction semigroup

(Theorem 5.2), then so is {eA*’; t-->0}. Consequently, D is dissipative, i.e. (Df, f)<-_O
for allf Lr, and (I- D) maps 3f onto f [48, p. 250]. The dissipative property implies
that

(9.1 O) I1( I D)/II = e fl] = + Dill =
and therefore (I- D) is also injective. Hence, (I- D)-1" is defined on all of ,
and, due to (9.10), I1(I-D)- gll <- Ilgll, i.e. (I-D)-1 is a bounded map. The first of
inequalities (9.9) is precisely (9.10), whereas the second follows from the inequality
(a b)2 <_- 2(a2 + b2). [q

We shall construct a shift realization much along the lines of infinite-dimensional
deterministic realization theory [5], [6], [14], [15], [19]. Note, however, that, in
comparison with this work, our set-up has been transposed. This is necessary in order
to obtain the appropriate relation between observability (constructibility) of X and
its standard forward (backward) realization, as we shall see below.

Let fe . Since is a bona fide function space, we can evaluate f at each point,
and consequently, in view of (9.6),

(9.11) f( t) eA*tf)(O).
Since is a subspace of the Sobolev space Hi(R+) the evaluation operator is bounded
[3], [16]. However, we want it defined on o, and for this we need the operator (I-D)
of Lemma 9.1. Since A* commutes with eA*’, then so does (1-D). Therefore, (9.11)
yields

(9.12) f(t) [(I D)- eA*’(I D)f](0).

Now, recalling that (I-D)-1 maps onto ( (Lemma 9.1),

(9.13) B*g [(!- D)-lg](0)

defines a bounded map B* -P. Let B:P- be its adjoint. Then, (9.12) may be



REALIZATION THEORY FOR GAUSSIAN PROCESSES 847

written

(9.14) f(t)= B*ea*t(I-D)f,
and therefore, if ek is the kth unit axis vector in fiP,

(9.15) fk(t)=(B*ea*t(I--D)f, ek)ap=((I--D)f, eatBek), k= 1,2,...,p.

Together, (9.4) and (9.15) yield, for each s/Lr, the representation

(9.16) U,= (g, eA(t-)Bek)dUk(tr)
=l

where g (I-D)I*. It can be shown that if the structural function K is analytic in
some strip -a < Re (s)<=0 of the complex plane, the integral

(9.17) x(t) [’ eA(t-)ndu(o’)
d-

is well defined [32], and hence it defines an -valued state process {x(t); fi}, i.e. a
Hilbert-space-valued process with nuclear covariance operator [16]. If so, (9.16) can
be written

(9.18) Uts= (g, x( t)).
If the integral (9.17) is not well defined, we can interpret the state process {x(t); fit}
as a generalized stochastic process in the sense of [17], in which case (9.18) is merely
shorthand for (9.16), rather than a bona fide inner product.

Note that, when g varies over ,f ranges over (Lemma 9.1), and hence s ranges
over IuLr which is dense in X. Consequently,

(9.19) X cl {(g, x(O))lg }

where cl stands for closure (in the topology of H). This should be compared with
(8.17) in the finite-dimensional case, of which it is a generalization: recall that the
state space fin corresponds to here.

It is important to note that we must take closure in (9.19). This means that processes
with components of type { Uts; fi} can be represented as outputs of a stochastic
dynamical system with state process {x(t); fi} if and only if s /:, which is only
a dense subset of X. Therefore, in particular, we must have

(9.20) yk(O) Iu for k= 1, 2,..., m

in order to have y as an output. This condition can be characterized in the following
ways.

PROPOSITION 9.1. Let X be a proper Markovian splitting subspace with analytic
spectralfactor W. Let w denote the inverse Fourier transform ofWand F the infinitesimal
generator of { Ut(X); >= 0}. Then, the following conditions are equivalent to (9.20).

(i) yk(O) (F) for k= 1, 2,..., m.
(ii) The rows w, w.,. ., w,, of w belong to .
(iii) The rows of ito W(ito)- N belong to p for some constant m p matrix N.
Proof. First note that, by construction, (F)= IuLr, and therefore (9.20) and (i)

are the same. Since/ Ia;, it follows from (6.12)+(6.17) that

(9.21) Wk= I*yk(O) for k= 1,2,..., m.

Hence the equivalence of (i) and (ii) is immediate; that of (ii) and (iii) follows from
[23, Lemma 3.1]. l-]
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If the conditions of Proposition 9.1 are satisfied, the inner products

(9.22) (Cg)k=((I--D)Wk, g), k=l,2,...,m

are well defined, and, they define a bounded operator C"-P such that

(9.23) y(t) I Cea(’-’Bdu(o’),

as can be seen from (9.16) and (9.21). If the integral (9.17) is well defined, this may
be written

(9.24) y(t) Cx(t);

otherwise we may interpret (9.24) in the generalized sense mentioned above, i.e. simply
as (9.23). We shall call (9.23) the standard forward realization of X.

How natural are the conditions of Proposition 9.1? For any (forward) stochastic
realization

dx Ax dt + B du,
(9.25)

y Cx

with x a strong solution, we must have

(9.26) E-(a’a[y(h)- y(O)]= E-(aaCAx(t) dt

for any row vector a N and h-> 0. Using (5.3a), it is easy to see that this implies
Ill U(X)- I]y(0)l <- kh and hence, as in [33], Condition (i) of Proposition 9.1, provid-
ing a justification for this condition. However, it should be noted that, even if (9.17)
is well defined, it is not automatically true that x is a strong solution of the stochastic
differential equation in (9.25) [8].

Next, we shall investigate the systems-theoretical properties of the realization
(9.23). Let us begin with reachability. Recall that (9.23) is reachable if 1 ,o ker B* e*
0 [14]. But, in view of (9.14), B* e*g 0 for all _->0 if and only iff:=(I-D)-g is
identically zero, i.e. if and only if g 0. Hence, (9.23) is reachable.

The realization (9.23) is said to be observable if C?_okerCeA=0 [14]. To
determine if this holds, form

(9.27) (CeAtg)k ((I D)Wk, eAtg) ((I O) eA*Wk, g)
A*twhere we have used the fact that D and e commute. Define the vector space

(9.28) J//:- span {eA*Wk >-- O, k 1, 2, , m}.

From (9.27) it follows then that (9.23) is observable if and only if (I-D) is dense
in . However, in view of (9.9), this is equal to being dense in Lr (in Lr topology).

On the other hand, X---(S, S) is an observable splitting subspace if and only if
the vector space

(9.29) M := span {ESyk(t); -->_ 0, k 1, 2,. ., m}

is dense in X (Corollary 4.3). In view of Theorem 5.2, ESyk(t) U(X)yk(O), and
therefore, by (9.1) and (9.21), M I,.

Now, suppose that (9.23) is observable. Then is dense in Lr and hence in
(weaker topology). Consequently, M is dense in X, i.e. X is observable. Next, suppose
that X is observable. Then M is dense in X, and hence is dense in . Therefore,
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we have the situation

(9.30) Lr

where the vector space is dense in the Hilbert space . Since the topology of Lr is
stronger than that of , (9.30) does not automatically imply that is dense in Lr as
required; Lr is said to be normal if this favorable situation occurs [3, p. 101]. However,
it can be shown that the dissipative property of {ca*t; >--0} implies that Lr is normal
[32]. Consequently, the realization (9.23) is observable if and only if X is observable.

.We collect these observations in the following theorem.
THEOREM 9.1. [32]. Let X be a proper Markovian splitting subspace with forward

generating process u, and let := IuX. Then

(9.31) X cl{ k=l fc (g’eA(t-’lBek) dUk(’)lgG}
where { ea’ >= 0} is the strongly continuous contraction semigroup on :T defined by (9.1)
and B’p -> is the adjoint of (9.13). If the structural function ofX is analytic in some
strip a < Re s <= 0 of the complex plane, the integral

(9.32) x(t) I ea’-)Bdu(o")

is well defined and defines an -valued random process {x(t);t ff} in terms of which
(9.31) can be written

(9.33) X cl {(g, x(O))lg g}.

If the conditions of Proposition 9.1 are satisfied, there is a map C" ’, defined by
(9.22), such that

(9.34) y(t) I cea(t-)Bdu(tr)

which, in the case that (9.32) is well defined, yields

(9.35) y(t) Cx(t).

This is a reachable forward realization which is observable if and only ifX is observable.
The construction ofthe corresponding backward realization is analogous, exchang-

ing + for - everywhere. Let be @(/*) equipped with graph topology, and let
D" r-. be the (bounded) differentiation operator on . Let (.,.) denote the inner
product in . Then, we can proceed as above to obtain, for each Ia, the rep-
resentation

(9.36) U,= (g, -’)ek) dfik(r)
=1

where g--(I-/))-li,._:, and/’NP - is the adjoint of

(9.37) /*g [(I-/))-lg](0).

Now, if one of the three equivalent conditions

(i) yk(O) e (r*), k 1, 2,..., m,

(9.38) (ii) k := I*yk(O) , k 1, 2,’’’, m,

(iii) the rows of itolYg(ito)- ll belong to for some constant rn p matrix/
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hold, we may define a bounded linear operator C"-R" by the relations

(9.39) Cg)k ((I D)i’k, g), k 1, 2,’’’, m

and then we have the standard backward realization

(9.40) y(t) ea’-’)/ dt (or).

Following the convention set up in 1 and 8, we shall say that (9.40) is controllable
if f’l ,_>-o ker/* e/x*’= 0 and constructible if fl ,_->o ker (e/i’= 0. It is then easy to check

that Theorem 9.1 has the following "backward" version.
THEOREM 9.2. [32]. Let X be a proper Markovian splitting subspace with backward

generating process . Set := laX. Then

(9.41) X=cl (g, e’’-’)ek) dUk(Cr)]ge
k=l

where {ea’; t>_-O} is the strongly continuous contraction semigroup (9.2) on , and

B" RP ") Cc is the adjoint of (9.37). If the structural function ofX is analytic in some strip

a < Re (s) <-_ 0 of the complex plane, there is an -valued random process {(t); }
defined by

(9.42)

so that (9.41) may be written

(9.43)

:(t) e’’-’) d(o"

X cl {(g, g(O))lg }.

Moreover, if the conditions (9.38) hold, there is a map " ’- P, defined by (9.39), such

that (9.40) holds, and hence, if (9.42) is well defined,

(9.44) y(t) C(t).

This is a controllable backward realization which is constructible if and only if X is

constructible.
Consequently, for X to have both a forward and backward realization we must have

(9.45) yk(O) (F) f’) (F*), k 1, 2,..., m.

Questions of this sort are studied in [33].

10. State space isomorphism. There is an important difference between stochastic
and deterministic realization theory which manifests itself already in the finite-
dimensional case. In the deterministic theory, there is an essentially unique minimal
realization (modulo trivial coordinate transformations). This is not the case in the
stochastic theory. Two different minimal Markovian splitting subspaces give rise to
realizations with probabilistically different state processes. Therefore, it is important
to investigate the relationship between realizations of different minimal X.

In this section we shall study the class of standard forward realizations (9.23) of
minimal Markovian splitting subspaces; the corresponding results for backward realiz-
ations are analogous and will not be mentioned. Our main goal is to clarify the
connections between triplets (A, B, C) of such forward realizations. In the finite-
dimensional case, this link is provided by the Yakubovic-Kalman-Popov or Positive
Real Lemma, to which we shall return below.
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For the rest of the paper we shall assume that y is strictly noncyclic. Then the class
of minimal Markovian splitting subspaces can be parameterized by the left inner
divisors Q of Q/ (Theorem 7.6), and this parametrization, denoted {XQ; QILQ/},
induces a lattice structure on the class under which XQ2< Xo, if and only if Q21.Q1;
see 7.

Let (K1, Q, (*) and (K2, Q2, O*) be the inner triplets of two minimal Markovian
splitting subspaces, Xo, and Xo2. Then, it follows from (7.15) that

(lO.1) O,.

LEMMA 10.1. The following statements are equivalent.
(i)
(ii) V :- Q* Q, is inner.

(iii) V := (* (, is inner.

If these conditions are satisfied, then

o.2)

with K and V right coprime and K2 and V2 left coprime.
Proof. Let Xo,--. (S, S) and Xo---(S_, S). Then, by Lemma 6.1, (ii) is equivalent

to

(10.3) $2 S1
--iand (iii) is equivalent to c S1, i.e.

(10.4) $2 S1.
But, since Xo, and Xo: are minimal, (10.3) and (10.4) are equivalent (Corollary 3.3),
establishing the equivalence of (ii) and (iii). Now, Q QV1. Hence (i) and (ii) are
equivalent, and, since K1 and Q are right coprime (Theorem 7.2 and Corollary 4.1),
then so are K1 and V. Likewise, since t* V(I*, the left coprimeness of K2 and V2
follows from that of K and Q* (Theorem 7.2 and Corollary 4.1). Relation (10.2) is
the same as (10.1).

The following theorem describes the intertwining of the triplets (A1, B1, C1) and
(A2, B2, C2) corresponding to two minimal Markovian splitting subspaces, X1 and X2,
which are ordered.

THEOREM 10.1. Let X and X be two minimal Markovian splitting subspaces such
that X< X, and let , and E2 be the corresponding standardforward realizations with
state spaces and . Then the map R" - 2 defined by

(10.5) Rf peMo,o*f

is injective with dense range, and the following diagram commutes,

B eA1
P

B eA2

where indices refer to E1 and ,.
Proof. Let K and K be the structural functions of X and X2, and let

E,(Ki)" 4(Ki) (K) be the restricted shifts

(10.7) E,(K,)f Pe(I,)X,f
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for -> 0 and 1, 2. Since there are inner functions V1 and V2 such that V2K1 K2 V1
(Lemma 10.1), there is a map/*" (K2)--> (K1) such that

(10.8) *,(K2) Et(K1)I*
14, Thm. 14.8, p. 203]. This map is given by

(10.9) /*f= P(K’)Mo,o,f
and, in view of the coprimeness conditions of Lemma 10.1,/* is injective with dense
range [14, Thm. 14.11, p206]. Therefore the same is true for the adjoint/" W(K1)-
(K2) and for R := *R"1 2, which is the map of the theorem. It remains to
show that the diagram commutes. To this end, first note that eA*’-- *,t(Ki),. for
i= 1, 2, and therefore (10.8) is equivalent to

(10.10) R eA’t= eA’R.
Then the same intertwining must hold for the resolvents, i.e. in particular

(10.11) R(I 31)-1 (I A2)-IR

(Lemma 9.1), and therefore

(10.12) (I- A* )R* R*(I A* ).

Now, if W1 and W are the analytic spectral factors of X and X, then W1 WQ*Q1.
But, in view of (8.5), aWl (K1) for any row vector aR", and hence aWl *aW.
Consequently

(10.13) awl R*aw2
where wl := * W1 and W2 :--- W2. Now, from the definition (9.22) it is easy to see that

(10.14) C*i a (I A* )aw,

for i= 1,2. (Recall that A*f=Df.) Consequently, in view of (10.12) and (10.13),
C* R* C*, i.e.

(10.15) C1 CR.
This together with (10.10) proves that the diagram commutes. D

The parts of diagram (10.6) involving B and B2 add nothing to the theorem but
have been added to remind the reader that the two horizontal chains of arrows realize
different functions, namely wl and w:. This situation differs of course from that in the
deterministic "state space isomorphism" theorems [22, p. 258].

A map which is injective with dense range such as R in Theorem 10.1 will be
called quasi-invertible. In the finite-dimensional case, this is the same as invertible, and
therefore, in this case, the condition X2 < X1 of Theorem 10.1 is unnecessary, for we
have also a diagram with the arrows reversed. In particular, the semigroups {eAst; 0}
and {ea2t;t 0} are then similar.

In the infinite-dimensional situation, a natural generalization of similarity is
quasisimilarity. We say that the semigroups { eA’; >= 0} and { eA’; >= 0} are quasisirnilar
if there are quasi-invertible maps R1:1- and R2:2 1 such that

Rleal eaztR1,
(10.16)

R2 ea2t-- eatR2.
Only the first of relations (10.16) is given by Theorem 10.1, and then only if X2 < X1.
If we also had the other, the ordering assumption would be unnecessary also in the
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infinite-dimensional case, for quasisimilarity is an equivalence relation 14, p. 74]. That
this favorable situation actually happens follows from the next theorem, the proof of
which can be found in [31].

THEOREM 10.2. [31]. Let El and ,2 be theforward standard realizations correspond-
ing to two arbitrary minimal Markovian splitting subspaces. Then the corresponding
semigroups {east; t0} and {ea2t; t_>--0} are quasisimilar, i.e. they satisfy (10.16).

This implies that, as far as the rectangular part of the diagram (10.6) is concerned,
the ordering condition X2 < X1 can be dispensed with. Whether this is true for the
diagram as a whole is as yet an open question.

By [14, Thm. 15.18, p. 220], the semigroups are quasisimilar if and only if the
corresponding structural functions K1 and K2 are quasi-equivalent, i.e. have the same
invariant factors, and therefore Theorem 10.2 is equivalent to Theorem 7.5. This allows
us to draw the conclusion that the infinitesimal generators A corresponding to minimal
Markovian splitting subspaces have the same eigenvalues. To see this, just note that
these eigenvalues are the poles of the common determinant of the structural functions
[23, Thm. 3.2, p. 70], [14, Thm. 13.8, p. 195].

Theorem 10.2 can also be stated in terms of Jordan models. For a discussion of
this concept, see, for example, [14, p. 214].

COROLLARY 10.1. [31]. All semigroups {eAt; >--O} corresponding to minimal
Markovian splitting subspaces have the same Jordan model, i.e. they are all quasisimilar
to the direct sum

(10.17) E,(kl)) E,(k2) 03 "
where kl, k2, ., kp are the common invariant factors of the structuralfunctions, and the
restricted shifts E,(ki), i= 1,2,..., p and t>-O, are defined as in (10.7) but for a scalar
Hardy space.

As an application of Theorem 10.1, we shall next derive an infinite-dimensional
version of the Positive Real Lemma equations. For this we shall need the following
two lemmas.

LEMMA 10.2. Let A and B be defined by (9.1) and (9.13). Then

(10.18) AP+ PA* + BB* 0

where P: is the positive self-adjoint operator

(10.19) P (I- A)-a(I A*) -1.

Proof. Let f Lr, 1, 2. Then, recalling that A*f Df for f Lr, where D is the
differentiation operator, integration by parts yields

(10.20) (A*fl,f2)+(f,,A*f2) (flf’2+f,f) dt= --fl(0)f2(0)’.

Also, by the definition (9.13),

((I- A*)fl, BB*(I- A*)f)= (B*(I- A*)fl, B*(I- A*)fE)a
(10.21)

fl (0)f2(0)’.

Now, let gi , i= 1,2, be arbitrary. Then, by Lemma 9.1, f := (I-A*)-lg Lr for
i= 1, 2. Inserting this into (10.20) and (10.21) and adding the relations, we obtain

(10.22) (gl, APg2)+(gl, PA*g2)+(gl, BB*g)=O

where we have used the fact that A* and (I-A*)- commute. This yields (10.18).
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The operator P is actually the state covariance operator in the sense that

(10.23) E{(g,, x(0))(g2, x(0))}-- (gl, Pg2).

To see this, note that, by (9.4) and (9.18),

(10.24) (g,x(O))=foo[(I-A*)-g](-,r)du(,r)
where, in general, the left member should be understood in the sense of (9.16). In
passing, we recall that the state process {x(t); } is a bona fide -valued random
process if and only if the operator P is nuclear [16].

LEMMA 10.3. Let A:ll+Rm" be the covariance

(10.25) A(t)= E{y(t)y(O)’}, t>-O

and let A and C be defined by (9.1) and (9.22). Then

(10.26) A(t) C ea’pc*

where P is the state covariance operator (10.19).
Proof. Since C*a (I A*)aw for any row vector a ", and (I A)- commutes

with eAt we have

(10.27) C eAtpC*a C(I-A)-1 eAtaw,
and therefore

(10.28) [cea’pc*]kj=((I-A*)Wk, (I-A)-1 eAtwj)=(Wk, eAtwj).

But ;* ea’;;=,,(K)* and Wk ;Wk. Hence

(10.29) C eA’pC*]kj Wk,

because, by (8.5), Wk (K). Consequently, (10.26) follows from the Bochner rep-
resentation

(10.30) A(t)=I_oei’tdp(ito)dto. [3

To compare the standard forward realizations of different minimal Markovian
splitting subspaces, we must reduce them to the same state space. In view of the
ordering condition of Theorem 10.1, the most suitable choice of common state space
is i, the state space of the minimal element X1 := H+/- of the lattice. Given the
standard forward realization Eo of an arbitrary minimal Markovian splitting subspace
Xo, the reduction will be according to the diagram

(10.31)

defining a new (A, B, C) for Xo which has state space . Here Ro is the map (10.5)
with Q := Q and Q2 := L Then, when Xo varies over the lattice of minimal Markovian
splitting subspaces, A := A and C := C are fixed, whereas B varies.
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THEOREM 10.2. Let Xo be an arbitrary minimal Markovian splitting subspace, and
let A, B, C) be defined by (10.31). Then

AP+ PA* + BB* O,
(10.32)

PC* G

where the positive self-adjoint operator P: 2T -> 2F, defined by

(10.33) P := (I 3)-1RQR(I A*)-1

is the state covariance operator in the fixed state space representation, and G: ff" --> is

given by

(10.34) G:= (I-A)-I(I-A*)-IC*.

Proof. By Lemma IO.2,.AQPQ+PQA+BQB--O, where PQ:=(I--AQ)-I
(I- A)-I. Transforming this via (10.31 and (10.11 yields the first of relations (10.32).
To derive the second relation (10.32), reduce the representation (10.26) to the fixed
state space I. Comparing the expressions for A(t) thus obtained corresponding to Q
and E respectively, we have

(10.35) Ce/t’[PC*-PC*]=O for all t->_0.

Since Et is observable (Theorem 9.1), this implies that PC* PxC*, which is precisely
G. [q

We have thus shown that all standard forward realizations {Eo; QILQ+} reduced
to the common fixed state space Ft satisfy equations akin to those of the Positive Real
Lemma [2], 11], 12]. Note, however, that in our case the representation is coordinate-
free.
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