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Abstract

This paper considers the problem of steering a colossal group of agents of which the dynamics are governed by a discrete-time
first-order linear system, which is a very preliminary version. The group of agents are characterized as a probability density
function and an occupation measure respectively in the paper and two corresponding treatments are given. We propose to use
the power moments to characterize the density function/occupation measure of the agents. A moment system representation
of the original system is put forward for control and an empirical control scheme corresponding to it is proposed. By the
designed control law, the moment sequence of the control at each time step is positive, which ensures the existence of the
control for the moment system. We then realize the control as an analytic form of function by a convex optimization scheme of
which the existence and uniqueness of the solution have been proved in our previous paper. An error analysis of the terminal
density from the specified one is also provided. For the problem where the group of agents is characterized as an occupation
measure, the control for each agent is determined by drawing independent and identically-distributed(i.i.d) samples from the
realized analytic function. Finally we simulate both unconstrained and constrained controls of a colossal group of agents, which
validate our proposed algorithms.
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1 Introduction

We are interested in the problem of steering the states
of a colossal group of agents, of which the dynamics are
governed by a discrete-time stable first-order linear sys-
tem, between an initial and a final probability densities
or occupation measures without stochastic disturbance.
We consider the linear dynamics of the ith agent

xi(k + 1) = a(k)xi(k) + ui(k), i = 1, · · · , N (1)

Since the system is stable and we assume a(k) to be
positive, we have a(k) ∈ (0, 1). The control input on the
ith agent is defined as ui, and xi is its state. We assume
that the agents are non-interactive and the volume of the
agents is ignored. It means that the agents are allowed
to occupy the same state and the collisions are ignored.

It is a significant problem both theoretically and em-
pirically. From the perspective of theory, the task is to
control numerous agents. For the conventional control
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problems, there is always only one object to control and
the feedback control law is proposed as a function of the
state of the single object. However it is quite difficult for
a colossal group of agents. In this problem, we don’t aim
to steer the state of each agent to a specified state, which
is not necessary and very computationally consuming.
Instead, we attempt to control the agents as a whole, and
require the whole group to have specific global proper-
ties. Moreover, with the number of agents approaching
to infinity, the problem is an infinite dimensional one,
which is intractable only if dimension reduction, or we
call approximation, is applied to this problem. The in-
trinsic infinite-dimensionality makes the problem an in-
teresting and open one. As Dr. Roger Brockett asserted
in [5], “Important limitations standing in the way of the
wider use of optimal control can be circumvented by ex-
plicitly acknowledging that in most situations the appa-
ratus implementing the control policy will be judged on
its ability to cope with a distribution of initial states,
rather than a single state”. To the end of real practice,
there are quite some scenarios where we need to con-
trol a group of agents. Typical applications include but
are not limited to the the steering of swarms (UAV’s,
large collection of microsatelites, ensemble control, etc.),
modeling of the flow and collective motion of agents.
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There have been several results on the problem of steer-
ing a group of agents. One branch of results formulate
the problem as stabilizing a discrete-time Markov pro-
cess evolving on a compact subset of Rd to an arbitrary
target density [2,3]. These insightful results made signif-
icant contributions to this problem, however the results
proposed in these papers are not able to steer the initial
density to an arbitrary one within limited steps, either
is an error of the terminal distribution from the speci-
fied one proposed. Moreover, the support of the inputs
are assumed to be bounded. Another significant branch
of treatments in the previous results is to assume the
distribution as a Gaussian [1, 14, 15]. Then the problem
reduces to steering the first two orders of the moments
of the Gaussian distributions to the specified ones. We
would also like to mention results for the continuous-
time systems. Chen, Georgiou and Paven have proposed
fundamental results using the Schrödinger Bridge strat-
egy for Gaussian distributions [8, 9] and more general
distributions [10]. The results are extended to nonlinear
continuous-time system and hard state constraints in [7].
Moreover, a robust optimal density control of robotic
swarms is proposed in [18].

When the density of the agents is assumed to be Gaus-
sian, we use the first and second order moments to char-
acterize the density, which turns the problem to a finite-
dimensional one. However, by generalizing the mean and
covariance to all the power moments, we will have a
more conceptual view of this problem. Controlling the
system state as a distribution function, if only assumed
to be Lebesgue integrable, is an uncountably infinite-
dimensional problem. By probability theory, we note
that a distribution function can be uniquely determined
by its full power moment sequence [24]. By controlling
the full power moment sequence instead of the distribu-
tion of system state, the problem is reduced to a count-
ably infinite-dimensional one. By properly truncating
the first several terms of the power moment sequence for
characterizing the density of the system state, the prob-
lem is now steering a truncated power moment sequence
to another, which is finite-dimensional and tractable.

In this paper we provide what can be regarded as the
first computable and implementable solution to the
distribution steering problem of the discrete-time linear
system within limited steps, where the specified initial
and terminal distributions, including probability densi-
ties and occupation measures of the agents, are arbi-
trary (only assuming the existence of first several or-
ders of power moments). The paper is a very prelimi-
nary version, which is structured as follows. In Section
2, we first treat the density steering problem. We pro-
pose a moment system representation as a counterpart
of the discrete-time linear system. Then there follows a
definition to group steering by moments based on the
moment system. Different from the conventional control
problems, the Hankel matrices of the moments of con-
trol inputs and system states need to be positive defi-

nite, which makes it difficult to treat the control prob-
lem by prevailing methods such as optimal control. We
propose an empirical scheme to treat this problem. Then
we use a density parametrization algorithm proposed
in our previous paper [22] to realize the control inputs
as analytic functions by the power moments. Since the
density steering problem, where the densities are not as-
sumed to fall within specific functions, is intrinsically
infinite-dimensional, the error of the terminal density is
inevitable. We then propose an error upper bound of the
terminal density from the specified one. Based on the
density-steering algorithm proposed in Section 2, we pro-
pose an algorithm of steering finitely many agents which
are characterized as an occupation measure. The control
input of each agent is obtained by drawing i.i.d. samples
from the realized control functions where the sampling is
enabled by the acceptance-rejection sampling strategy.
At last, we give six examples to validate the two steering
algorithms we propose. The densities in the examples
include Gaussian, mixture of Gaussians and mixture of
Laplacians.

2 Steer the group of agents as a probability den-
sity function

We first consider the problem of steering an initial den-
sity function to a terminal one. Then the steering of ar-
bitrary occupation measures will be treated in the fol-
lowing section, of which there has not been a solution in
the previous papers.

2.1 A moment system representation

With a colossal group of agents, i.e., N is large, a con-
ventional approach is to approximate x(k) and u(k) as
random variables of which the density functions are de-
noted as qk and pk. The problem of steering the group of
agents is then turned to steering an initial density func-
tion to a terminal one. The density control problem is
formulated as follows.
Problem 2.1 (Density control problem). The dynamics
of the system is

x(k + 1) = a(k)x(k) + u(k). (2)

Given an initial probability density function q0(x) of
random variable x(0), determine the control sequence,
i.e., (u(0), · · · , u(K − 1)) such that the terminal density
function is qT (x) for x(K).

However it is not always feasible for us to obtain a closed
form of solution to this problem. If the distributions are
not assumed to fall within specific classes, the problem is
intrinsically infinite-dimensional. We note that the den-
sity function of x(k + 1) can be written as
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qk+1(t) =

∫
R
fk (ξ, t− ξ) dξ

x ⊥⊥ u

∫
R
qk

(
ξ

a(k)

)
pk (t− ξ) dξ

x ⊥⊥ u

(
qk

(
t

a(k)

)
∗ pk(t)

)
(t).

(3)

where x ⊥⊥ u denotes that x(k) and u(k) are indepen-
dent. To tackle the problem defined in Problem 2.1, we
need to obtain an analytic form of solution to qk+1(t) in
(3). However except for limited classes of functions such
as Gaussian distributions and trigonometric functions,
it is infeasible for most others. That is main reason that
in the previous results which have similar problem set-
ting as Problem 2.1, the examples are almost Gaussian
or trigonometric densities. This severely limits the use
of these results in the real applications.

There is a similar problem in non-Gaussian Bayesian
filtering. In our previous results [22], we proposed a
method of using the power moments to treat this in-
tractable problem, mainly for characterizing the macro-
scopic property of the distributions. However, even it is
theoretically feasible to characterize the distribution of
the agents by the full power moment sequence, the prob-
lem is infinite dimensional. A common treatment is to
truncate the first 2n moment terms [6, 11], which turns
the problem we treat to a truncated moment problem.

By the system equation (2), the power moments of the
states up to order 2n are written as

E
[
xl(k + 1)

]
=

l∑
j=0

(
l

j

)
aj(k)E

[
xj(k)ul−j(k)

]

for l ∈ N0 (N0 denotes the set of all nonnegative
integers), l ≤ 2n. We note that it is difficult to
treat the term E

[
xj(k)ul−j(k)

]
, since we are con-

fronted with a colossal group of agents, even an in-
finite number of them. However, we note that if
x(k) and u(k) are independent from each other, i.e.,
E
[
xj(k)ul−j(k)

]
= E

[
xj(k)

]
E
[
ui−j(k)

]
, the dynam-

ics of the moments can be written in a linear matrix
equation

X(k + 1) = A(U(k))X(k) + U(k) (4)

where the new state vector is composed of the power
moment terms up to order 2n,

X(k) =
[
E[x(k)] E[x2(k)] · · · E[x2n(k)]

]T
. (5)

The new input vector is written as

U(k) =
[
E[u(k)] E[u2(k)] · · · E[u2n(k)]

]T
. (6)

Here we have defined

E
[
xl(k)

]
=

∫
S
xlqk(x)dx (7)

and

E
[
xj(k)ul−j(k)

]
=

∫
S
xjqk(x)dx

∫
C
ul−jpk(u)du.

Similarly we have

E
[
ul(k)

]
=

∫
C
ulpk(u)du (8)

The sets S and C are the support of qk(x) and pk(u) cor-
respondingly. For control problems without state con-
straints, S can be chosen as the real line R. Or it can be
chosen as a compact subset of R according to its bounds.
Similarly, C can be chosen as R if the control input is
unconstrained, or a compact subset of R if constrained.

The matrixA(U(k)) of the new system can then be writ-
ten as (9).

By using the truncated power moments to character-
ize the dynamics of system (1) where x(k) and u(k) are
probability densities, we shall reformulate the control
problem as steering the power moments of the proba-
bility densities. System (4) is called the moment system
corresponding to system (1).

By the proposed moment system, the original problem
in Problem 2.1 can be reduced to distribution steering
by power moments, which is formulated as follows.
Problem 2.2 (Density steering problem by power mo-
ments). The dynamics of the moment system is

X(k + 1) = A(U(k))X(k) + U(k)

where X(k),U(k) are obtained by (7),(8). Given an ar-
bitrary initial density q0(x), determine the control se-
quence (u(0), · · · , u(K − 1)) such that the first 2n order
power moments of the terminal density are identical to
those of an arbitrarily specified one, i.e.,∫

R
xlqT (x)dx =

∫
R
xlqK(x)dx (10)

for l = 1, · · · , 2n, where qT is the specified terminal
density function.
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A(U(k)) =



a(k) 0 0 · · · 0

2a(k)E[u(k)] a2(k) 0 · · · 0

3a(k)E[u2(k)] 3a2(k)E[u(k)] a3(k) · · · 0
...

...
...

. . .(
2n
1

)
a(k)E[u2n−1(k)]

(
2n
2

)
a2(k)E[u2n−2(k)]

(
2n
3

)
a3(k)E[u2n−3(k)] a2n(k)


. (9)

Remark. The advantage of our proposed problem is
twofold. First, by this formulation, the problem is now
finite dimensional and there exists a closed form of so-
lution to this problem. Second, it doesn’t require the
initial and terminal density functions of the agents to
fall within specific classes, which makes the algorithm
applicable to a wide range of real applications.

However with the moment system to control, there re-
mains to design control laws which satisfies

E
[
xj(k)ul−j(k)

]
= E

[
xj(k)

]
E
[
ui−j(k)

]
. (11)

With limited number of agents, it might be possible to
propose feedback control laws for each agent, i.e., the
control input is a function of the states of all the agents.
However with the increase of the number of agents, it
is no longer tractable. In our problem, N is infinity (for
the problem of steering occupation measures, N is still
a large number). A feasible control law needs to satisfy
that the control vector is independent of the current
state vector. In the next part of section, we propose an
algorithm for steering power moments to desired ones.

2.2 An empirical control scheme for the moment system

In the previous section, controlling the group of agents
has been reduced to controlling the moment sys-
tem corresponding to it. Then the task is now to
figure out an algorithm to determine a sequence of
(U(0), · · · ,U(K − 1)). However, there are two main dif-
ferences from the conventional control problems. First,
the system matrix of the moment system is a function of
the control vector in this problem. Second, the sequence
of the elements of the control vector U(k) needs to sat-
isfy the condition that the corresponding Hankel matrix

[U(k)]H =


E[u0(k)] E[u1(k)] · · · E[un(k)]

E[u1(k)] E[u2(k)] E[un+1(k)]
...

...
. . .

E[un(k)] E[un+1(k)] E[u2n(k)]



is positive definite. Here [U]H denotes the Hankel ma-
trix of the vector U. We define such subspace of R2n as
V2n

++ := {U ∈ R2n | [U]H ≻ 0}.

In the previous results, optimal control strategy is always
used in the distribution steering problems. However, it
is not quite feasible in this problem. The reason is that
we always have to ensure that X(k),U(k) ∈ V2n

++. To the
best of our knowledge, there has not been a result feasible
of treating the optimal control problem constraining the
states and control inputs to fall within V2n

++, i.e., the
corresponding Hankel matrices to be positive definite.

Nowwe formulate the problemwe are to treat in this part
of section. Let U be the feasible set of control sequences
U := (U(0), · · · ,U(K − 1)), which satisfies

K−1∑
k=0

E
[
UT (k)U(k)

]
< ∞

and effects the terminal system state x(K) to be dis-
tributed satisfying (10). Then the family U represents
admissible control inputs which achieve the desired mo-
ment transfer.

Denote the error of the moments from the specified ones
as

e(k) = XT − X(k) (12)

It is not always feasible to handle both the constraints on
U(k) and X(k) to fall within the set V2n

++ simultaneously.
However, we note that a sub-optimal solution to the
control problem can be achieved by first to determine the
trajectory of the state then to obtain the control inputs
corresponding to this trajectory. We first determine the
trajectory of the state.
Lemma 2.3. Given

e(k0) = XT − X(k0) ∈ V2n
++,

we have

X(k) = X(k0) +

k−1∑
i=k0

ωie(k0) ∈ V2n
++ (13)

for k = k0+1, · · · ,K where ωi ∈ R+ for i = k0, · · · ,K−
1 and

∑K−1
i=k0

ωi = 1. Here the elements of XT are the
power moments corresponding to the specified terminal
density function qT (x).
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Proof. The proof is straightforward. SinceX(k0), e(k0) ∈
V2n

++, we have [X(k0)]H ≻ 0, [e(k0)]H ≻ 0. We note that
the sum of positive definite matrices is still positive
definite. Since ωi > 0, we have ωie(k0) ∈ V2n

++. Then
X(k) ∈ V2n

++.

Now it remains to prove that there exists a time step k0
at which XT − X(k0) ∈ V2n

++.
Proposition 2.4. There exists a time step k0 which sat-
isfiesXT−X(k0) ∈ V2n

++, assuming thatX(k), 0 ≤ k ≤ k0
are uncontrolled moment states, i.e., u(k) = 0, 0 ≤ k ≤
k0.

Proof. We write the Hankel matrix form of XT − X(k)
as (14). Since u(k) = 0, 0 ≤ k ≤ k0, we obtain (15).

Now it remains to prove that ∃k0, [XT − X(k0)]H ≻ 0
with u(k) = 0, 0 ≤ k ≤ k0. By definition of the posi-
tive definiteness, it is equivalent to prove that each lead-
ing principal minor, the determinant of leading principal
submatrix, is positive.

Denote the ith-order leading principal submatrix of
[XT − X(k)]H as Hi(k), and the corresponding minor as
det(Hi(k)). We note that each det(Hi(k)) is a polyno-

mial of
∏k−1

i=0 a(i), of which the degree is even. There-
fore, if there exists no real zero for all the det(Hi(k)),
all k0 ∈ N0 satisfies [XT − X(k0)]H ≻ 0. Now we con-
sider the case that det(Hi(k)) has at least a real zero in
(0, 1). We note that det(Hi(k0)) > 0 with k0 → +∞.

Let k̆i be the smallest integer greater than the largest
zero of the polynomial det(Hi(k)). By the continuity of

det(Hi(k)), we have that det(Hi(k)) > 0, k ∈ (k̆i,+∞).

Let k̆ = maxi(k̆i). With k0 > k̆, we have Hi(k0) ≻ 0,
for i = 1, · · · , n. Therefore we have [XT − X(k0)]H ≻ 0,
which ensures the positiveness of all Hi(k0) and com-
pletes the proof.

By Proposition 2.4, it is feasible for us to choose a time
step k0 which satisfies XT − X(k0) ∈ V2n

++. We assume
that the system is uncontrolled before k0, i.e. u(k) =
0, k ≤ k0. From step k0, we impose controls on the sys-
tem. Lemma 2.3 has proved the positiveness ofX(k), k =
k0, · · · ,K. Therefore it remains to determine the pa-
rameters ωk, k = k0, · · · ,K − 1 and the corresponding
control inputs U(k).

It is a non-trivial problem. We give an empirical scheme
to treat it. To obtain a relatively smooth transition of
states, it is desired that the ωi’s are close to each other.
It is usually feasible for us to choose

ωk0
= · · · = ωK−1 =

1

K − k0

After that the parameters ω′
is are determined, the

control inputs of the moment system U(i) for i =
k0, · · · ,K − 1 can then be calculated by solving the
equation (4), provided with X(k), k = k0 + 1, · · · ,K
calculated by (13).

However sometimes the control inputs U(k) /∈ V2n
++ by

choosing the ωi’s to be all equal. It usually happens when
the specified initial/terminal density has several modes
(peaks). If so, we can choose a larger ω0/ωK−1.

In conclusion, we have proposed to use the moment sys-
tem to control the colossal group of agents characterized
as a probability density function. And an empirical con-
trol law has been proposed which ensures the existence
of u(k). However, it is only feasible for us to obtain the
power moments of the control inputs u(k). We need to
obtain the u(k) given its power moments, which we call
realization of the control inputs.

2.3 Realization of the control inputs

In this part of section, we are to realize the probability
density of u(k) given the power moments of the designed
controls U(k) for the moment system.

For the sake of simplicity, we omit k if there is no ambi-
guity in the following part of this section. The problem
now comes to proposing an estimation algorithm which
is feasible of estimating the probability density of which
the power moments are as specified.

Typically we consider two situations for the controller
design, one is unconstrained control, i.e., u is supported
on the whole real line. And the other is constrained con-
trol, where we consider u to be supported on a compact
interval on R. These two situations refer to two types
of moment problems we are to treat, namely the Ham-
burger moment problem for the first situation and the
Hausdorff moment problem for the second one.

A convex optimization scheme for density estimation
by Kullback-Leibler distance has been proposed in [22]
considering the Hamburger moment problem. We adopt
this strategy in this paper for treating the unconstrained
control realization. The treatment is as follows.

Let P be the space of probability density functions on
the real line with support there, and letP2n be the subset
of all p ∈ P which have at least 2n finite moments (in
addition to E[u0(k)], which of course is 1). The Kullback-
Leibler distance is then defined as

KL(r∥p) =
∫
R
r(u) log

r(u)

p(u)
du (16)

where r is an arbitrary probability density in P. And we
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[XT − X(k)]H

=


1 E[xT ]− E[x(k)] · · · E[xn

T ]− E[xn(k)]

E[xT ]− E[x(k)] E[x2
T ]− E[x2(k)] · · · E[xn+1

T ]− E[xn+1(k)]
...

...
. . .

E[xn
T ]− E[xnk] E[xn+1

T ]− E[xn+1(k)] E[x2n
T ]− E[x2n(k)]


(14)

[XT − X(k0)]H =

1 E[xT ]−
∏k−1

i=0 a(i)E[x(0)] · · · E[xn
T ]−

(∏k−1
i=0 a(i)

)n
E[xn(0)]

E[xT ]−
∏k−1

i=0 a(i)E[x(0)] E[x2
T ]−

(∏k−1
i=0 a(i)

)2
E[x2(0)] · · · E[xn+1

T ]−
(∏k−1

i=0 a(i)
)n+1

E[xn+1(0)]

...
...

. . .

E[xn
T ]−

(∏k−1
i=0 a(i)

)n
E[xn(0)] E[xn+1

T ]−
(∏k−1

i=0 a(i)
)n+1

E[xn+1(0)] E[x2n
T ]−

(∏k−1
i=0 a(i)

)2n
E[x2n(0)]


(15)

denote the linear integral operator Γ as

Γ : p(u) 7→ Σ =

∫
R
G(u)p(u)GT (u)du

where p(u) is defined on the space P2n. According to the
type of the control problem, C is either R (unconstrained
control), or a compact interval on R (constrained con-
trol). Here

G(u) =
[
1 u · · · un−1 un

]T
and

Σ =


1 E[u] · · · E[un]

E[u] E[u2] · · · E[un+1]
...

...
. . .

E[un] E[un+1] E[u2n]


where E[ui], i = 1, · · · , 2n are the elements of the de-
signed control U. Moreover, since P2n is convex, then so
is range(Γ) = ΓP2n.

We let

L+ :=
{
Λ ∈ range(Γ) | G(u)TΛG(u) > 0, x ∈ R

}
.

Given any r ∈ P and any Σ ≻ 0, there is a unique
p̂ ∈ P2n thatminimizes (16) subject to Γ(p̂) = Σ, namely

p̂ =
r

GT Λ̂G
(17)

where Λ̂ is the unique solution to the problem of mini-

mizing

Jr(Λ) := tr(ΛΣ)−
∫
R
r(u) log

[
G(u)TΛG(u)

]
du (18)

over all Λ ∈ L+. Here tr(M) denotes the trace of the
matrix M .

Then the density estimation is formulated as a con-
vex optimization problem. Unlike other methods of mo-
ments, the power moments of our proposed density es-
timate are exactly identical to those specified, which
makes it a satisfactory approach for realization of the
control inputs. Since the prior density r(u) and the den-
sity estimate p̂(u) are both supported on R, r(u) can be
chosen as a Gaussian distribution (or a Cauchy distri-
bution if p̂(u) is assumed to be heavy-tailed).

We note that for the Hausdorff moment problem, where
the control u is supported on a compact subset of R, the
proofs and results for the Hamburger moment problem
are also valid by substituting the domainR by a compact
interval on the real line. By doing this, we will obtain a
density estimate p̂ in the form of (17). The prior r(u) can
then be chosen as a truncated Gaussian or a truncated
Laplacian.

We conclude the algorithm for density steering of the
colossal group of agents in this section as in Algorithm 1.

2.4 Error analysis of the terminal density function

Since we used the truncated power moments of the initial
and terminal density functions for steering, there may
exist an error between the terminal density and the de-
sired one. In this part, we will propose an upper bound
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Algorithm 1 Density steering of a colossal group of
agents.

Input: Themaximal time stepK; the parameter of the
system a(k) for k = 0, · · · ,K − 1; the initial system
density q0(x); the specified terminal density qT (x).

Output: The controls u(k), k = 0, · · · ,K − 1.
1: k ⇐ 0
2: while k < K and e(k) /∈ V2n

++ do
3: Calculate X(k) by (4) if k > 0 or by (5) if k = 0
4: Calculate e(k) by (12)
5: if e(k) ∈ V2n

++ then
6: Calculate the states of the moment system

X(i) for i = k+1, · · · ,K−1 by (13) with ωk = · · · =
ωK−1

7: Calculate the controls of the moment system
U(i) for i = k, · · · ,K − 1 by (4)

8: if ∃i,U(i) /∈ V2n
++ then

9: Back to Step 6, adjust ωk, · · · , ωK−1

10: end if
11: Optimize the cost function (18) and obtain

the analytic estimates of the densities p̂i(u) for i =
k, · · · ,K − 1

12: else
13: u(k) = 0
14: end if
15: Calculate the power moments of the system state

x(k + 1), i.e., X(k + 1)
16: k ⇐ k + 1
17: end while

of error of the terminal density, as to characterize the
maximal difference between the terminal density by our
proposed algorithm and the specified one.

In [22], we proposed an error upper bound for the Ham-
burger moment problem in the sense of total variation
distance, which is a measure widely used in the moment
problem [19,20].

The total variation distance between the terminal den-
sity qK(x) and the desired terminal density qT (x) is de-
fined as follows:

V (qK , qT ) = sup
x

∣∣∣∣∣
∫
(−∞,x]

(qK − qT )dx

∣∣∣∣∣ = sup
x

|FqK − FqT |

where FqK and FqT are the two distribution functions of
qK and qT .

Shannon-entropy is used to calculate the upper bound of
the total variation distance in [20]. The Shannon-entropy
[17] is defined as

H[q] = −
∫
C
q(x) log q(x)dx.

We first introduce the Shannon-entropy maximizing dis-
tribution Fq̆K , of which the moments are the power mo-

ments of qK . It has the following density function [12],

q̆K(x) = exp

(
−

2n∑
i=0

λix
i

)

where λ0, · · · , λ2n are determined by the following con-
straints,

∫
C
xk exp

(
−

2n∑
i=0

λix
i

)
dx =

∫
C
xkqT (x)dx

for k = 0, 1, · · · , 2n. By referring to [20], the KL dis-
tance between the true density and the Shannon-entropy
maximizing density can be written as

KL (qT ∥q̆K) =

∫
C
qT (x) log

qT (x)

q̆K(x)
dx

=−H [qT ] +

2n∑
i=0

λi

∫
C
xkqT (x)dx

=H [q̆K ]−H [qT ] .

Similarly, we can obtainKL (qT ∥qK) = H [qK ]−H [qT ].

By [13,20], we obtain

V (q̆K , qK) ≤ 3

[
−1 +

{
1 +

4

9
KL (qK∥q̆K)

}1/2
]1/2

= 3

[
−1 +

{
1 +

4

9
(H [q̆K ]−H [qK ])

}1/2
]1/2

and

V (q̆K , qT ) ≤ 3

[
−1 +

{
1 +

4

9
(H [q̆K ]−H [qT ])

}1/2
]1/2

Then the error upper bound of the terminal density can
be written as

V (qK , qT )

= sup
x

|FqK (x)− FqT (x) |

≤ sup
x

(|FqK (x)− Fq̆K (x)|+ |Fq̆K (x)− FqT (x)|)

≤ sup
x

|FqK (x)− Fq̆K (x)|+ sup
x

|Fq̆K (x)− FqT (x)|

≤3

[
−1 +

{
1 +

4

9
(H [q̆K ]−H [qK ])

}1/2
]1/2

+3

[
−1 +

{
1 +

4

9
(H [q̆K ]−H [qT ])

}1/2
]1/2
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3 Steer the group as an occupation measure

In the previous section, we proposed an algorithm steer-
ing a colossal group of agents characterized as a proba-
bility density function to a terminal one. However, the
characterization of agents as a density function is an ap-
proximation when the number of agents tends to infin-
ity. For applying our proposed algorithm to real applica-
tions, we need to put forward control inputs for all finite
number of agents. Hence in this section, we use the occu-
pation measure to characterize the group of agents and
propose a control scheme to steer an initial occupation
measure to a terminal one.

We first define the occupation measure of the agents at
time step k as in [23]

dqk(x) =
1

N

N∑
i=1

δ (x− xi(k)) dx,

then the state of the group of agents can be written as

x(k) =
1

N

N∑
i=1

xi(k)δ (x(k)− xi(k)) (19)

Since the controls are applied to the agents, the control
on the group of agents is defined as

u(k) =
1

N

N∑
i=1

ui(k)δ (x(k)− xi(k)) . (20)

The power moments of the occupation measures can
then be written as

E
[
xl(k)

]
=

1

N

N∑
i=1

xl
i(k), (21)

and

E
[
ul(k)

]
=

1

N

N∑
i=1

ul
i(k). (22)

Now we define the problem we will treat in this section.
Problem 3.1 (Occupation measure steering problem by
power moments). The dynamics of the moment system
is

X(k + 1) = A(U(k))X(k) + U(k).

whereX(k),U(k) are defined as (21),(22). Given an arbi-
trary initial state x(0), determine the control sequence
(ui(0), · · · , ui(K − 1)) for each agent i such that the

power moments of the terminal occupation measure are
identical to those of an arbitrarily specified state, i.e.,

E
[
xl
T

]
=

∫
R
xldqT (x) =

1

N

N∑
i=1

xl(K) (23)

for l = 1, · · · , 2n, where qT is the specified terminal
occupation measure.
Remark. To our best knowledge, the previous results
mainly focused on steering the targets by characteriz-
ing them as analytic density functions. However, there
has not been a solution for a large but finite number of
agents, which we will treat in this section. By our def-
inition of the problem, the outputs are the control se-
quences for each agent. The control inputs can then be
directly applied to each agent of the colossal group.

The main difference of the occupation measure steering
problem from the density steering one lies in determin-
ing the control inputs for each agent. We naturally con-
sider designing feedback control laws for the agents. It
might be feasible with limited number of agents, how-
ever it is quite expensive and problematic with quite a
large number of agents as in our problem. Moreover, as
to implement the feedback control, we need to obtain
the states of each agent and calculate the control inputs
based on all of them, which requires us to install numer-
ous sensors on the agents and we have to treat the issues
of the communications between the agents. However, by
our proposed algorithm using moments, it is not neces-
sary to collect all states of the agents and to transmit
them back to the center to calculate the control inputs
at all time steps.

Since N is large, we consider first estimating the occu-
pation measure of u(k) as a continuous function p̂(u).
Then we draw N i.i.d samples from it and assign them
to ui, i.e., ui ∼ p̂(u), i ∈ N0, i ≤ N . By the strong law of
large numbers, we note that

1

N

N∑
i=1

ul
i(k)

a.s.−→
∫
R
ulp̂k(u)du, with N → +∞ (24)

which means that the power moments of u(k) converge
almost surely to the power momentsU(k) of the designed
controls. Moreover, the sampling strategy ensures that
the system state x(k) and the control input u(k) are in-
dependent from each other, hence (11) is satisfied. Then
the problem comes to putting forward a sampling strat-
egy. We consider using the acceptance-rejection sam-
pling [4] strategy for this task.

The idea of acceptance-rejection sampling is that even
it is not feasible for us to directly sample from ρ̂, there
exists another density ρ̃, from which it is easy to sample
from. The task can be reduced to sampling from ρ̃ di-
rectly and then rejecting the samples in a strategic way
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to make the remaining samples seemingly drawn from ρ̂.
We call the density ρ̃ as the ”candidate density” and ρ̂
as the ”target density”.

We assume that

c = sup
x∈supp(ρ̂)

ρ̂

ρ̃
< ∞ (25)

and that we can calculate c. In our paper, the support
of both ρ̂ and ρ̃ is C. As to satisfy (25), the candidate
density need to have heavier tails than the target density.
Then we give the sampling algorithm in the following
algorithm.

Algorithm 2 Sample ui(k) from the realized control.

Input: The number of agents N ∈ N0; the realized
control ρ̂k(u); the candidate density ρ̃k(u)

Output: The controls ui(k), i = 1, · · · , N
1: i ⇐ 1
2: while i ≤ N do
3: Sample an ri from a uniform distribution U [0, 1]
4: Sample a u ∈ supp(ρ̂) from the candidate density

ρ̃
5: if u ≤ ρ̂

cρ̃ then

6: ui(k) ⇐ u
7: else
8: back to step 3
9: end if

10: i ⇐ i+ 1
11: end while

We note that in real applications, the controls ui(k), i =
1, · · · , N are sometimes bounded. In the previous re-
sults, it has not been treated by the feedback control laws
given the domain of the system state being the whole R.
By the proposed Algorithm 2, we simply need to choose
ρ̂ and the corresponding ρ̃ to be truncated densities sup-
ported on specified bounded intervals.

We now adopt the proposed acceptance-rejection sam-
pling strategy to update Algorithm 1 as to treat the
occupation measure steering problem, which is given in
Algorithm 3.

4 Numerical examples

In the previous sections, we proposed algorithms for
steering a colossal group of agents, either characterized
as a probability density function or aN occupation mea-
sure. In this section, we perform numerical simulations
on different types of distributions, supported on R or a
compact subset of R, with multiple modes or a single
mode, to validate our proposed algorithms.

We first simulate the steering of a colossal group of
agents as a probability density function. We begin with

Algorithm 3 Occupation measure steering of a colossal
group of agents.

Input: The number of agents N ∈ N0; the maximal
time step K; the parameter of the system a(k) for
k = 0, · · · ,K − 1; the initial occupation measure
dq0(x); the specified terminal occupation measure
dqT (x).

Output: The control inputs for the ith target ui(k),
k = 0, · · · ,K − 1, i = 1, · · · , N .

1: k ⇐ 0
2: while k < K and e(k) /∈ V2n

++ do
3: Calculate X(k) by (4) if k > 0 or by (5) if k = 0
4: Calculate e(k) by (12)
5: if e(k) ∈ V2n

++ then
6: Calculate the states of the moment system

X(i) for i = k+1, · · · ,K−1 by (13) with ωk = · · · =
ωK−1

7: Calculate the controls of the moment system
U(i) for i = k, · · · ,K − 1 by (4)

8: if ∃i,U(i) /∈ V2n
++ then

9: Back to Step 6, adjust ωk, · · · , ωK−1

10: end if
11: Optimize the cost function (18) and obtain

the analytic estimates of the densities p̂i(u) for i =
k, · · · ,K − 1

12: Do Algorithm 2 and obtain the control inputs
ui(j) of all agents at time step j = k, · · · ,K − 1

13: else
14: ui(k) = 0, i = 1, · · · , N
15: end if
16: Calculate the power moments of the system state

x(k + 1), i.e., X(k + 1)
17: k ⇐ k + 1
18: end while

unconstrained control, i.e., the control inputs u(k) are
not constrained.

4.1 Unconstrained density steering of a colossal group
of agents

In Example 1, we simulate a typical problem which is
to steer a Gaussian density to another in 4 steps. The
initial Gaussian density is chosen as

q0(x) =
1√
2π

e
x2

2 , (26)

and the terminal density is specified as

qT (x) =
1√
2π · 2

e
(x−1)2

2·22 . (27)

The system parameters a(k), k = 0, · · · , 3 are i.i.d. sam-
ples drawn from the uniform distributionU [0.5, 0.7]. The
states of the moment system, i.e., X(k) for k = 0, 1, 2, 3
are given in Figure 1. The controls of the moment sys-
tem, i.e., U(k) for k = 0, 1, 2, 3 are given in Figure 2. We

9



note that by our proposed algorithm, X(k),U(k) ∈ V2n
++,

which makes it feasible for us to realize the controls. The
realized control inputs are given in Figure 3. The tran-
sition of the control inputs is smooth, which is satisfac-
tory.

Fig. 1. X(k) at time steps k = 0, 1, 2, 3. The upper left figure
shows E [x(k)]. The upper right one shows E

[
x2(k)

]
. The

lower left one shows E
[
x3(k)

]
and the lower right one shows

E
[
x4(k)

]
.

Fig. 2. U(k) at time steps k = 0, 1, 2, 3. The upper left figure
shows E [u(k)]. The upper right one shows E

[
u2(k)

]
. The

lower left one shows E
[
u3(k)

]
and the lower right one shows

E
[
u4(k)

]
.

In Example 2, we simulate a steering problem in 3 steps
where the initial density function is a Gaussian and the
terminal density function is a mixture of Gaussians with
two modes. The initial one is chosen as

q0(x) =
1√
2π

e
x2

2 .

and the terminal one is specified as

qT (x) =
0.4√
2π

e
(x−1)2

2 +
0.6√
2π

e
(x+1)2

2 . (28)

Fig. 3. Realized control inputs u(k) by U(k) for k = 0, 1, 2, 3,
which are obtained by our proposed control scheme.

The system parameters a(k), k = 0, · · · , 3 are i.i.d. sam-
ples drawn from the uniform distributionU [0.5, 0.7]. The
states of the moment system, i.e., X(k) for k = 0, 1, 2, 3
are given in Figure 4. The controls of the moment sys-
tem, i.e., U(k) for k = 0, 1, 2, 3 are given in Figure 5. The
realized controls in Figure 6 also show that the transi-
tion of the control inputs is smooth, even the specified
terminal density has two modes.

Fig. 4. X(k) at time steps k = 0, 1, 2, 3.

In Example 3, we will simulate a steering problem in 4
steps which has not been treated in the previous papers.
The initial density is chosen as a Gaussian distribution

q0(x) =
1√
2π

e
x2

2 .

However the terminal density function is specified as a
multi-modal density which is a mixture of two Lapla-
cians

qT (x) =
0.7

2
e|x−1| +

0.3

2
e−|x+3|.

The system parameter a(k), k = 0, · · · , 3 are i.i.d. sam-

10



Fig. 5. U(k) at time steps k = 0, 1, 2, 3.

Fig. 6. Realized control inputs u(k).

ples drawn from the uniform distributionU [0.5, 0.7]. The
results are given in Figure 7, 8 and 9. In this example,
the two modes are not close to each other as in Ex-
ample 2. However the realized control inputs are still
smooth, which validates the performance of our algo-
rithm in steering a group to separate groups relatively
far from each other.

4.2 Constrained density steering of a colossal group of
agents

In some scenarios, there are boundary conditions on the
control inputs. A common constraint is that they are
bounded by a compact interval [a, b] on R. To the best
of our knowledge, there has not been a feedback law for
a colossal group of agents with bounded controls. With
our proposed algorithm, we are able to treat the density
steering problem with bounded control inputs.

In Example 4, we will simulate a problem which is sort
of problematic however important in real practice. The
initial and the terminal densities are both chosen as a
mixture of two Gaussian densities, which are

Fig. 7. X(k) at time steps k = 0, 1, 2, 3.

Fig. 8. U(k) at time steps k = 0, 1, 2, 3.

Fig. 9. Realized control inputs u(k).

q0(x) =
0.5√
2π · 2

e
x2

2·22 +
0.5√
2π · 2

e
(x+1)2

2·22 ,
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and

qT (x) =
0.4√
2π

e
(x−1)2

2 +
0.6√
2π

e
(x+1)2

2 .

The density steering is performed in 5 steps. The control
inputs are bounded on the interval C = [−2, 2]. The
system parameter a(k), k = 0, · · · , 4 are i.i.d. samples
drawn from the uniform distribution U [0.5, 0.7].

The results are given in Figure 10, 11 and 12. We note
that at time step k = 0, XT −X(0) /∈ V2n

++. Then by the
proposed algorithm, we don’t apply control inputs to the
agents, which is shown in Figure 11. At time step k = 1,
we have XT − X(1) /∈ V2n

++. Hence we start applying
controls starting from this step. It takes 3 steps for us to
steer the density to the specified one.

The goal of the steering in this problem is to steer
two distinct groups of agents to specified terminal two
groups. The boundary of control inputs and the multiple
modality of both initial and terminal densities make the
problem a challenging one. By our proposed algorithm,
we give a solution to this problem and the realized
control inputs are still smooth, which is a satisfactory
performance.

Fig. 10. X(k) at time steps k = 0, 1, 2, 3, 4.

However, we may notice that we have not provided the
terminal densities by the effects of the proposed control
inputs, even the control inputs u(k), k = 0, 1, 2, 3 we
obtained have an analytic form of function. Because of
(3), we are not able to obtain an analytic u(K). Luckily,
our proposed algorithm by using the moments is able
to treat the occupation measure steering problem. The
analytic function u(k) at each time step is realized as
control inputs ui(k) of each agent i. We can therefore
obtain a terminal occupation measure to compare to the
specified one. In the following part of this section, we
simulate the occupation measure steering examples.

Fig. 11. U(k) at time steps k = 0, 1, 2, 3, 4.

Fig. 12. Realized control inputs u(k) at time steps
k = 1, 2, 3, 4. The agents are uncontrolled at k = 0, i.e.,
u(0) = 0.

4.3 Occupation measure steering of a colossal group of
agents

We simulate examples on occupationmeasure steering in
this part of section. In Example 5, we steer 1000 agents to
a specified occupation measure. The initial states of each
agent xi is drawn i.i.d. from the Gaussian distribution
(26). The specified terminal occupation measure con-
sists of 1000 i.i.d. samples drawn from the terminal dis-
tribution (27). The system parameter a(k), k = 0, · · · , 3
are i.i.d. samples drawn from the uniform distribution
U [0.5, 0.7].

The histograms of ui(k) at time step k for each agent i
are given in Figure 13. They are 1000 i.i.d samples drawn
from the realizations of U(k) in Figure 3. Figure 14 gives
the histogram of the terminal occupation measure of the
states of the 1000 agents. The power moments of order
1 to 4 of the terminal occupation measure by our pro-
posed algorithm are 1.21, 5.41, 14.44, 78.77 respectively.
We note that it is quite close to the desired terminal dis-
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Fig. 13. The histograms of ui(k) at time step k for each
agent i. The upper left and right figures are ui(0) and
ui(1), i = 1, · · · , 1000 respectively. The lower left and right
figures are ui(2) and ui(3) respectively.

Fig. 14. The histogram of the terminal occupation measure
of x(K) at time step K = 4. It is close to the specified
terminal distribution (27).

tribution, of which the power moments of order 1 to 4
are 1, 5, 13, 73 respectively. It validates our algorithm of
steering the occupation measure.

In Example 6, we steer 1000 agents to a specified occupa-
tion measure. The initial states of each agent xi is drawn
i.i.d. from the Gaussian distribution (26). The specified
terminal occupation measure consists of 1000 i.i.d. sam-
ples drawn from the terminal distribution (28), of which
the density is a mixture of two Gaussian densities. The
system parameter a(k), k = 0, · · · , 3 are i.i.d. samples
drawn from the uniform distribution U [0.5, 0.7].

The histograms of ui(k) at time step k for each agent i
are given in Figure 15. They are 1000 i.i.d samples drawn
from the realizations of U(k) in Figure 6. Figure 16
gives the histogram of the terminal occupation measure
of the states of the 1000 agents. We note that the power

moments of order 1 to 4 of (28) are −0.2, 2,−0.8, 10
respectively. The power moments of order 1 to 4 of
the terminal occupation measure by our proposed algo-
rithm are −0.19, 2.07,−0.84, 10.39 respectively, which
are quite close to the specified ones. Moreover, there are
two distinguishable modes in the histogram of u(K) by
our proposed algorithm as shown in Figure 16, which
shows that the algorithm maintains the number of
modes of the specified terminal distribution (28).

Fig. 15. The histograms of ui(k) at time step k for each
agent i. The upper left and right figures are ui(0) and
ui(1), i = 1, · · · , 1000 respectively. The lower left and right
figures are ui(2) and ui(3) respectively.

Fig. 16. The histogram of the terminal occupation measure
of x(K) at time step K = 4. It is close to the specified
terminal distribution (28).

5 A concluding remark

In this paper, we propose to usemoments for the problem
of steering a colossal group of agents. The colossal group
of agents are characterized as probability density func-
tions and occupationmeasures.We first treat the density
steering problem. Without assuming the initial and ter-
minal density to fall within specific function classes, the
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original problem is infinite-dimensional and intractable.
As to treat this problem, we propose a moment system
representation of the original system, and reduce the
original problem to the control of the moment system.
Different from the conventional control problems, the el-
ements of the control inputs are in the system matrix,
and we have to ensure the Hankel matrix of the control
inputs at each time step to be positive definite. Since it
is not treatable by the existing control schemes includ-
ing the commonly used optimal control, we propose an
empirical control scheme to treat this problem. By do-
ing this, it is feasible for us to realize the control inputs
for the original system. Since the problem is infinite-
dimensional, where error of the terminal density from
the specified one is inevitable, we propose an error up-
per bound of the terminal density by using our proposed
algorithm. Our algorithm of steering an arbitrary initial
density to another arbitrary one in limited steps for the
discrete-time system, without assuming their function
classes, is the first one in the literature.

Based on the proposed density-steering algorithm, we
put forward an algorithm steering an arbitrary occupa-
tion measure representing the colossal group of agents to
another arbitrary one. We use acceptance-rejection sam-
pling to draw i.i.d. samples from the realized control in-
puts u(k) and assign them to each agents. By doing this,
the control inputs are independent of the current states
of each agent. Our proposed algorithm is again the first
one in the literature which is able to steer an arbitrary
occupation measure to another one of which the power
moments are as specified within limited time steps.

This paper treats the group steering problem of the first-
order time-variant linear system. However, the problem
is much more complicated for multi-order and multivari-
ate systems. For first-order systems, the control inputs
u(k)’s are one-dimensional density functions. Hence the
positive definiteness of the Hankel matrix of each U(k)
is the necessary and sufficient condition of the existence
of u(k) [16]. However for multi-dimensional densities, it
is no longer valid. To derive control inputs U(k)’s for the
moment system then to realize them will be a challeng-
ing problem. Results in subjects e.g. multi-dimensional
moment problem and real algebraic geometry shall be
used to treat the group steering problem for those sys-
tems.
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