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General Distribution Steering: A Sub-Optimal
Solution by Convex Optimization
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Abstract— General distribution steering is intrinsically
an infinite-dimensional problem, where the distributions to
steer are arbitrary. In the literature, the distribution steering
problem governed by system dynamics is usually treated
by assuming the distribution of the system states to be
Gaussian. In our previous paper, we considered the dis-
tribution steering problem where the initial and terminal
distributions are arbitrary (only required to have first sev-
eral orders of power moments), and proposed to use the
moments to turn this problem into a finite-dimensional one.
We put forward a moment representation of the primal
system for control. However, the control law in that paper
was an empirical one without optimization towards a design
criterion, which doesn’t always ensure a most satisfactory
solution. In this paper, we propose a convex optimization
approach to the general distribution steering problem of
the first-order discrete-time linear system, i.e., an optimal
control law for the corresponding moment system. The
optimal control inputs of the moment system are obtained
by convex optimization, of which the convexity of the do-
main is proved. An algorithm of distribution steering is then
put forward by adopting a realization scheme of control
inputs proposed in our previous paper [27]. Experiments
on different types of cost functions are given to validate the
performance of our proposed algorithm. Since the moment
system is a dimension-reduced counterpart of the primal
system, and we are not optimizing the cost function over all
feasible control inputs, we call this solution a sub-optimal
one to the primal general distribution steering problem.

Index Terms— Stochastic control, distribution steering,
method of moments.

I. INTRODUCTION

In this paper, we consider the problem of steering the
distribution of the state where the system dynamics is governed
by a discrete time stable first-order linear stochastic difference
equation. The linear dynamics of the system reads

x(k + 1) = a(k)x(k) + u(k). (1)

Since the system is stable and we assume a(k) to be positive,
we have a(k) ∈ (0, 1). The control input to the system
at time step k is defined as u(k), and x(k) is its state.
Given an initial random variable x(0), the distribution steering
problem amounts to choosing a sequence of random variables
(u(0), u(1), · · · , u(K−1)), so that the probability distribution
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q0 of x(0) is transferred to the distribution qK of x(K) at some
future time K. For the general distribution steering problem,
as is proposed in [25], the distributions of all x(k) and u(k)
are all arbitrary, which are not assumed to fall within specific
classes of function. Therefore, the general distribution steering
problem is intrinsically an infinite-dimensional one.

The distribution steering problem has a history of decades
of years [9], [10], [13], [14], [31], and is recently a hot topic
in control theory and engineering, due to its theoretical and
practical merits in miscellaneous areas such as the swarm
robotics and flow modeling. Roughly speaking, there are two
main lines of research on the distribution steering problem.

For the first line of research, people consider the distribution
steering problem where there is no other external or internal
forces except for the control inputs, i.e., the system dynamics
is x(k + 1) = x(k) when no control input is applied
to the system. This problem is widely considered for the
distribution steering of swarm robots, where the system state
x(k) represents the positions of the robots. Zheng, Han and
Lin [34]–[36] used mean-field partial differential equations,
namely the Fokker–Planck equation to model the swarm and
control the mean-field density of the velocity field. Biswal,
Elamvazhuthi and Berman [1], [11] attempted to treat this
problem by stabilizing the corresponding Kolmogorov forward
equation, the mean-field model of the system. Caluya and
Halder [5] proposed Wasserstein proximal algorithms for the
Schrödinger bridge considering this problem.

For the other line of research, people consider the system
dynamics of the group of agents to be controlled. This
type of distribution steering is more general than the first
type, however is inevitably more difficult. As a tradeoff, the
distribution of the agents are assumed to fall within specific
classes of functions to ensure the solvability of the problem.
A most widely considered distribution is the Gaussian, which
ensures a closed form of solution to the distribution steering
problem. The distribution steering problem is then reduced to
steering the statistics of the distribution. For the Gaussians,
the task is to steer the mean and variance of the distributions,
which is called ”covariance steering” in the literature. Pio-
neering results for covariance steering include [21], [22] by
Okamoto and Tsiotras, [18]–[20] by Liu and Tsiotras, [32] by
Yin, Zhang, Theodorou and Tsiotras and [23] by Saravanos,
Balci, Bakolas and Theodorou. Moreover, Sivaramakrishnan,
Pilipovsky, Oishi and Tsiotras [25] proposed to treat the
non-Gaussian distribution steering problem by characteristic
functions, which was one of the earliest attempts for the
general distribution steering. For the continuous-time linear
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systems, Chen, Georgiou and Pavon have proposed fundamen-
tal results using the Schrödinger Bridge strategy for Gaussian
distributions [6], [7] and more general distributions [8]. Caluya
and Halder [4] extended the results to nonlinear continuous-
time systems and hard state constraints. Moreover, Sinigaglia,
Manzoni, Braghin and Berman [24] put forward a robust
optimal density control of robotic swarms.

The results above and many others contributed a lot to the
distribution steering problem, but the distributions have been
always assumed to fall within specific function classes. For
many practical problems, such as to steer a group of agents,
which will be treated in the following sections of this paper,
it is not always possible for us to assume the distribution of
the group of agents to be Gaussian. However to the best of
our knowledge, there has not been a complete result for the
distribution steering problem considering discrete-time linear
systems where the initial and terminal distributions are non-
Gaussian. Moreover, since the problem of general distribution
steering is infinite-dimensional, the error of the solution is
inevitable. It makes the problem an open and hence a non-
trivial one.

Let’s turn our eyes to another way of characterizing the
probability distribution. In the probability theory, we know
that a distribution function can be uniquely determined by
its full power moment sequence [37]. The primal problem
is to control the system state as a probability distribution. If
the distribution is only assumed to be Lebesgue integrable,
it is an uncountably infinite-dimensional problem, which is
generally not tractable. By controlling the full power moment
sequence instead of the distribution of system state, the
problem is reduced to a countably infinite-dimensional one,
which isn’t feasible either. However, by properly truncating
the first several terms of the power moment sequence for
characterizing the density of the system state [3], [30], the
problem is now steering a truncated power moment sequence
to another, which is finite-dimensional and tractable. It is not
the first time in the literature that the power moments are
used for control purposes. Jasour, together with Lagoa [16]
proposed to reconstruct the support of a measure from its
moments. It works well for the uniform distributions. Partly
based on this result, he, Wang and Williams [15] addressed
the problem of uncertainty propagation through the control of
nonlinear stochastic dynamical systems. In our previous result
[28], we proposed to give a reduced-order counterpart of the
primal system by the power moments, and to perform controls
on the moment system. However, the control law in that paper
was empirical. We was not able to design the control inputs
by desired criteria through optimization in the manner of the
conventional optimal control.

In this paper we investigate the general distribution steering
of the first-order discrete-time linear stochastic system, where
the specified initial and terminal distributions are arbitrary
(only required to have first several power moments) by convex
optimization. The paper is structured as follows. In Section
2, we propose a moment counterpart of the primal discrete-
time linear system. Then we formulate the distribution steering
problem by the moment system. The controllability of the
moment system is also investigated. In Section 3, we propose

a convex optimization scheme for controlling the moment
system. Since the Hankel matrices of the moments of control
inputs and system states need to be positive definite, the
domain of the feasible moments of the control inputs given the
desired terminal moments of the system state is not a convex
set, of which the topology is complicated. We put forward
a domain for optimization and prove the convexity of it. We
then provide possible choices of the convex cost functions with
proofs to their convexity in Section 4. Then in Section 5, we
use a distribution parametrization algorithm proposed in our
previous paper [30] to realize the control inputs as analytic
functions by the power moments obtained from the proposed
control scheme. In Section 6, we put forward algorithms for
two types of distribution steering problem, namely the contin-
uous distribution steering and the discrete distribution steering.
We consider two typical distribution steering problems in
practice for simulation in Section 7. The first one is to separate
a group of agents into several smaller groups, and the second
one is to steer the agents in separate groups to desired terminal
groups. The numerical examples show the performance of our
proposed algorithms with different types of cost functions.

II. A MOMENT FORMULATION OF THE PRIMAL PROBLEM

In this section we treat the distribution steering problem
formulated in Section 1. Unlike the traditional control strate-
gies, we extend the control inputs to a random variable
rather than a function of the system state. However it is still
not always possible to obtain a closed-form solution to this
problem. If the distributions are not assumed to fall within
certain specific classes, the problem is intrinsically infinite-
dimensional. Define the distribution of the control u(k) as
pk(x). We further assume the system states x(k) and the
control inputs u(k) are independent. This assumption is not
the first time in the literature, which has already been used
in [26] for treatments of stochastic control systems. By this
assumption the distribution of x(k + 1) can be written as

qk+1(t) =

∫
R
qk

(
ξ

a(k)

)
pk (t− ξ) dξ

=

(
qk

(
t

a(k)

)
∗ pk(t)

)
(t).

(2)

For the distribution steering problem, a solution in analytic
form of qk+1(t) in (2) is necessary. However, except for
limited classes of functions such as Gaussian distributions and
trigonometric functions, this isn’t possible in general. This is
the main reason why in previous results which have similar
problem setting, the examples have almost always Gaussian or
trigonometric densities. This severely limits the use of these
results in real applications.

A similar problem exists in non-Gaussian Bayesian filtering.
In our previous results [30], we proposed a method of using
the truncated power moments to reduce the dimension of this
problem, mainly for characterizing the macroscopic property
of the distributions. This strategy can be found in [2], [12],
which turns the problem we treat to a tractable truncated
moment problem.
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By the system equation (1), the power moments of the states
up to order 2n are written as

E
[
xl(k + 1)

]
=

l∑
j=0

(
l

j

)
aj(k)E

[
xj(k)ul−j(k)

]
. (3)

We note that it is difficult to treat the term
E
[
xj(k)ul−j(k)

]
. However, we note that if x(k) and u(k) are

independent, i.e., E
[
xj(k)ul−j(k)

]
= E

[
xj(k)

]
E
[
ui−j(k)

]
,

the dynamics of the moments can be written as a linear
matrix equation

X(k + 1) = A(U(k))X(k) + U(k) (4)

where the state vector is composed of the power moment
terms up to order 2n, i.e.,

X(k) =
[
E[x(k)] E[x2(k)] · · · E[x2n(k)]

]T
, (5)

and the input vector is written as

U(k) =
[
E[u(k)] E[u2(k)] · · · E[u2n(k)]

]T
. (6)

Here
E
[
xl(k)

]
=

∫
R
xlqk(x)dx (7)

and

E
[
xj(k)ul−j(k)

]
=

∫
R
xjqk(x)dx

∫
R
ul−jpk(u)du.

for l ∈ N0 (N0 denotes the set of all nonnegative integers),
l ≤ 2n. Similarly we have

E
[
ul(k)

]
=

∫
R
ulpk(u)du. (8)

The matrix A(U(k)) in the system (4) can then be written as
(9).

By using the truncated power moments to characterize the
dynamics of system (1) where x(k) and u(k) are random
variables, we shall reformulate the control problem as steering
the power moments of the x(k) and u(k). System (4) is called
the moment system corresponding to system (1). The power
moment steering problem is then formulated as follows.

Problem II.1. The dynamics of the moment system is

X(k + 1) = A(U(k))X(k) + U(k)

where X(k),U(k) are obtained by (7) and (8). Given an arbi-
trary initial distribution q0(x) and terminal power moments
{σi}i=1:2n, determine the control sequence

(u(0), · · · , u(K − 1))

so that the first 2n order power moments of the terminal
distribution are identical to those specified, i.e.,

X(K) =

∫
R
xlqK(x)dx = σl (10)

for l = 1, · · · , 2n.

However for the moment system to control, there remains
to design control laws which satisfy

E
[
xj(k)ul−j(k)

]
= E

[
xj(k)

]
E
[
ui−j(k)

]
. (11)

To satisfy (11), the control vector is required to be in-
dependent of the current state vector. In the conventional
feedback control law, this is hardly possible since the control
inputs are always functions of the state vectors. However, for
distribution steering problems, we note that it is possible to
satisfy (11), since the control inputs of the primal system,
as well as the system states, are probability distributions. For
a given system state, by drawing an i.i.d. sample from the
probability distribution of the control input, we are able to
obtain a control input which is independent of the current
system state. By doing this, x(k) and u(k) are independent,
i.e., (11) is satisfied.

Moreover, we note that the control inputs in the moment
system are essentially the power moments of the controls to
the primal system (1). For the univariate random variables, the
sufficient and necessary condition of existence is the positive
definiteness of the Hankel matrix. The Hankel matrix of X(k)
reads

[X(k)]H =


1 E [x(k)] . . . E [xn(k)]

E [x(k)] E
[
x2(k)

]
. . . E

[
xn+1(k)

]
...

...
. . .

E [xn(k)] E
[
xn+1(k)

]
E
[
x2n(k)

]
 .

where [X(k)]H denotes the Hankel matrix. Moreover, we
define a subspace of R2n as V2n

++ := {X ∈ R2n | [X]H ≻ 0}.
Different from the conventional control problems, we confine
both X(k) and U(k) for k = 0, · · · ,K−1 to fall within V2n

++

to ensure the existence of the corresponding x(k) and u(k). It
makes the problem more complicated than usual. Therefore,
before we really settle down to treat the control of the moment
system (4), we would first like to prove the controllability of
it.

Theorem II.2 (Controllability of system (4)). Given system
equation (4), there exists a K, satisfying K < +∞ and K ∈
N0, such that an arbitrary initial X(0) can be steered to an
arbitrary XT within K steps.

Proof. It suffices to prove that there always exists a control
sequence (U(0), · · · ,X(K− 1)), which is feasible of steering
an arbitrary X(0) to an arbitrary X(K − 1).

We propose the following control strategy. Before time step
k0, the system is uncontrolled, i.e., U(k) = 0 for k ≤ k0.
Then we have

X(k0) = A0:k0−1 (0)X(0)

where

A0:k0−1 (0) =


∏k0−1

k=0 a(k)
. . . ∏k0−1

k=0 a2n(k)

 .
We then have

lim
k0→+∞

A0:k0−1 (0)X (0) = 0. (12)
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A(U(k)) =


a(k) 0 0 · · · 0

2a(k)E[u(k)] a2(k) 0 · · · 0
3a(k)E[u2(k)] 3a2(k)E[u(k)] a3(k) · · · 0

...
...

...
. . .(

2n
1

)
a(k)E[u2n−1(k)]

(
2n
2

)
a2(k)E[u2n−2(k)]

(
2n
3

)
a3(k)E[u2n−3(k)] a2n(k)

 . (9)

Substitute k = k0 into (4), we have

X(k0 + 1)

=A(U(k0))X(k0) + U(k0)

=A(U(k0))A0:k0−1 (0)X(0) + U(k0)

Since [X(k0 + 1))]H ≻ 0 obviously, by (12), there always
exists a k0 < +∞ such that

U(k0)

=X(k0 + 1)−A(U(k0))A0:k0−1 (0)X(0) ∈ V2n
++.

III. A CONVEX OPTIMIZATION SCHEME

Suppose we are now confronted with the distribution steer-
ing problem for system (4), of which the initial moment vector
is X(0) and the terminal moment vector is XT as desired.

It would be natural for one to consider obtaining the moment
vectors of the controls by the following optimization scheme

minimize f(U(0), · · · ,U(K − 1))

s.t. X(k + 1) = A(U(k))X(k) + U(k),

X(K) = XT , U(k) ∈ V2n
++.

(13)

where f(·) is a cost function. By selecting f(·) as a convex
function, the optimization problem (13) is convex, given that
the following set

UXT
:= { (U(0), · · · ,U(K − 1)) | X(k + 1) = A(U(k))X(k)

+ U(k),X(K) = XT }

is convex. However, it is not the case, which will be proved
in the following lemma.

Lemma III.1. The set UXT
is not convex, given that K > 1.

Proof. Let us assume two series (U(0), · · · ,U(K − 1)) ∈ UT

and
(
Ũ(0), · · · , Ũ(K − 1)

)
∈ UT . For the set UT to be

convex, we need to have(
λU(0) + (1− λ) Ũ(0), · · · , λU(K − 1)

+ (1− λ) Ũ(K − 1)
)
∈ UT , ∀λ ∈ (0, 1)

Since the two series are in the set UT , we have

X1(1) = A(U(0))X(0) + U(0)

and
X2(1) = A(Ũ(0))X(0) + Ũ(0).

By (4) we have

A
(
λU(0) + (1− λ) Ũ(0)

)
X(0)

+λU(0) + (1− λ) Ũ(0)

=λ (A (U(0))X(0) + U(0))

+ (1− λ)
(
A
(
Ũ(0)

)
X(0) + Ũ(0)

)
=λX1(1) + (1− λ)X2(1).

(14)

However we note that

A
(
λU(1) + (1− λ) Ũ(1)

)
(λX1(1) + (1− λ)X2(1))

+λU(1) + (1− λ) Ũ(1) ̸= λX1(2) + (1− λ)X2(2).

Similarly, we have

A
(
λU(k) + (1− λ) Ũ(k)

)
(λX1(k) + (1− λ)X2(k))

+λU(k) + (1− λ) Ũ(k) ̸= λX1(k + 1) + (1− λ)X2(k + 1)

for k > 1, which completes the proof.

Lemma III.1 proves that set UXT
is not a convex set. More-

over, feasible (U(0), · · · ,U(K − 1)) ∈ UXT
are solutions of

(4), which don’t have an explicit form of function. Therefore,
to obtain an optimal solution to (13) is hardly a possible task.

Due to the complicated topology of the set UXT
, we don’t

expect to perform optimization over this set. Instead, we turn
our eyes to obtaining a subset of UXT

which is convex. By
Lemma 2.3 in [27], we have that

e(k0) = XT − X(k0) ∈ V2n
++, ∃k0 <∞. (15)

Furthermore, we have

X(k) = X(k0) + ωke(k0) ∈ V2n
++ (16)

for k = k0, · · · ,K and 0 = ωk0
≤ · · · ≤ ωK = 1. Here the

elements of XT are the power moments corresponding to the
specified terminal distribution qT (x).

This lemma provides us with a way of choosing the subset
of UXT

. Instead of optimizing over all feasible U(k), the
problem can now be formulated as an optimization over ωk

for k = k0 + 1, · · · ,K − 1. The advantage of doing this is
also obvious: the realizability of X(k) for k = k0, · · · ,K is
guaranteed, i.e., the Hankel matrices of all X(k) are positive-
definite. However, the convexity of the set of all feasible
(ωk0+1, · · · , ωK−1) is not known either. Now the problem
comes to prove the convexity of the set of all feasible
(ωk0

, · · · , ωK−1).

Proposition III.2. There exists a sequence

(ω̆k0+1, · · · , ω̆K−1) , 0 ≤ ω̆k < 1
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for k = k0, · · · ,K − 1, with which the following set

WXT
:=

{(ωk0+1, · · · , ωK−1) | ωk ≤ ω̆k,

X(k + 1) = A(U(k))X(k) + U(k),

X(k) = X(k0) + ωk−1e(k0), k = k0 + 1, · · · ,K − 1,

ωk0+1 ≤ · · · ≤ ωK−1}
is convex.

Proof. Substitute k = K − 1 and (16) into (4), we have

XT = A(U(K − 1)) (XT − (1− ωK−1) e(k0)) + U(K − 1),

which can be equivalently written as

U(K − 1)

= (I −A(U(K − 1)))XT

+A(U(K − 1)) (1− ωK−1) e(k0)

(17)

where I is the 2n×2n identity matrix. Differentiate it over
ωK−1, and we have

∂U(K − 1)

∂ωK−1

=− ∂A(U(K − 1))

∂ωK−1
XT

+
∂A(U(K − 1))

∂ωK−1
(1− ωK−1) e(k0)

−A(U(K − 1))e(k0)

(18)

We ignore the first two terms of the RHS of (18), of which
the absolute values are relatively small compared to the third
term (see Appendix for details). Then we have the following
approximation

∂U(K − 1)

∂ωK−1

≈−A(U(K − 1))e(k0)

=−A(U(K − 1))e(k0)− U(K − 1) + U(K − 1)

=− X̃(K) + U(K − 1)

where X̃(K) is the moment vector of x̃(K), and

x̃(K) = a(K − 1)x̃(k0) + u(K − 1)

where x̃(k0) is a realization of e(k0). We note that by our
proposed algorithm, x̃(k0) and u(K − 1) are in the same
direction, i.e.,

a(K − 1)x̃(k0) + u(K − 1) = αu(K − 1)

where α > 1. Therefore,

X̃(K) =

α . . .
α2n

U(K − 1).

And we have

−∂U(K − 1)

∂ωK−1
=

α− 1
. . .

α2n − 1

U(K − 1)

Lemma III.3.
−∂U(K − 1)

∂ωK−1
∈ V2n

++

Proof. By the Lyapounov’s inequality [17], we have that for
s, t ∈ N0, s < t,

(E [|u|s])
1
s ≤

(
E
[
|u|t

]) 1
t . (19)

Then we need to prove

((αs − 1)E [|u|s])
1
s ≤

((
αt − 1

)
E
[
|u|t

]) 1
t . (20)

By (19), we have((
αt − 1

)
E [|u|s]

) 1
s ≤

((
αt − 1

)
E
[
|u|t

]) 1
t .

Since αt − 1 > αs − 1, we prove (20), which completes the
proof of Lemma III.3.

Lemma III.3 reveals the fact that with the decrease of ωK−1,
the eigenvalues of the Hankel matrix of U(K − 1) increases.

Moreover, by Proposition 3.2 in [27], we have that ∃k0 such
that

X(K) = A(U(k0))X(k0) + U(k0),

where the corresponding ωk0
= · · · = ωK−1 = 0. Therefore,

for k = K − 1, there exists an ω̆K−1 such that U(K − 1) ∈
V2n

++,∀ωK−1 ∈ [0, ω̆K−1]. Now we inspect the feasible ωk for
k = k0, · · · ,K− 2. The control input at time step k = K − 2
reads

U(K − 2)

= (I −A(U(K − 2)))X(K − 1)

+A(U(K − 2)) (1− ωK−2) e(k0)

Differentiate it over ωK−2, and we have

∂U(K − 2)

∂ωK−2
=− X̃(K − 1) + U(K − 2),

where X̃(K) is the moment vector of x̃(K), and

x̃(K − 1) = a(K − 2)x̃(k0) + u(K − 2).

Luckily we have that by our proposed algorithm, x̃(k0) and
u(K − 2) are in the same direction, i.e.,

a(K − 2)x̃(k0) + u(K − 2) = αu(K − 2)

where α > 1. Then we are able to prove that there exists an
ω̆K−2 such that U(K − 2) ∈ V2n

++,∀ωK−2 ∈ [0, ω̆K−2].
Similarly, we can prove that there exists an ω̆k

such that U(k) ∈ V2n
++,∀ωk ∈ [0, ω̆k], for k =

k0, · · · ,K − 1. Assume two elements of WXT
, namely

(ηk0 , · · · , ηK−1), (ϵk0 , · · · , ϵK−1) ∈ WXT
. It is easy to verify

that ∀λ ∈ (0, 1), we have

λ(ηk0
, · · · , ηK−1) + (1− λ)(ϵk0

, · · · , ϵK−1)

= (ληk0
+ (1− λ)ϵk0

, · · · , ληK−1 + (1− λ)ϵK−1) ∈ WXT

which proves that WXT
is convex and hence completes the

proof to the proposition.
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By Proposition III.2, a sub-optimal solution of (13) can then
be obtained by the following optimization problem

minimize f(ωk0 , · · · , ωK−1)

s.t. (ωk0 , · · · , ωK−1) ∈ WXT

(21)

which is a convex one if the function f(·) is chosen as a
convex one. In this formulation of the optimization problem,
the Hankel matrices of the moment vectors of the system
states are confined to be positive definite, which ensures the
existence of the system states.

IV. CHOICES OF THE COST FUNCTIONS

In the previous section, we proposed a convex optimiza-
tion scheme for treating the control of the moment system.
However, we have not yet specified the convex function f(·)
that we are to use for optimization. In this section, we will
put forward different choices of cost functions considering
different properties of the control inputs u(k) that we desire.

We note that in the conventional optimal control algorithms,
the energy effort is a typical type of cost term, which is
the second order moment of a control input. However in our
problem, higher order moments are considered for the control
task. Different types of cost functions can then be designed to
achieve different design specifications. In the following part of
this section, we will propose different design specifications and
the corresponding cost functions for the distribution steering
problem.

A. Maximal smoothness of state transition

In our previous paper [27], we considered the smoothness
of the transition of the system state X(k), where we choose
ωk = k−k0

K−k0
. However, as is mentioned in [27], this choice

of ωk doesn’t always ensure the positive definiteness of the
moment vector U(k). We choose the cost function f as

f(ωk0
, · · · , ωK−1) =

K−1∑
i=k0

(ωi+1 − ωi)
2
+ ω2

k0
, (22)

where ωK = 1. Then we have

▽2f(ωk0
, · · · , ωK−1) =


4 −2
−2 4 −2

−2
. . . −2
−2 4

 ≻ 0,

i.e., the optimization problem we treat is now a convex one,
with the sequence (ωk0

, · · · , ωK−1) confined to fall within the
set WXT

.

B. Minimum energy effort

In some situations, the energy is restricted and we need to
take the energy effort into consideration for the control tasks.
The cost function can then be chosen as

f(ωk0 , · · · , ωK−1) =

K−1∑
i=k0

E
[
u2(k)

]
(23)

It is a conventional cost function for optimal control.
However in our problem, the parameters to be optimized are
ωk, k = k0, · · · ,K − 1, of which (23) is an implicit function.
Now the problem suffices to prove that (23) is convex over
ωk.

By our proposed algorithm, we have

∂2E
[
u2(k)

]
∂ωk∂ωl

= 0,∀k ̸= l.

Hence to prove the convexity of f is equivalent to prove

∂2E
[
u2(k)

]
∂ω2

k

≥ 0,∀k ∈ k0, · · · ,K − 1.

We first consider k = k0. By (3) we have

E [x(k0 + 1)]

=E [x(k0)] + ωk0
(E [xT ]− E [x(k0)])

=a(k0)E [x(k0)] + E [u(k0)]

Then we have
∂E [u(k0)]

∂ωk0

= E [xT ]− E [x(k0)]

By (3) we could also write

E
[
x2(k0 + 1)

]
=E

[
x2(k0)

]
+ ωk0

(
E
[
x2T

]
− E

[
x2(k0)

])
=a2(k0)E

[
x2(k0)

]
+ 2a(k0)E [x(k0)]E [u(k0)]

+E
[
u2(k0)

]
Now the second order moment of u(k0) reads

E
[
u2(k0)

]
=
(
1− a2 (k0)

)
E
[
x2(k0)

]
− 2a(k0)E [x(k0)]E [u(k0)]

+ωk0

(
E
[
x2T

]
− E

[
x2(k0)

])
By differentiating both sides of the equation over ωk0

, we
have

∂E
[
u2(k0)

]
∂ωk0

=− 2a(k0)E [x(k0)]
∂E [u(k0)]

∂ωk0

+E
[
x2T

]
− E

[
x2(k0)

]
=− 2a(k0)E [x(k0)] (E [xT ]− E [x(k0)])

+E
[
x2T

]
− E

[
x2(k0)

]
.

We note that since the system (1) is stable, we have

|E [x(k0)]| → 0, E
[
x2(k0)

]
→ 0

with k0 → ∞. Hence we have

∂E
[
u2(k0)

]
∂ωk0

> 0

with a proper choice of k0.
Similarly, with a proper choice of k0, we will have

∂E
[
u2(k)

]
∂ωk

> 0, ∀k0 ≤ k ≤ K − 1.

Now we have proved that by our proposed algorithm, a
sequence of control inputs with the minimal energy effort can
also be obtained, given a proper choice of k0.
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C. Minimum Energy Effort and System Energy

In some scenarios, we also consider the energy of the
system states to be minimized. For example, we consider the
cost function, which is a weighted sum of the second order
moments of control inputs and system states.

f (ωk0 , · · · , ωK−1) =

K−1∑
k=k0

E
[
u2(k)

]
+

K−1∑
k=k0

E
[
x2(k)

]
In Part B of this section, we have proved that the first term
of the RHS of equation (25) is convex. Hence it remains to
prove that the second term is also convex. By (17), we have
that

K−1∑
k=k0

E
[
x2(k)

]
=(K − k0)E

[
x2 (k0)

]
+

K−1∑
k=k0

ωk

(
E
[
x2T

]
− E

[
x2 (k0)

])
Since E

[
x2T

]
and E

[
x2 (k0)

]
are constants, we have

∂
∑K−1

k=k0
E
[
x2(k)

]
∂ωi∂ωj

= 0,

i.e.,
∑K−1

k=k0
E
[
x2(k)

]
is convex. Therefore, (25) is convex.

D. A more general form of cost function

We consider a more general form of cost function and
inspect whether it is a convex one. The cost function reads

f (ωk0 , · · · , ωK−1)

=E
[
αx2(k) + βu2(k) + γx(k)u(k) + ϵx(k) + ζu(k) + ψ

]
=αE

[
x2(k)

]
+ βE

[
u2(k)

]
+ γE[x(k)]E[u(k)] + ϵE[x(k)]

+ζE[u(k)] + ψ
(24)

where α, β, γ, ϵ, ζ, ψ > 0 are weights of importance. By the
results of previous parts of this section, the first two terms of
the RHS of (26) are convex. Now it remains to prove that the
other three terms are also convex.

Since E[x(k)] is a constant, the fourth term is convex.
Similar to (24), we have

∂E[u(k)]
∂ωk

= E [xT ]− E [x (k0)]

We then have

∂2γE[x(k)]E[u(k)]
∂ωi∂ωj

= 0, ∀k0 ≤ i, j ≤ K − 1

and
∂2ζE[u(k)]
∂ωi∂ωj

= 0, ∀k0 ≤ i, j ≤ K − 1

Therefore, we have that (26) is also a convex one. In this
paper, we mainly consider the previous four cost functions.
However, the cost functions are not limited to these four. Cost
functions considering other orders of power moments can also
be applied to form the convex optimization problem.

V. REALIZATION OF THE CONTROL INPUTS AND AN
ALGORITHM FOR DISTRIBUTION STEERING

In the previous section, we put forward a control law for
the moment system in the manner of the conventional optimal
control scheme. However by the control law in the previous
sections, the control inputs we obtained are those of the
moment system, i.e., U(k) for k = 0, · · · ,K − 1. In order
to control the primal system, we need to further obtain u(k)
for k = 0, · · · ,K − 1. In this section, we will propose an
algorithm to determine the u(k) given U(k) obtained by the
optimization problem (22). This problem is an ill-posed one,
i.e., there might be infinitely many feasible u(k) to a given
U(k). However, we will select a unique solution u(k) by the
algorithm proposed in this section, which satisfies the given
U(k). That’s why we use the word determine here.

Moreover, for the sake of simplicity, we omit k if there is no
ambiguity in the following part of this section. The problem
now becomes that of proposing an algorithm which estimates
the distribution of u(k), for which the power moments are as
specified.

A convex optimization scheme for distribution estimation by
the Kullback-Leibler distance has been proposed in [30] con-
sidering the Hamburger moment problem, which is used for
control input realization in our previous paper [27]. Moreover,
we observed that the performance of estimation for probability
distributions which are relatively smooth can be improved by
using the squared Hellinger distance as the metric [29]. We
adopt this strategy in this paper for treating the realization of
the control inputs. The procedure is as follows. Let P be the
space of probability distributions on the real line with support
there, and let P2n be the subset of all p ∈ P which have at
least 2n finite moments (in addition to E

[
u0(k)

]
, which of

course is 1). The squared Hellinger distance is then defined as

H2(r, p) =

∫
R
(
√
r(u)−

√
p(u))2du

where r is an arbitrary probability distribution in P . We define
the linear integral operator Γ as

Γ : p(u) 7→ Σ =

∫
R
G(u)p(u)GT (u)du,

where p(u) belongs to the space P2n. Here

G(u) =
[
1 u · · · un−1 un

]T
and

Σ =


1 E[u] · · · E [un]

E[u] E
[
u2

]
· · · E

[
un+1

]
...

...
. . .

E [un] E
[
un+1

]
E
[
u2n

]


where E
[
ui
]
, i = 1, · · · , 2n are the elements of the designed

control U . Moreover, since P2n is convex, then so is range
(Γ) = ΓP2n. We let

L+ :=
{
Λ ∈ range(Γ) | G(u)TΛG(u) > 0, x ∈ R

}
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Given any r ∈ P and any Σ ≻ 0, there is a unique p̂ ∈ P2n

that minimizes (27) subject to Γ(p̂) = Σ, namely

p̂ =
r(

1 +GT Λ̂G
)2

where Λ̂ is the unique solution to the problem of minimizing

Jr(Λ) := tr(ΛΣ) +

∫
R

r

1 +GTΛG
du (25)

Then the distribution estimation is formulated as a convex
optimization problem. The map Λ 7→ Σ has been proved to be
homeomorphic, which ensures the existence and uniqueness
of the solution to the realization of control inputs [29]. Unlike
other moment methods, the power moments of our proposed
distribution estimate are exactly identical to those specified,
which makes it a satisfactory approach for realization of the
control inputs [29]. Since the prior distribution r(u) and the
distribution estimate p̂(u) are both supported on R, r(u) can
be chosen as a Gaussian distribution (or a Cauchy distribution
if p̂(u) is assumed to be heavy-tailed).

VI. TWO TYPES OF GENERAL DISTRIBUTION STEERING
PROBLEMS AND THE CORRESPONDING ALGORITHMS

In the previous sections of the paper, we considered the
general distribution steering problem which only assumes the
existence of the first several finite power moments. Loosely
speaking, the distributions can be divided into two types,
namely the continuous and discrete ones. In this section, we
will propose algorithms corresponding to the two types of
distributions.

A. An algorithm for continuous distribution steering

We first consider the continuous distribution steering algo-
rithm, which is concluded in the following Algorithm 1.

There is still an important issue to consider in the algo-
rithm, which is to determine the set WXT

. By the proof of
Proposition III.2, it is equivalent to determine the maximal
ωK−1 ∈ (0, 1). It can be treated by the following optimization.

maxωK−1

s.t. XT = A(U(K − 1)) (1− ωK−1)XT + U(K − 1), 1 · · · E [un(K − 1)]
...

. . .
E [un(K − 1)] E

[
u2n(K − 1)

]
 ⪰ 0

0 < ωK−1 < 1.

As is emphasized in the previous sections, the general dis-
tribution steering problem is a infinite-dimensional problem,
of which the error of the terminal distribution from the desired
one is inevitable. In our previous paper [28], we derived a tight
upper bound for this error in the sense of the total variation
distance, which is also valid for the realization for the control
inputs by the squared Hellinger distance in this paper.

Algorithm 1 Continuous distribution steering.
Input: The maximal time step K; the parameter of the

system a(k) for k = 0, · · · ,K − 1; the initial system dis-
tribution q0(x); the specified terminal distribution qT (x).

Output: The controls u(k), k = 0, · · · ,K − 1.
1: k ⇐ 0
2: while k < K and e(k) /∈ V2n

++ do
3: Calculate X(k) by (4) if k > 0 or by (5) if k = 0
4: Calculate e(k) by (15)
5: if e(k) ∈ V2n

++ then
6: Optimize the cost function f (ωk0 , · · · , ωK−1)

over the domain WXT
, which is a convex optimization

problem. Obtain the optimal ω∗
k0
, · · · , ω∗

K−1.
7: Calculate the states of the moment system X(i) for
i = k + 1, · · · ,K − 1 by (16) with ω∗

k0
, · · · , ω∗

K−1

8: Calculate the controls of the moment system U(i)
for i = k, · · · ,K − 1 by (4)

9: Optimize the cost function (25) and obtain the
analytic estimates of the distributions p̂i(u) for i =
k, · · · ,K − 1

10: else
11: u(k) = 0
12: end if
13: Calculate the power moments of the system state x(k+

1), i.e., X(k + 1)
14: k ⇐ k + 1
15: end while

B. An algorithm for discrete distribution steering

In the real applications, we are sometimes confronted with
the problem of steering a colossal group of discrete agents,
which are distributed arbitrarily in the whole domain rather
than following a prescribed distribution. Considering this type
of problem, we characterize the distribution of the agents as
an occupation measure [33]

dqk(x) =
1

N

N∑
i=1

δ (x− xi(k)) dx,

then the state of the group of agents can be written as

x(k) =
1

N

N∑
i=1

xi(k)δ (x(k)− xi(k)) . (26)

The control on the group of agents is defined as

u(k) =
1

N

N∑
i=1

ui(k)δ (x(k)− xi(k)) . (27)

Then we can write the power moments of the occupation
measures as

E
[
xl(k)

]
=

1

N

N∑
i=1

xli(k), (28)

and

E
[
ul(k)

]
=

1

N

N∑
i=1

uli(k). (29)
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The occupation measure steering problem differs from the
distribution steering one mainly in determining the control in-
puts for each agent, which means that we have to draw samples
from the realized control inputs. Since the realized controls
by our proposed algorithm have analytic form of function,
acceptance-rejection sampling strategy can be used for this
task. The idea of acceptance-rejection sampling is that even it
is not feasible for us to directly sample from the functions of
the control inputs, there exists another candidate distribution,
from which it is easy to sample from. A common choice of
light-tailed distributions is the Gaussian. Then the task can be
reduced to sampling from the candidate distribution directly
and then rejecting the samples in a strategic way to make the
remaining samples seemingly drawn from the distributions of
the control inputs.

By adopting the acceptance-rejection sampling strategy, we
update Algorithm 1 as to treat the occupation measure steering
problem, which is given in Algorithm 2.

Algorithm 2 Discrete distribution steering.
Input: The number of agents N ∈ N0; the maximal time step

K; the parameter of the system a(k) for k = 0, · · · ,K −
1; the initial occupation measure dq0(x); the specified
terminal occupation measure dqT (x).

Output: The control inputs for the ith target ui(k), k =
0, · · · ,K − 1, i = 1, · · · , N .

1: k ⇐ 0
2: while k < K and e(k) /∈ V2n

++ do
3: Calculate X(k) by (4) if k > 0 or by (5) if k = 0
4: Calculate e(k) by (15)
5: if e(k) ∈ V2n

++ then
6: Optimize the cost function f (ωk0 , · · · , ωK−1)

over the domain WXT
, which is a convex optimization

problem. Obtain the optimal ω∗
k0
, · · · , ω∗

K−1.
7: Calculate the states of the moment system X(i) for
i = k + 1, · · · ,K − 1 by (16) with ω∗

k0
, · · · , ω∗

K−1.
8: Calculate the controls of the moment system U(i)

for i = k, · · · ,K − 1 by (4)
9: Optimize the cost function (25) and obtain the

analytic estimates of the distributions p̂i(u) for i =
k, · · · ,K − 1

10: Sample the control inputs ui(j) of all agents at
time step j = k, · · · ,K − 1 by the acceptance-rejection
strategy.

11: else
12: ui(k) = 0, i = 1, · · · , N
13: end if
14: Calculate the power moments of the system state x(k+

1), i.e., X(k + 1)
15: k ⇐ k + 1
16: end while

VII. NUMERICAL RESULTS AND COMPARISON BETWEEN
COST FUNCTIONS

In this section, we will simulate general distribution steering
problems with the cost functions proposed in the previous

sections of the paper. We consider two typical scenarios in real
applications. The first one is to separate a group of agents into
several smaller groups. The second one is to steer the agents
which are in separate groups to desired terminal groups. For
the first type of problem, we consider to steer a Gaussian
distribution to a mixture of two Laplacian distributions as an
example. And for the second type of problem, we consider
to steer a mixture of two Laplacians to a mixture of two
Gaussians.

A. A Guassian to two Laplacians
We first consider the problem of steering a Guassian distri-

bution to a mixture of Laplacians with two modes. The initial
one is chosen as

q0(x) =
1√
2π
e

x2

2 (30)

and the terminal one is specified as

qT (x) =
0.5

2
e|x−2| +

0.5

2
e−|x+3|. (31)

The system parameters a(k), k = 0, · · · , 3 are i.i.d. samples
drawn from the uniform distribution U [0.3, 0.5]. The dimen-
sion of each U(k) is 4.

We first consider the maximal smoothness of state transition
as the control criterion, i.e., choose the cost function as (22).
The states of the moment system, i.e., X(k) for k = 0, 1, 2, 3
are given in Figure 1. The controls of the moment system,
i.e., U(k) for k = 0, 1, 2, 3 are given in Figure 2. The
realized controls in Figure 3 also show that the transition
of the control inputs is smooth, even the specified terminal
distribution has two modes, which are Laplacians. However,
the tradeoff of the smooth transition is a relatively large energy
effort

∑3
k=0 E

[
u2(k)

]
= 20.514.

In particular circumstances, the energy effort we are able to
provide is quite limited. For the distribution steering problems
which are sensitive to energy, we choose the cost function as
(23). The results are given in Figure 4, 5 and 6. We note
that the transition is not quite smooth as shown in Figure
6. However, the energy effort

∑3
k=0 E

[
u2(k)

]
= 10.642,

which is much less than that by using the smoothness of state
transition as the cost function.

In situations where both smoothness of the control inputs
and the energy effort are considered, the cost function (24)
provides us with a treatment to the distribution steering
problem. In this simulation, we choose the cost function as

f (ω0, · · · , ω3)

=E
[
u2(0)

]
+ E

[
u2(1)

]
+ 4E

[
u2(2)

]
+18E

[
u2(3)

]
+

2

5

3∑
k=0

E
[
x2(k)

] (32)

The simulation results are given in Figure 7, 8 and 9. We
note that the transition of the control inputs are smoother
than the distribution steering by merely considering the energy
effort. The energy effort

∑3
k=0 E

[
u2(k)

]
= 13.467, which is

larger compared to that obtained by (22) however is relatively
smaller than that obtained by (23). The cost function, in the
form of a weighted mixture of the energy effort and the system
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energy, provides us with a balanced choice of control law
between the smooth transition of system state and the energy
cost.

Fig. 1. X(k) at time steps k = 0, 1, 2, 3, 4 with cost function (22). The
upper left figure shows E [x(k)]. The upper right one shows E

[
x2(k)

]
.

The lower left one shows E
[
x3(k)

]
and the lower right one shows

E
[
x4(k)

]
.

Fig. 2. U(k) at time steps k = 0, 1, 2, 3 with cost function (22). The
upper left figure shows E [u(k)]. The upper right one shows E

[
u2(k)

]
.

The lower left one shows E
[
u3(k)

]
and the lower right one shows

E
[
u4(k)

]
.

Then we treat the discrete distribution (occupation measure)
steering problem defined in Problem 3.1 in [28]. The initial
occupation measure dq0(x) composes of the i.i.d. samples
drawn from the the continuous distribution dq0(x). Figure 10
shows the histograms of the ui(k) for each agent at time step
k = 0, · · · , 3, by cost function (22). Figure 11 shows the
histogram of the terminal occupation measure of the agents.
The two sharp peaks of the desired terminal state, of which the
distribution is a mixture of two Laplacians, are well located
at the desired points x = −3 and x = 2. The histogram in
Figure 11 is very close to qT (x) in (31), which validates the
performance of our proposed algorithm.

Fig. 3. Realized control inputs pk(u) of u(k) by U(k) for k =
0, 1, 2, 3 , which are obtained by cost function (22).

Fig. 4. X(k) at time steps k = 0, 1, 2, 3, 4 with cost function (23).

Fig. 5. U(k) at time steps k = 0, 1, 2, 3 with cost function (23).
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Fig. 6. Realized control inputs pk(u) of u(k) by U(k) for k =
0, 1, 2, 3, which are obtained by cost function (23).

Fig. 7. X(k) at time steps k = 0, 1, 2, 3, 4 with cost function (32).

Fig. 8. U(k) at time steps k = 0, 1, 2, 3 with cost function (32).

Fig. 9. Realized control inputs pk(u) of u(k) by U(k) for k =
0, 1, 2, 3, which are obtained by cost function (32).

Fig. 10. The histograms of ui(k) at time step k for each agent i by cost
function (22). The upper left and right figures are ui(0) and ui(1), i =
1, · · · , 1000 respectively. The lower left and right figures are ui(2)
and ui(3) respectively.

Fig. 11. The histogram of the terminal system states xi(K) at time
step K = 4 for i = 1, · · · , 1000 by cost function (22). It is close to
the specified terminal distribution (31).
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Fig. 12. The histograms of ui(k) at time step k for each agent i by
cost function (32).

Fig. 13. The histogram of the terminal system states xi(K) at time
step K = 4 for i = 1, · · · , 1000 by cost function (32). It is close to
the specified terminal distribution (31).

For the cost function of weighted energy effort and system
energy (32), the histograms of the control inputs ui(k) are
given in Figure 12. And the histogram of the terminal state of
each agent xi(K) for K = 4 is shown in Figure 13, where
two sharp peaks are clearly located at x = −3 and x = 2.

B. Two Laplacians to two Gaussians

Next, we consider the problem of steering the agents which
are in separate groups to desired terminal groups. In this
section, we simulate on steering a mixture of two Laplacians
to a mixture of two Gaussians. Both initial and terminal
distributions have two modes. The initial one is chosen as

q0(x) =
0.5

2
e|x−3| +

0.5

2
e−|x+1|. (33)

and the terminal one is specified as

qT (x) =
0.5√
2π
e

(x−3)2

2 +
0.5√
2π
e

(x+3)2

2 (34)

The system parameters a(k), k = 0, · · · , 3 are i.i.d. samples
drawn from the uniform distribution U [0.3, 0.5]. The dimen-
sion of each U(k) is 4.

We first perform the control task with the cost function (22).
The states of the moment system, i.e., X(k) for k = 0, 1, 2, 3
are given in Figure 14. The controls of the moment system,
i.e., U(k) for k = 0, 1, 2, 3 are given in Figure 15. The realized
controls in Figure 16 also show that the transition of the
control inputs is smooth, even the task is to steer a distribution
with two modes to another one with two modes. The results
of discrete distribution (occupation measure) steering is given
in Figure 20 and 21. The two modes of the histogram of the
terminal states of the agents are well located at the desired
points x = ±3.

Fig. 14. X(k) at time steps k = 0, 1, 2, 3, 4 by cost function (22). The
upper left figure shows E [x(k)]. The upper right one shows E

[
x2(k)

]
.

The lower left one shows E
[
x3(k)

]
and the lower right one shows

E
[
x4(k)

]
.

Fig. 15. U(k) at time steps k = 0, 1, 2, 3 by cost function (22). The
upper left figure shows E [u(k)]. The upper right one shows E

[
u2(k)

]
.

The lower left one shows E
[
u3(k)

]
and the lower right one shows

E
[
u4(k)

]
.

Next, we do optimization (21) with the cost function (24).
In this simulation, we choose the cost function as (32). The



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022 13

Fig. 16. Realized control inputs pk(u) of u(k) by U(k) for k =
0, 1, 2, 3, which are obtained by cost function (22).

Fig. 17. X(k) at time steps k = 0, 1, 2, 3, 4 by cost function (32).

simulation results are given in Figure 17, 18 and 19. The
histogram of the terminal states of the agents is close to the
desired continuous terminal distribution (34), which reveals
the performance of our proposed algorithm.

VIII. A CONCLUDING REMARK

We consider the general distribution steering problem where
the distributions to steer are arbitrary, which are only required
to have first several orders of finite power moments. In our
previous paper [27], we proposed a moment counterpart of the
primal system for control. However, we was not able to put
forward a control law based on optimization in the manner of
conventional optimal control, which makes it hardly possible
for us to obtain the control inputs by specific purposes, such
as minimum energy effort. In this paper, we investigate the
general distribution steering problem by convex optimization.
The domain of the control inputs of the moment system is not
convex and has a complex topology, which causes difficulty
in optimization. We prove the controllability of the moment
system and propose a set as the domain for optimization of
which the convexity is proved. Then we consider different

Fig. 18. U(k) at time steps k = 0, 1, 2, 3 by cost function (32).

Fig. 19. Realized control inputs pk(u) of u(k) by U(k) for k =
0, 1, 2, 3, which are obtained by cost function (32).

types of cost functions, including the smoothness of the state
transition, the energy effort, the energy effort together with the
system energy, and a general form of convex function, which
is a weighted mixture of the energy effort and the system
energy. A realization of the control inputs by the squared
Hellinger distance is given to put forward a control scheme
for the general distribution steering problem. We consider two
typical scenarios in real application and formulate them as two
distribution steering problems for simulation. The numerical
results of the simulations validate our proposed algorithms. By
the simulation results, we note that to yield smooth transition
of the system states, one may need more energy.

In the future work, we would like to extend the results of this
paper to nonlinear systems. System dynamics in the form of
partial differential equations, such as Navier-Stokes equations,
are of particular interest. We would also like to extend the
results of the first-order system to more general systems, which
will not be a trivial extension since the positive definiteness
of the Hankel matrix will no longer be the sufficient and
necessary condition for the existence of the multi-dimensional
control inputs. Many results of this paper will not be valid any
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Fig. 20. The histograms of ui(k) at time step k for each agent i by cost
function (22). The upper left and right figures are ui(0) and ui(1), i =
1, · · · , 1000 respectively. The lower left and right figures are ui(2)
and ui(3) respectively.

Fig. 21. The histogram of the terminal system states xi(K) at time
step K = 4 for i = 1, · · · , 1000 by cost function (22). It is close to
the specified terminal distribution (34).

longer for the multi-dimensional systems and become difficult
tasks.
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APPENDIX

In this appendix, we consider the approximation of
∂U(K−1)
∂ωK−1

. By (3), we have

E
[
xlT

]
=

l∑
j=0

(
l

j

)
aj(K − 1)E

[
xj(K − 1)ul−j(K − 1)

]
=

l∑
j=0

(
l

j

)
aj(K − 1)E

[
xj(K − 1)

]
E
[
ul−j(K − 1)

]
.

(35)

Then by (16), we have

E
[
xlT

]
=

l∑
j=0

(
l

j

)
aj(K − 1)

(
E
[
xj(k0)

]
+ ωK−1ej

)
·E

[
ul−j(K − 1)

]
.

(36)

Let ej be the jth element of the vector e(k0), i.e., ej =

E
[
xjT

]
− E

[
xj(k0)

]
. Differentiate both sides of (35) over

ωK−1 and we have

0 =al(K − 1)el

+

l−1∑
j=1

(
l

j

)
aj(K − 1)ej · E

[
ul−j(K − 1)

]
+

l−1∑
j=1

(
l

j

)
aj(K − 1)

(
E
[
xj(k0)

]
+ ωK−1ej

)
·
∂E

[
ul−j(K − 1)

]
∂ωK−1

+
∂E

[
ul(K − 1)

]
∂ωK−1

.

(37)

Since the absolute value of the second term of (37) is usually
small, we have the following approximation

∂E
[
ul(K − 1)

]
∂ωK−1

≈− al(K − 1)el −
l−1∑
j=1

(
l

j

)
aj(K − 1)ej · E

[
ul−j(K − 1)

]
,

for l = 1, · · · , 2n. We can then write them as a matrix
equation, which is

∂U(K − 1)

∂ωK−1
≈ −A(U(K − 1))e(k0).
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