

ROYAL INSTITUTE OF TECHNOLOGY

The Inverse Problem of Degree-Constrained Analytic Interpolation and Weight Selection for Control Synthesis

Anders Lindquist Royal Institute of Technology (KTH) Stockholm, Sweden

YamamotoFest, Kyoto, March 29-31, 2010

Dedicated to Yutaka Yamamoto at the occasion of his 60th birthday

A man in his best age

References

J. Karlsson, T. T. Georgiou and A. Lindquist, The inverse problem of analytic interpolation with degree constraint and weight selection for control synthesis, *IEEE Trans. Autom. Control* **AC-55** (2010), 405–418.

C. I. Byrnes, T.T. Georgiou, A. Lindquist and A. Megretski, Generalized interpolation in H^{∞} with a complexity constraint, *Transactions of the American Mathematical Society* **358**(3) (2006), 965–987.

The Pick problem Schur class: $\mathcal{S} = \{ f \in H_{\infty}(\mathbb{D}) : \|f\|_{\infty} \le 1 \}$ Given $z_0, z_1, \ldots, z_n \in \mathbb{D}$ and w_0, w_1, \ldots, w_n , Assume P > 0find $f \in S$ such that Then infinitely many solutions $f(z_k) = w_k, \ k = 0, 1, \dots, n$

There **exists** a solution if and only if

$$P = \left[\frac{1 - w_k \bar{w}_\ell}{1 - z_k \bar{z}_\ell}\right]_{k,\ell=0}^n \ge 0 \text{ Pick matrix}$$

The solution is unique if and only if P is singular. Then f Blaschke product such that deg $f = \operatorname{rank} P$.

The Nevanlinna parameterization

$$f(z)=rac{arphi_1(z)-arphi_2(z)g(z)}{arphi_3(z)-arphi_4(z)g(z)}$$

 $\varphi_j, \quad j = 1, 2, 3, 4$ rational

 $g \in \mathbb{S}$ arbitrary parameter

Central solution: g = 0 \bigoplus deg f = n

This parameterization does not accommodate a simple characterization of the subfamily of solutions for which deg $f \leq n$.

Loop shaping in robust control

$$S = (1 - GK)^{-1}$$

Sensitivity function

• Internal stability requires

S analytic in
$$\mathbb{D}^c := \{ z \mid |z| > 1 \}$$

 $S(z_k) = 0$ at all unstable poles of G

 $S(z_j) = 1$ at all zeros of G in \mathbb{D}^c

• Disturbance attenuation requires

 $\|S\|_{\infty} \leq \gamma$

• We want $\deg S$ to be small

There is a minimum bound γ_{opt} but we choose $\gamma > \gamma_{\text{opt}}$ and define $f(z) := \frac{1}{\gamma} S(z^{-1})$

Nevanlinna-Pick interpolation for Schur functions

$$f(z_k) = w_k, \quad k = 0, 1, \dots, n$$
 (†

class of Schur functions $\ensuremath{\mathbb{S}}$

Instead choosing the optimal bound $\gamma = \gamma_{\text{opt}}$ would yield the unique solution for which P singular and f Blaschke

Modulus of sensitivity constant over the spectrum

Need to use a weight, yielding a higher-degree solution (Zames 1981).

Suboptimal case: Central solution is the unique solution of ([†]) that maximizes

$$\int_{-\pi}^{\pi} \log(1 - |f|^2) d\theta$$

Maximum entropy solution (Mustafa–Glover)

Still uniform over the spectrum.

Parametrizing solutions of degree $\leq n$ $\mathcal{K} = \left\{ \frac{p(z)}{\prod_{k=0}^{n} (1 - \bar{z}_k z)} \mid p \text{ polynomial of degree } \leq n \right\}$

 $\mathcal{K}_0 = \{ \sigma \in \mathcal{K} \mid \sigma \text{ outer (min. phase)} \}$

The connections to Sarason interpolation is on the board

Parametrizing solutions of degree $\leq n$ $\mathcal{K} = \left\{ \frac{p(z)}{\prod_{k=0}^{n} (1 - \bar{z}_k z)} \mid p \text{ polynomial of degree } \leq n \right\}$

 $\mathcal{K}_0 = \{ \sigma \in \mathcal{K} \mid \sigma \text{ outer (min. phase)} \}$

THEOREM (Byrnes-Georgiou-L-Megretski) If $f \in S$ is an interpolant such that deg $f \leq n$, then there is a $\sigma \in \mathcal{K}_0$ such that f maximizes

$$\mathbb{K}_{\sigma}(f) := \int_{-\pi}^{\pi} |\sigma(e^{i\theta})|^2 \log(1 - |f(e^{i\theta})|^2) d\theta$$
 (‡)

(uniquely) subject to the interpolation constraint. Conversely, if the interpolant $f \in S$ maximizes (‡) for some $\sigma \in \mathcal{K}_0$, then deg $f \leq n$.

QUESTION: How do we choose the parameter $\sigma \in \mathcal{K}_0$ to satisfy additional design specifications?

An example

$$G(z) = \frac{1}{z-2}$$

Find all S satisfying S(2) = 0 and $S(\infty) = 1$ of degree at most n = 1.

$$S(z) = \frac{z-2}{z-a}, \ -1 < a < 1$$

A one-parameter family with one solution for each $\sigma \in \mathcal{K}_0$.

$$\gamma = 2.5 > \gamma_{\rm opt} = \min \|S\|_{\infty} = 2$$

We need a procedure for determining the best $\sigma \in \mathcal{K}_0$.

What if none of the solutions satisfy the specifications?

Extended parameterization

$$\mathbb{K}_{\sigma}(f) := \int_{-\pi}^{\pi} |\sigma(e^{i\theta})|^2 \log(1 - |f(e^{i\theta})|^2) d\theta \to \max$$

subject to $f(z_k) = w_k, \ k = 0, 1, \dots, n$ (P)

THEOREM (Karlsson-Georgiou-L). Suppose $|\sigma|^2 \in L_1(\mathbb{T})$. A function f is a solution to the optimization problem (P) if and only the following three conditions hold:

(i)
$$f(z_k) = w_k$$
 for $k = 0, 1, ..., n$,

(ii)
$$f = \frac{b}{a} \in S$$
 where $b \in \mathcal{K}$ and a is outer,

(iii)
$$|\sigma|^2 = |a|^2 - |b|^2$$
.

Any such solution is necessarily unique.

The map $\sigma \mapsto f$

• The optimization problem (P) defines a map

$$F: \Sigma \to \mathbb{S}, \qquad \sigma \mapsto f$$

where $\Sigma := \{ \sigma \text{ outer } | \log |\sigma|^2 \in L_1(\mathbb{T}) \}.$

• Define the metric

$$d(\sigma_1, \sigma_2) = \left\| \log |\sigma_1|^2 - |\log |\sigma_2|^2 \right\|_{\infty}$$

PROPOSITION (KGL). Suppose that $\sigma_1, \sigma_2 \in \Sigma$ are such that $d(\sigma_1, \sigma_2) = \varepsilon$, and set $f_k := F(\sigma_k), k = 1, 2$. Then $\|\sigma_1(f_1 - f_2)\|_2^2 \le 2(e^{2\varepsilon} - 1)\mathbb{K}_{\sigma_1}(f_1).$

The inverse problem
$$F^{-1}(f) = ?$$

 $\mathbb{K}_{\sigma}(f) := \int_{-\pi}^{\pi} |\sigma(e^{i\theta})|^2 \log(1 - |f(e^{i\theta})|^2) d\theta \to \max$ (P)
subject to $f(z_k) = w_k, \ k = 0, 1, \dots, n$

PROPOSITION (KGL). Any function $f \in S$ that satisfies (i) $f(z_k) = w_k$ for k = 0, 1, ..., n, (ii) f has at most n zeros in \mathbb{D} , (iii) $\log(1 - |f|^2) \in L_1(\mathbb{T})$, is the unique solution of (P), i.e. $f = F(\sigma)$, with $|\sigma|^2 = (|f|^{-2} - 1)|b|^2$

for any $b \in \mathcal{K}$ chosen so that bf^{-1} is outer.

Shaping the interpolants

Let g be any outer function in S. Find an interpolant f such that (†) $|f(e^{i\theta})| = |g(e^{i\theta})|, \quad \theta \in (-\pi, \pi)$ f has the same shape as g

PROPOSITION (KGL). Let $g \in S$ be an outer function such that $\log(1-|g|^2) \in L_1(\mathbb{T})$. Then there exists a pair (f, σ) such that (†) holds, $f = F(\sigma)$ and $\log |\sigma|^2 \in L_1(\mathbb{T})$ if and only if

$$\Pi(g) := \left[\frac{1 - w_k g(z_k)^{-1} \overline{w_\ell g(z_\ell)^{-1}}}{1 - z_k \overline{z_\ell}}\right]_{k,\ell=0}^n$$

is positive semi-definite and singular. Moreover, f is uniquely determined.

Model reduction

• Modify g to be an interpolant without changing the shape |g| by multiplying it by an inner factor.

By this nonlinear transformation we have exchanged a hard non-convex problem for an easier one.

Approximation procedure

Step 1. Find an interpolant g with the desired shape without restricting the degree. (It could even be non-rational.) Step 2. For some $m \ge 0$, find a pair (ρ, σ) with $\rho \in F^{-1}(g)$ and $\sigma \in \mathcal{K}_m$ that minimizes

$$d(\sigma,\rho) = \left\| \log |\sigma|^2 - |\log |\rho|^2 \right\|_{\infty}$$

This is a standard quasi-convex optimization problem. In fact, $d(\sigma, \rho) \leq \varepsilon$ if and only if

$$1-e^{\varepsilon} \leq 1-\frac{|\sigma|^2}{|\rho|^2} \leq 1-e^{-\varepsilon} \text{ for all } z \in \mathbb{T},$$

which defines an infinite set of linear constraints.

Step 3. Find $f := F(\sigma)$ by solving the optimization problem (P).

Shaping by model reduction

 $F: \Sigma \to S$ sends σ to f, the unique interpolant maximizing \mathbb{K}_{σ}

Congratulations, Yukaka

