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Dedicated to Yutaka Yamamoto
at the occasion of his 60" birthday
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A man 1n his best age
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The Pick problem

f
Schur class: i
S={f € Hx(D) : | flloc <1}
Given 2g,21,...,2n € D and wo,w1,...,Wn, Assume P > 0

find f € 8 such that Then infinitely

f(zx) =wg, E=0,1,...,n many solutions

There exists a solution if and only if The solution is unique
if and only if P is singular.

1 — wrwe | , :
P = [ - zkze] > 0 Pick matrix| | Then f Blaschke product
k2L Tk, e=0 such that deg f = rank P.




The Nevanlinna parameterization

) — P1(z) — p2(2)9(2)
1) = @) = ea@)9(2)

vj, j=1,2,3,4 rational

g € S arbitrary parameter

Central solution: ¢g=0 ‘ deg f =n

This parameterization does not accommodate
a simple characterization of the subfamily of
solutions for which deg f < n.



Loop shaping in robust control

u 5 d y © Internal stability requires
1642) S analytic in D¢ := {z | 2| > 1}
K(z) S(zx) = 0 at all unstable poles of G
S(z;) =1 at all zeros of G in D¢
i. S(z) A e Disturbance attenuation requires
S=(1-GK)! 1Slloo <
Sensitivity function e We want deg S to be small
ya

There is a minimum bound 7, but we
choose 7 > 7opt and define f(z) := %S(z‘l)



Nevanlinna-Pick interpolation
for Schur functions

f(zk)szk, k=0,1,...,'n,

N
e
p

class of Schur functions &

Instead choosing the optimal bound Modulus of
Y = Yopt would yield the unique solution ‘ sensitivity constant
for which P singular and f Blaschke over the spectrum

Need to use a weight, yielding a higher-degree solution (Zames 1981).

Suboptimal case: Central solution is

the unique solution of (1) that maximizes Maximum entropy
™ solution
/ log(1 — | f]*)d6 (Mustafa—Glover)

Still uniform over the spectrum.



Parametrizing solutions of degree < n

p(2) :
K= { — —— | p polynomial of degree < n}
[Te—o(1 — 2k2)

Ko = {0 € X | o0 outer (min. phase)}



The connections to Sarason
interpolation 1s on the board




Parametrizing solutions of degree < n

p(2) .
K= { - —— | p polynomial of degree < n}
[Te—o(1 — 2k2)

Ko = {0 € X | o outer (min. phase)}

THEOREM (Byrnes-Georgiou-L-Megretski) If f € 8 is an interpolant
such that deg f < n, then there is a o € Xy such that f maximizes

Ko(f) = [ lote®)Plog(1 ~ | 7(¢*)P)d8 (3

(uniquely) subject to the interpolation constraint. Conversely, if the
interpolant f € 8 maximizes (1) for some o € Ky, then deg f < n.

QUESTION: How do we choose the parameter o € XK
to satisfy additional design specifications?




An example

G(z)

A 4

K(z)

Find all S satisfying d

—1 S(2)

Y, S=(1-GK)!

S(2) =0 and S(o0) =1
of degree at most n = 1.

— 2 g0
‘S(z):z , - 1<a<l &

<z —Qa

A one-parameter family with

one solution for each o € XK. 7 |

¥ = 2.5 > Yopt = min ||S||cc =2

Frequency (rad/sec)

We need a procedure for determining the best o € XK.




What 1f none of the solutions
satisty the specifications?

—_
o

Design specifications:
1S(ei?)| < 0.75, on (0,0.25)
S(e*)] < 2.5, on (0.25, )

o

|
[¢)]

Magnitude (db)
(&)}
T T ‘ T |
\
\

0 0.5 1 1.5 2 2.5 3

Frequency (rad/s)
None of these solutions satisﬁes/

—_
o

Extend the space Xg to

(¢,

Koin ={0’=0’0p | o) GJC(),,OE:Rm},
where R,,, is the set of outer
rational functions of degree < m.

o

the design specifications

Magnitude (db)

|
(631

O

0.5 1 1.5 2 25 3
Frequency (rad/s)



Extended parameterization

Ko(f) i= [ lo(e®)Plog(1 — 1(e)?)d0 — max P)

subject to  f(zx) =wg, k=0,1,...,n

THEOREM (Karlsson-Georgiou-L). Suppose |o|? € L{(T).
A function f is a solution to the optimization problem (P)
if and only the following three conditions hold:

(i) f(zx) = wg for E=0,1,...,n,
(ii) f =2 € 8 where b € X and a is outer,

(iti) |o|* = lal* — [b]*.

Any such solution is necessarily unique.




Themap o~ f

e The optimization problem (P) defines a map
F: Y-8, o—f

where X := {0 outer | log|co|? € L1(T)}.

e Define the metric

d(o1,09) = ||log|o1[* — | log |o2[?||

PROPOSITION (KGL). Suppose that 01,09 € ¥ are such
that d(o1,02) = €, and set fi := F(o), k =1,2. Then

lov(f1 = f2)llz < 2(e* — 1)Ko, (f1).




The inverse problem |F~(f) =7

Ko(f) i= [ lo(e®)Plog(1 — 1(e)?)d0 — max P

subject to  f(zx) =wg, k=0,1,...,n

PROPOSITION (KGL). Any function f € § that satisfies
(i) f(zx) =wg for k=0,1,...,n,
(ii) f has at most n zeros in D,

(iif) log(1 — |f|*) € L1(T),

is the unique solution of (P), i.e. f = F(0), with
lo® = (1f17% = Db

for any b € K chosen so that bf~! is outer.




Shaping the interpolants

Let g be any outer function in 8. Find an interpolant f such that

(1) 1) =19(e*®)|, 6 € (—m,m) f has the same shape as g

PROPOSITION (KGL). Let g € 8§ be an outer function such that
log(1 — |g]?) € L1(T). Then there exists a pair (f, o) such that ()
holds, f = F(o) and log|o|? € L1(T) if and only if

(g) — 1 — wig(zk) " weg(2ze) 1
1 — 2,2

k,£=0

is positive semi-definite and singular. Moreover, f is uniquely
determined.




Model reduction

e Modify g to be an interpolant without changing the
shape |g| by multiplying it by an inner factor.

f g

e Let pe F1(g) and it /p
find a o € X,,, that is d P
close to p in the sense re T
that d(o, p) is small.
e Then f := F(o) is
close to g. \

K

. . . Interpolants of degree n + m
By this nonlinear transformation we have : .

exchanged a hard non-convex problem for an easier one.



Approximation procedure

Step 1. Find an interpolant g with the desired shape without
restricting the degree. (It could even be non-rational.)

Step 2. For some m > 0, find a pair (p,o) with p € F~1(g) and
o € X,, that minimizes

d(o,p) = |[log|o|* — |log|p|?||
This is a standard quasi-convex optimization problem. In fact,
d(o, p) < e if and only if
€ |0— ° —E&
1—e Sl—wgl—e for all z € T,
P

which defines an infinite set of linear constraints.

Step 3. Find f := F(o) by solving the optimization problem (P).



Shaping by model reduction

F . ¥ — 8§ sends ¢ to f, the unique interpolant maximizing K,

interpolant of high or

infinite degree but with g F~ , pES

|g| of desired shape g
difficult approximation
approximation by quasi-convex
problem optimization

: M F M

interpolant of degree fo< oeX,

at most n + m with a
shape close to that of g ceX,, ‘ deg f <n+m



Example G(z) =

z—2

For internal stability:
f = 8/~ satisfies

f(0) =0.4 and f(0.5) =0

Magnitude (db)

Find interpolant g with

. . 0 05 1 15 2 25 3
|g| as 11 ﬁgure (not ratlonal) Frequency (rad/s)
10

pEF (o) mm [p?=(lgI"2-1) .

6,

- -

-
, -
-

Use quasi-convex optimization
to find o € X,;, (m=0, 2 and 4)
such that o is close to p.
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Sensitivity functions SRt —S |
6 : ' \

of degrees 1, 3 and 5 o o5 1 15 2 25 3

Frequency (rad/s)
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Congratulations, Yukaka




