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Abstract: In this paper we present a new method of reconstructing an image that undergoes a spatially invariant blurring pro-
cess and is corrupted by noise. The methodology is based on a theory of multidimensional moment problems with rationality
constraints. This can be seen as generalized spectral estimation with a finiteness condition, which in turn can be considered a
problem in system identification. With noise it becomes an ill-posed deconvolution problem and needs regularization. A Newton
solver is developed, and the algorithm is tested on two images under different boundary conditions. These preliminary results
show that the proposed method could be a viable alternative to regularized least squares for image deblurring, although more
work is needed to perfect the method.
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1 Introduction

Image deblurring is a deconvolution problem in two di-

mensions. It is well noted that the problem of deconvolution

is ill-posed [1–3], and hence regularization is crucial. The

deblurring problem is often formulated as a regularized least

squares problem, such as Tikhonov regularization, which has

a closed form solution. Other regularization methods in-

clude those exploiting partial derivatives [4], total-variation

deblurring [5, 6], or penalized maximum likelihood [7].

Blurring a two-dimensional image Φ(x), x ∈ K ⊂ R2,

can be modeled as a convolution integral

b(x) =

∫
K

κ(x− y)Φ(y)dy, (1)

where κ is a kernel function, called the point spread function

(PSF). Deblurring amounts to the deconvolution of (1), i.e.,

to recover the original image Φ from the blurred image b.
If the blurred image is observed in discrete points

x1, x2, . . . , xn like pixels, then (1) becomes a generalized

two-dimensional moment problem

ck =

∫
K

αk(x)Φ(x)dx, k = 1, 2, . . . , n, (2)

where ck := b(xk) and αk(x) := κ(xk−x), k = 1, 2, . . . , n.

Here α1, α2, . . . , αn are called basis functions. Reconstruct-

ing Φ from c1, c2, . . . , cn is an inverse problem, which may

or may not have a solution. If it does, it will in general have

infinitely many. To achieve compression of data, we impose

the rationality constraint

Φ(x) =
P (x)

Q(x)
, (3)

where P and Q are nonnegative functions formed by linear

combinations of the basis functions. This can be seen as a

(generalized) two-dimensional spectral estimation problem

with a finiteness condition, and hence as a two-dimensional

identification problem [8]. (In fact, general basis functions,

rather than trigonometric ones, are also used in system iden-

tification [9].) If (2) does not have a solution, which is the

usual case, a regularized approximate solution need to be de-

termined.

The one-dimensional moment problem with rational-

ity constraint has been studied intensively during the last

decades. It originated with the rational covariance exten-
sion problem, first formulated in [10]. In the present context

this problem can be reformulated as follows. Given a se-

quence of covariance lags c0, c2, . . . , cn with a positive defi-

nite Toeplitz matrix, parameterize the family of all functions

(3) defined on the unit circle T in the complex plane and sat-

isfying the moment condition (2), where P and Q are sym-

metric trigonometric polynomials of degree at most n. The

first result on this problem can be found in [11], where it was

shown that there exists a solution for each choice of zeros

of P , and it was conjectured that the assignment is unique.

This conjecture was proved in [12], where it was shown the

the complete parameterization is smooth, and hence solution

can be tuned continuously. In [13, 14] it was shown that each

solution is the unique solution of a pair of dual convex opti-

mization problems. This leads to a long list of results with

more general basis functions, among them [15–32].

More recently, these results were generalized to the multi-

dimensional case [33] with applications to spectral estima-

tion and image compression [34]. Related results can be

found in [35]. It turns out that the early papers [36–38]

contain results that are equivalent to some major results in

[33, 34], but the basic idea of smooth parameterization is

missing there.

In this paper, we apply the method of the moment problem

with rationality constraint to image deblurring with the help

of regularization. The paper is organized as follows. In Sec-

tion 2, we briefly introduce the main result of the theory of

multidimensional moment problem and in Section 3 regular-

ized approximate solutions are determined for the case that

the estimated moments contain errors. We consider the op-

timization problem for image deblurring in the framework

of multidimensional moment problem in Section 4, and a

Newton solver is developed. Finally, some implementation

details of the proposed method are given in Section 5 along

with two reconstructed images. These results are prelimi-
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nary, and better methods to tune the solutions will be devel-

oped in future work.

2 The multidimensional moment problem

We start by reviewing some results in [33]. Let P+ be the

positive cone of vectors p := (p1, p2, . . . , pn) such that

P (x) =

n∑
k=1

pkαk(x) > 0 for all x ∈ K, (4)

and let P̄+ be the closure of P+ and ∂P+ := P̄+\P+ its

boundary. Then, given a set of real numbers c1, c2, . . . , cn,

and linearly independent functions α1, α2, . . . , αn defined

on a compact subset K ⊂ Rd, consider the problem to find

solutions Φ to the moment condition (2) of the rational form

(3), where p, q ∈ P+. Here of course q is the vector of

coefficients of Q. Next define the open dual cone C+ of

vectors c := (c1, c2, . . . , cn), i.e.,

C+ =

{
c | 〈c, p〉 =

n∑
k=1

ckpk > 0, ∀p ∈ P̄+\{0}
}
.

(5)

If the cone P+ is nonempty and has the property∫
K

1

Q
dx = ∞ for all q ∈ ∂P+, (6)

it follows from [33, Corollary 3.5] that the moment equations

ck =

∫
K

αk
P

Q
dx, k = 1, 2, . . . , n. (7)

have a unique solution q ∈ P+ for each (c, p) ∈ C+ ×P+.

Moreover, the solution can be obtained by minimizing the

strictly convex functional

J
c
p(q) = 〈c, q〉 −

∫
K

P logQdx, (8)

over all q ∈ P+. This is the dual of the optimization problem

to maximize an entropy-like functional

Ip(Φ) =

∫
K

P (x) log Φ(x)dx (9)

over all Φ ∈ F+ satisfying∫
K

αk(x)Φ(x)dx = ck, k = 1, 2, . . . , n, (10)

where F+ is the class of positive functions in L1(K).
We note that maximizing (9) is equivalent to minimizing

the Kullback-Leibler pseudo-distance given P

D(P‖Φ) =
∫
K

P (x) log
P (x)

Φ(x)
dx. (11)

In fact,

D(P‖Φ) =
∫
K

P (x) logP (x)dx− Ip(Φ). (12)

From [33, Theorem 3.4] we have that the map sending

q ∈ P+ to c ∈ C+ is a diffeomorphism, so the problem as

stated above is well-posed.

3 Regularized approximation

In practice, the moments are often estimated from a finite

number of data, for example, the ergodic estimates for the

covariance lags, and they may not belong to the dual cone

C+, and then no solution exists. The problem may be ill-

posed also for other reasons. When the data sequence is

short, the estimates may contain large errors. Therefore, it

is reasonable to match the estimated moments only approx-

imately by allowing an error d := (d1, d2, . . . , dn) in the

moment equations so that

ck −
∫
K

αkΦdx = dk, k = 1, 2, . . . , n. (13)

Then the problem is modified to minimize

1

2
‖d‖2 + λD(P‖Φ), (14)

subject to (13) for some suitable λ > 0. Here λD(P‖Φ) is

a regularization term which makes the solution smooth. In

view of (12), this problem can be reformulated as the prob-

lem to maximize

I(Φ, d) =

∫
K

P (x) log Φ(x)dx− 1

2λ
‖d‖2 (15)

subject to (13) over all Φ and d. Regularization problems of

this type have been considered in [39, 40]. Also see [41],

where similar results are given.

We assume the condition (6) holds. Modifying the idea of

[39, 40] to the setting of [33], we form the Lagrangian

L(Φ, d, q) = I(Φ, d) +
n∑

k=1

qk

(
ck −

∫
K

αkΦdx− dk

)

=

∫
K

P log Φdx−
∫
K

QΦdx− 1

2λ
d�d+ 〈c− d, q〉

(16)

with the directional derivative

δL(Φ, d, q; δΦ, δd) =

∫
K

(
P

Φ
−Q

)
δΦdx−(λ−1d+q)�δd.

(17)

For stationarity we require that

Φ =
P

Q
and d = −λq, (18)

which inserted into L(Φ, d, q) yields the dual functional

ϕ(q) = Jp(q) +

∫
K

P (logP − 1)dx, (19)

where the last term is constant and

Jp(q) =
λ

2
〈q, q〉+ 〈c, q〉 −

∫
K

P logQdx. (20)

Setting the gradient of Jp equal to zero, we obtain the mo-

ment equations with errors∫
K

αk
P

Q
dx = ck + λqk, k = 1, 2, . . . , n. (21)
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The regularization parameter λ controls how much er-

ror/noise is allowed in the solution. By choosing λ small,

the error in the moment equation becomes small. In practice,

however, it may be difficult for the algorithm to converge if

λ is chosen too small.

We need to show that (21) actually has a solution, which

would follow if (20) would have an interior minimum. It is

easy to see that (20) is strictly convex.

Lemma 1. The functional (20) has compact sublevel sets
J−1
p (−∞, r], r ∈ R.

Proof. The sublevel set J−1
p (−∞, r] is closed, so it remains

to prove that it is bounded, i.e., α = ‖Q‖∞ is bounded. Set

Q = αQ̃, where Q̃(x) ≤ 1. Then we have

Jp(q) =
λ

2
〈q̃, q̃〉α2 + 〈c, q̃〉α−

∫
K

Pdx logα

−
∫
K

P log Q̃dx ≥ a0α
2 + a1α− a2 logα,

where a0 := λ〈q̃, q̃〉/2 > 0, a1 := 〈c, q̃〉 and a2 :=∫
K
Pdx > 0. Hence, if q ∈ J−1

p (−∞, r],

a0α
2 + a1α− a2 logα ≤ r.

Comparing quadratic and logarithmic growth we see that α
is bounded from above. Since logα → −∞ as α → 0, it is

also bounded away from zero.

Consequently, by strict convexity, (20) has a unique mini-

mum. We have to rule out that this minimum is on the bound-

ary of P+. In other words, we need to establish that the min-

imal point is an interior point so that it satisfies the stationary

condition (21).

Lemma 2. The minimum point of Jp does not lie on the
boundary.

Proof. We proceed along the lines of [13, p.662]. Let q ∈
P+ be arbitrary, and let q0 be on the boundary. Set δq =
q−q0 and define qμ = q0+μδq. Since qμ = μq+(1−μ)q0
and P+ is convex, it belongs to P+ for all μ ∈ (0, 1]. Next,

calculate the directional derivative

δJp(qμ, δq) = λ〈qμ, δq〉+ 〈c, δq〉 −
∫
K

P

Qμ
δQdx

= 〈c+ λqμ, δq〉 −
∫
K

Rμdx, where Rμ :=
P

Qμ
δQ.

Since
dRμ

dμ
= −P

(Q−Q0)
2

Q2
μ

≤ 0,

Rμ is monotonically decreasing and converges to R0 =
P (Q−Q0)/Q0 as μ → 0. However, by condition (6), R0 is

not integrable, and hence δJ(qμ, δq) → −∞ as μ → 0.

4 Application to image deblurring

We now return to the convolution equation

b(x) =

∫
K

κ(x− y)Φ(y)dy, (22)

introduced in Section 1, where κ is the point spread function

(PSF), Φ is original image and b is the blurred image. Then

setting ck := b(xk) and αk(x) := κ(xk − x), we obtain the

moment equations (2). We want to recover the object Φ from

the blurred image b given the PSF κ.

After discretization, the blurring process is described by a

linear transform plus some additive noise, i.e.,

b = Ax+ η. (23)

Here we have introduced the bold lower-case letters b and x
to denote the vectorized discretization of the bivariate func-

tions b(x) and Φ(x), respectively. The blurring matrix A is

determined by the PSF and the boundary condition depend-

ing on our assumptions of how the picture would be contin-

ued outside the image [4, 42, 43].

As pointed out in [1], the continuous inverse problem (22)

is ill-posed. Although the problem may become well-posed

after discretization, the blurring matrix A is typically ill-

conditioned. Due to the presence of the noise term η, the

directly inverted solution is unacceptable from the physical

point of view. Therefore, regularization must be introduced

in order to produce a visually meaningful solution.

Noted that each row of the blurring matrix A is the discrete

analogue to the basis function αk in the formulation of the

moment problem. As already mentioned, A is nonsingular

although rather close to being singular, and hence its rows

are linearly independent. Therefore, linear combination of

the basis functions becomes matrix-vector multiplication

q := vec(Q) = A�q, (24)

where the matrix Q here is the discretization of the function

Q(x), and ‘vec’ denotes the vectorizing operation for the

matrix. Due to the fact that the blurring matrix A is highly

structured [4][5], evaluation of the multiplication can be ob-

tained efficiently with 2-dimensional fast Fourier transform

(FFT) or discrete cosine transform (DCT), depending on the

boundary condition.

4.1 The optimization problem
Using the vectorized notation as in (23) and (24), the

discretized objective functional corresponding to (8) can be

written as

Jp(q) = b�q − p� log(A�q), (25)

where p here is the discretized prior function P . The vector-

valued log function denotes taking logarithm for each entry

of the vector. The reconstructed image

x̂ = p./(A�q∗), (26)

where q∗ is the optimal solution that minimizes (25) and the

operation ‘./’ means element-wise division.

Consider the vector-valued log function first. For a matrix

A ∈ Rn×n and a vector x ∈ Rn,

(logA�x)i = log(a�i x),

where ai is the i’th column of A. The elements of the first

order derivative (Jacobian) of logA�x are given by[
d log(A�x)

dx

]
ji

=
∂ log(a�j x)

∂xi
=

aij
a�j x

,
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that is, the j’th row of the Jacobian matrix is a�j /(a
�
j x), so

we have
d log(A�x)

dx
= D1(x)A

�,

where D1(x) := diag(1/a�j x). Consequently,

d

dτ
Jp(q + τv)|τ=0 = b�v − p�D1(q)A

�v

= 〈b−AD1(q)p, v〉,
and therefore the gradient of Jp is given by

∇Jp(q) = b−AD1(q)p. (27)

Similarly, for the computation of the Hessian, we form the

following

∂2

∂τ∂ξ
Jp(q + τv + ξw)|τ,ξ=0 =

∂

∂ξ

[
b�v − p�D1(y)A

�v
]

= p�diag

[
a�j w
(a�j q)2

]
A�v,

where y = q + τv + ξw. We can rewrite

p�diag

[
a�j w
(a�j q)2

]
= w�AD2(p, q)

in the last term, where D2(p, q) := diag(pj/(a
�
j q)

2). We

then have

∂2

∂τ∂ξ
Jp(q + τv + ξw)|τ,ξ=0 = w�AD2(p, q)A

�v.

Therefore, the formula for Hessian is

∇2
Jp(q) = AD2(p, q)A

�. (28)

4.2 Choice of the prior P

Recall that the primal problem to maximize (9) subject to

(10) is equivalent to minimizing the Kullback-Leibler diver-

gence (11) subject to the same moment equations. Although

the Kullback-Leibler divergence is not a metric, it can be

used as a pseudo-distance. In D(P,Φ) the function P could

be regarded as a prior, and we want the Φ to be “as close as

possible” to P in this sense. The choice of P considerably

affects the quality of the solution. Choosing P ≡ 1 corre-

sponds to no prior information, and the solution is referred

to as the maximum entropy solution [8]. It is also demon-

strated in the literature that the maximum entropy solution is

often unsatisfactory. In the setting of image deblurring, the

blurred image itself should serve as better prior information.

5 Numerical examples

For the image deblurring problem in the presence of noise

we solve the regularized optimization problem to minimize

min
q>0

Jp(q) = b�q − p� log(A�q) +
λ

2
‖q‖2. (29)

The gradient (27) and Hessian (28) are modified a bit as

∇Jp(q) = b−AD1(q)p+ λq, (30)

∇2
Jp(q) = AD2(p, q)A

� + λI. (31)

Newton’s method [44] is used to solve the optimization prob-

lem (29).

Two images are chosen for the numerical test. One is the

famous Lena with a resolution 256×256 and the other shows

a part of the moon surface with a resolution 512× 512. The

blur type on the test images is out-of-focus and the PSF array

is given below with radius r = 15:

κij =

{
1/(πr2) if (i− k)2 + (j − l)2 ≤ r2,
0 elsewhere,

(32)

where (k, l) is the center of the PSF array. Moreover, a pe-

riodic boundary condition is assumed for the Lena image,

while a reflexive boundary condition is chosen for the re-

construction of the moon image. The intensity of the noise

is characterized by the signal-to-noise ratio (SNR), which is

set as 40dB in the test.

The central part of Newton’s method is to solve the linear

system of equations

∇2
JpΔq = ∇Jp,

for the Newton direction Δq, and we use the conjugate

gradient (CG) method [45, 46] to solve it iteratively. In

each CG iteration, multiplication with the Hessian is evalu-

ated with 4 two-dimensional FFTs/inverse FFTs (or DCTs),

which makes this linear solver the major computational cost

of the algorithm. To enforce the positivity constraint on

q = vec(Q) we restrict the step length τ of the line search

in the Newton direction. In fact, we have in the Newton iter-

ation

q+ = q − τΔq,

and therefore

q+ = A�q+ = A�q − τA�Δq = q− τΔq,

where Δq := A�Δq. The maximum step length is taken as

τmax = min{qi/Δqi|Δqi > 0}.

With the constraint 0 < τ < τmax, various line search meth-

ods can be used.

The original image and the corresponding blurred one is

depicted in Fig. 1 for the Lena image and in Fig. 3 for the

moon image. The reconstructed images are shown in Fig. 2

and Fig. 4, respectively. For comparison we also compute

the classical Tikhonov reconstruction, where the regulariza-

tion parameter is chosen with generalized cross-validation

(GCV).

In Fig. 2 we see that choosing the blurred image b
as the prior indeed improves the reconstruction. More-

over, the solution of the regularized moment problem looks

smoother compared with Tikhonov reconstruction without

losing many details. In fact, some reconstruction artifacts

are less pronounced. This can also be observed from Fig. 4.

However, some work remains to perfect this method.

6 Open problems and future research

A question worth investigating is whether exchanging

‖d‖2 in (14) for a more general positive definite form d�Wd
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Fig. 1: Lena: original sharp image and the blurred one

Fig. 2: Reconstructed images, Tikhonov method (left), and solutions of the moment problem, p = 1, λ = 12 (middle), and

p = b, λ = 0.11 (right).

Fig. 3: Moon: original sharp image and the blurred one

Fig. 4: Reconstructed images, Tikhonov method (left), and solutions of the moment problem with p = b, λ = 0.4 (right).
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giving different weights to the error components could im-

prove the reconstruction.

An obvious downside is that the number of basis functions

is very high. One could investigate whether including a spar-

sity promoting regularization term in the cost function could

improve numerics.

Instead of using the blurred image as a prior one could

try to modify the procedure in the style of [19, 20] to use

estimated logarithmic moments. How to actually construct

such estimates is however an open question.
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