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Abstract—In radio resource management for cellular net- reference SIR-value is set by a slower outer rate contrgd,loo
works a trade-off has to be made between the congestion which makes sure that the cell coverage is maintained by
level, related to cell coverage and intercell interference, and tracking a congestion reference. The outer loop works on a

the Quality of Service (QoS), or data rates of the users. Herein - - .
this is implemented by using a fast inner power control loop slower time scale, but the joint dynamics cannot be negtecte

and an outer rate control algorithm, working on a slower time An important motivation for using an outer control loop
scale. is to prevent power rushes, where the transmission powers
Due to the distributed nature of the network, both infor-  of the users heavily increase. It is well known that if the
mation and control is distributed. Measurements of congestion SIR-target value is set too high, there exist no positive
and QoS are used in the control loops and this introduces a ¢ o h that th 't tSIR i hievesl. Th
nonlinear feedback. Another complicating factor is that filter- ransm|§S|on POWers suc . "?‘ e grge 'S, ac? leve.
ing, computations and information exchange in the network Uusers will then compete with increasing transmission pewer
introduce time delays. In e.g. [16], [17] and [19] it was also shown that power
In this paper we propose a general high order model as rushes can be caused in the inner loop by too aggressive
a cascade system with an outer and inner control loop. The contro| algorithms in combination with delay. In e.g. [11]

control algorithms use distributed information available in the . . - . o .
network. The full system model includes the nonlinear feedback it was shown that by using a Smith predictor it is possible

from congestion and QoS measurements, time delays and time- 0 compensate for delay. Typically there are delays both in
scale modelling. We provide sufficient conditions for stability the inner and outer control loop, which motivates the use of
and convergence of the system. Our primary analysis tool is higher order control laws.
input output theory. While the fast power control loop has been extensively
studied over the last two decades, the outer loop has drawn
less attention. Previous works concern mostly the aspect of
We consider uplink in a WCDMA (Wideband Code rate allocation and have often used an optimization approac
Division Multiple Access) cellular network. WCDMA is gee e.g. [5], [6], [9], [13], [14], [15] and [22]. In [15] corv-
currently undergoing a strong expansion globally and wiljence of distributed algorithms was studied, but only when
remain the main provider of cellular data traffic for manyassuming that the control loops work on different time ssale
years. The demand for high and stable throughput for datgint dynamics for a type of outer loop algorithms were
users increases constantly and this entails a challange d@idied in [1] and [20]. Both considered a simplified linear
allocate and control the radio resourses efficiently. system model, treating the nonlinear effects of interfeeen
To maintain the Quality of Service (QoS) of the users angind congestion feedback as additive disturbances.
to control congestion in the network, there are severalrobnt  The main contribution of this paper is the modelling and
loops in wireless cellular networks. In the WCDMA stan-analysis of the joint dynamics of the two control loops. We
dard, the users transmit on the same channel using orthbgo@arive the system model in a control theoretic framework
codes. In uplink, however, part of the orthogonality is lostand consider conditions for feasibility of the joint system
This causes an important feedback interconnection betwewe also perform a genera| Stab|||ty ana|ysis using input
the users for the control loops regulating on congestiogutput tools. Sufficient conditions are given for stabikityd
and QoS. A fast distributed inner power control loop isconvergence of the system. Then we focus on local analysis,
used to ensure that the QoS is maintained under rapidiyhere the problem structure is exploited. In particular we u
changing radio and interference conditions. By updatirey thscaling multipliers to sharpen the results from the presiou
transmission powers of the users, the inner power contrgkction. This reveals a similar structure of the nonlirtesi
loop tracks a reference value of the Signal to Interferencg the inner and outer loop.
Ratio (SIR), which is related to the QoS and data rate. The The gains of using an outer loop are illustrated by simula-
o i ___tions and analysis. In particular we show that power rushes
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Mathematics (CIAM). UIf T. dnsson is supported by the Swedish Researclt@l be prevented ?‘nd we model a realistic §cenar|o of a
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I. INTRODUCTION



The outline of the paper is as follows. In Section Il wedenote the iith row of a matrix/. We will frequently
define the setting of the problem and in Section Ill thaise both linear and logarithmic scale. For clarity we use
system model is derived. Equilibrium conditions are stddiethe conventionz to denote linear scale and to denote
in Section IV and in Section V we analyze the relatiorlogarithmic scale of a variable or constante.g.z = In(z).
between congestion and rate. This is followed by our maibet o(M') denote the spectrum and)) denote the spectral
stability results in Section VI and VII. In Section VIII we radius of a matrix)/. We say that a matrixp/, is non-
consider examples and present simulations. The paper risgative ifA/;; > 0, V4, j and that a vectot;, is non-negative
concluded in Section IX. if x; > 0,Vi. Similarly we say that a matrix or vector is

positive if M;; > 0,Vi, j, or x; > 0, Vi.
Il. SYSTEM MODEL AND DEFINITIONS ‘

Consider a network withn mobiles transmitting ton 01
receivers at base stations. The base stations could be commo é{fq Yo G12p2 g21P1
for different users or just operating a single mobile. An Qa
example is shown in Figure 1. Let the channel gain between a k e
fl

transmitterj and receiver; be denoted byj;;. Assume that
gij > 0,Y(i,j) and g;; > 0,Vi. Define the channel gain
matrix G by G := [g;;];';—,. Define also the matrix BS1

eV,
AN

AV
/AAVANY,
NAVANVAS

i

. MS2
componentwise by MS1
0 ) . Fig. 1. Example of network setting.
— 1=
Fij=49_ j.’ (1)
Gijs UF# 7,
andA as the diagonal matrix with;; in the diagonal element [1l. INNER AND OUTER CONTROL ALGORITHMS

i, and letg := [In(g11), - - -, In(Gnn)] T

Define p; as the transmission power of useandp :=
[P1,--.,Pn]t. We similarly denote the background noise o
receiveri by 67 and 62 := [57,...,52]T. The Signal to
Interference Ratio (SIR) of usér measured at receivey is

In a cellular system the channel gains and the system
fparameters constantly change and there are disturbances
and uncertainties. This means that the system never reaches
equilibrium and this motivates the use of control strategie
to ensure system performance. In this section we model the

;= qiiﬁ_i - (2) control loops that ensure that the congestion is limited and
> j2i 9iiDj + 0; the desired QoS achieved.
and” = 71, ..., 7,]7. The data rate of a user is related to The system model can be seen as a cascade control system

with an inner and outer control loop, see Figure 2. The model
includes high order dynamics. This makes it possible to
rgodel time delays, filters and high order control algorithms
gestion of a cellular network. It can be measured in th urthermore, in real applications of cellular systems ehier

receiver and it is common to have constraints on the RoT tm:-scalg ?;ffdersncer?e:]weedn the Itooplls. We STOV;; that this
level, typically RoT;[f] < RoT, ", where RoT,  is ¢an P€ MOAEIed by a high order outer 1oop controfier.

the maximum RoT of usef. The motivation behind this

constraint is that the congestion is related to the coverage
of the cell. By limiting the congestion it is possible for new RoT
users to enter the cell, see e.g. [15]. The total load atvecei SIR
i, here denoted by.!“!, is defined as

n - _
E?t = nz:j;gjjp],g, RoT-targef Outer loop [SIR-targe{ Inner loop Power
Ej:l 9ijbj + 0; Slow Fast

and it is related to the RoT through the relatidni® =

its SIR by the Shannon capacity formdulag(1 + 7;). The
target SIR is defined by' := [5],...,7/]7.
The Rise over Thermal (RoT) is a measure of the co

Channel

1 ; I 71T Fig. 2. Scheme over functionality of the outer and inner poa@ntrol
1 RoT; "’ Define the target total load," : [Ll’ o "L"] ! loops. The outer loop controls congestion by setting the-t8iget to
y the inner loop. The inner loop controls the SIR-level by d®sin the
=1 1 transmission powers.
PR —
ROTJzr
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whereRoTj is the target RoT. For notational convenience

we also introduce the diagonal mattx with the diagonal A. Inner loop

entriesi}. Power control algorithms for the inner loop has been
We use the notation diagr;) to denote the diagonal extensively studied, see e.g. [8] [10] [11] [16] [19] [21].

matrix with z; in the diagonal elements, and we I8f Foschini and Miljanic proposed the SIR-based Distributed



Power Control (DPC) algorithm [8], defined by

+
51 In() (S G exp(-) |
_ N Inner loop
pilt + 1] :== —=pilt], (3)
ilt] 52
whereﬁj is the SIR-target. Assuming that the base station N exp(+)
knows the actual transmission power of the mobile, the *
DPC-algorithm in (3) can be written as a linear system I R
and easily analysed. However, in many real networks the i +1 e 1’2‘ TR . p
feedback control is kept to a minimum. This means that——{)— Pjﬁ
the information exchange in the network must be distributed h Kn,2 g Bin
and the base station can typically only measure the power
received,g;;p;(t), not the individual terms.
By introducing logarithmic variables we can rewrite (3)
such that the distributed nature of the information excleang ey | 5 .
) ;. : In(+) G exp(+)
is clarified. Indeed, withp;[t] := In(p;[t]) and~, := In(3/), =
we can rewrite (3) as Fig. 3. Outer and inner loop in block diagram.
pilt + 1] = pilt] + (o] —ilt) 4
where
B. Outer loop
— - — G _ G D 52 .
7ilt] == W(%ilt]) = In(gaips[t]) — In (ngpj 1] +Ui)' The outer loop controls on the total load as congestion
us measure and dynamically sets the reference value to the inne
By using the time-shift operatog, defined bygp;[t] := power control loop. When the inner loop has an integrator,
pi[t + 1], we may rewrite (4) on input output form as the reference value can be interpreted as the target SIR, see
pilt] = R(q)(7) — ~i[t]), where R(q) = ﬁ Remark 1. Therefore we use that notation in the following

A challenge in control of cellular networks is to maintainderivations.
robustness to delays. In e.g. [3], [4] and [23] it has been We begin by defining a first order update algorithm, which
shown that the DPC-algorithm converges for any transmisve later extend to include delays and higher order control
sion delay of the interfering powers. However, in a cellulataws, analogously to the inner loop model. Consider the
system there are typically no large transmission delays, bupdate algorithm fomT in linear scale given by
there are delays due to measuring, filtering, computations -
and control signalling to the mobile user. These delays Mt +1] = _Li 1,
can be modelled and are crucial for system stability. For ' Liet[t] ™

example, a colmputational delay of size one can be modellgd. similar to the DPC-algorithm, but with the difference
by R(q) = ;=5 The resulting system is then of higherthat now the experienced total load is compared to the target

order and is most conveniently modelled in the logarithmigotal load. In logarithmic scale the update algorithm can be
scale. We consider high order inner power control algorghmyyritten as

of the general form

pill) = K@) (3] — g+ 0 (Y gusltl +02)), 6)
J#
= R; . n n

whereg;; := In(gy;), Kiyl((i)- = HI&%, which we assume L] = In (Zgzji)j [ﬂ) N (Zgijﬁj[t] n (_712)
to be stable, and®;(q) := #qu% wherea; 1(q) andb; 1(q) = =1
are polynomials in; and aiyf(q) is a stable polynomial. For
the DPC-algorithm in (4) we obtain the above form by usin
that In(g;;pi[t]) = gi: + pi[t] and by takingR;(q) = 5.
The distributed nature of the inner loop is iIIustrategl \vith
the dotted lines in Figure 3. vETt] == Kia(q)eilt],

Remark 1:Given thatR;(¢) has an integrator, i.e. a term bs 2(a)
L., the experienced SIR will be equal to the target SIRvhere K »(q) := =57y andaia(g) andb; »(q) are
in the equilibrium. If there is no integrator, the equiliom  polynomials ing, a; 2(¢) assumed to be a stable polynomial,
SIR will be different from the reference value given by theand wheree;[t] := LI — Li![t].
outer loop. The steady state properties are not affectadesi  The intuitive idea of controlling on total load is that if
we will require an integrator in the outer loop. Howeverthe powers increase, the total load will increase above the
pole placement in the inner loop can be used to enhanceference value, which will decrease the target SIR, leadin
performance. to lower powers. Similarly, if the powers are low, higher

Yt +1] =] [t] + L} — Li*[t],

where L! := In(L!) and

7

Similarly as for the inner power control loop, we consider
ghigher order control algorithms on the following general
form



ld i(2) M ')y ezl Ko(2) L] TN il ér(z) andépq(z). We have

oo
Fig. 4. Modelling of time-scale difference. A low-pass filté(z) is first éra(z) = Z erdlk']z
applied for anti-aliasing. It is followed by downsamplindpet outer loop

controller and finally upsampling. k:() N
=Y N LN = lefi]F
k’=0 1=0
.. oo k'N
powers can be allowed, raising the target SIR and eventually , (W N—1)/N (1 o—/N
the powers. =D ) LKN-1Iz ell]2
.. . . . .. . k’'=01=0
The joint system model in logarithmic scale is illustrated i 0o oo
the block diagram in Figure 3. Note that filters for measured = Z Z LIK'N — 1]z~ N=O/N [ ,=U/N
signals in both the inner and outer loop easily can be indude 1=0 k'=[1/N]
in this framework, but for clarity this is omitted. { YN l}
=<<m = —
_ —-m/N —I/N
C. Time-scale difference - Z ZZOL[m}Z ell]z
=0 m=
In the joint system we assume that there are two rates. A _ = N—UN - I —m/N
faster rate, on which the inner power control loop works, and ; ellz mz::O [m]z
a slower rate, on which the outer loop works. Furthermore, _ j;( I/N)A( l/N)
we assume that the errarft] = LT — L*°![t], is computed T eE )

at the higher rate, as it is sampled at the base station. Thigiere[.] is the ceiling function that rounds up to the lowest
can be modelled by a chain of operations containing a lowg|iowing integer. Denote the outer loop controller on the
pass fllter,. doyvnsamplmg, control and upsampling. This ig|g\wer time-scale by<o(z) and the SIR-target output on the
illustrated in Figure 4. slow rate by~! [¥']. It is then given by

A low-pass filter is needed to avoid aliasing and the cut-
off frequency should be chosen near the Nyquist frequency. A1 (2) = Ko(2)L(zV/N)e(2/N).
Downsampling reduces the data rate by selecting elx&ti . . )
sample out of the filtered signal. The outer loop controllef he final step is upsampling by sample and hold. Denote
then works on this reduced data rate. After the controller ththe z-transform of the SIR-target on the fast time-scale by
rate is again upsampled by sample and hold. This impliés (2)- We get
that the output signal of the controller is set constant/for

time steps of the faster rate. A(2) = Akl *
To include this in our model we consider the z-transforms k=0
of the operations. Let the low-pass filter be linear and dausa o0 (K" +1)N-1 B
and with the impulse response = > ALK Yook
k'=0 k'"'=k'N
L(q) = iL[/ﬂ]q‘k = i e (A
: . L 1—21
k=0 k'=0
_ At (ZN) 1—zN
If we let the filtered error be denoted hy, [k], we have L 1—2z271 )"

Finally we arrive at the compound transfer function inchgli
all operations

k
erlk] =Y L[k —le[l].

1—2-1

. toonvp (=2

Ko(z) = Ko(z")L(2) | ———— | .

The filtered error signal is now downsampled by taking everKI o )

N:th sample to the signalq[k’]. We then have .ote'thgt the derivation is ba}sed on the assumption that the
filter is ideal so that no aliasing occur.

o N Consider a simple outer loop controller with an integrator,
e.g. Ko(z) = XK=, where K is a constant. This results in
eralk] = e [k'N] = Z LIEN = Defl], VK" the transfer fLin;cltion

=0

Let the z-transforms of., e, ande;4 be denoted byl (z),



i.e. an integrator with an additional delay 8f — 1 samples

Note that feasibility of the system implies that the SIR of

and the low-pass filter. The cut-off frequency of the low-all users will be non-negative in the equilibrium. This @lis

pass filter should be near the Nyquist frequency = %

since the powers and all system parameters are non-negative

We observe that if we assume no low-pass filter and no time- For the inner power control loop, feasibility is usually
scale difference, i.eN = 1, we recover the original outer defined in terms of the target SIR and system parameters
loop controller by substituting: with ¢. We will use the A and F. Feasibility of the inner power control loop also
notation K»(q) for the outer loop control, which may then implies the existence of finite non-negative powers. Hence

include modelling of time-scale differences.

IV. EQUILIBRIUM POINT

also the joint system feasibility can be guaranteed with the
same condition. This is shown in the foIIowing proposition.
First define the equilibrium SIRof useri by 7 and let

In this section we study conditions for a unique equmbf* := diag,(7;)-

rium point and its properties for the system model introdlice Proposmon 3: Assume thafp(T*A

in the previous section.
Proposition 1: In the equilibrium it holds thaﬂ
for all usersi.
Proof: A proof is given in the appendix. [ ]
Proposition 2: Assume thal‘LT < 1,Vi, and thatG—! ex-

_ T tot
= Lz

~1F) < 1. Then the
system is feasible anﬁT < 1,Vi.

Proof: A proof is given in the appendix. [ ]
Note that the equilibrium total load is then implicitly de-
termined by the choice of SIR-target. Note also that the
converse of this proposition does not hold, i.e. there could

ists. Recall thal.! = diag,(L]). Then the unique equilibrium be solutions to the equilibrium equation

powers,p*, are given by

P = (I-LHG) Lg%

A sufficient and necessary condition for finite non-negativ

powers is

Gt ; > 0. (6)
Hb 52
Proof: Using Proposmon 1 we have

Lty =L Vi &
>j=19iPi 7t
> Gibj o

n n
Z GijDj = EI ( Z gijpj + U?) Vi PN
j=1 j=1

Vi =

—Jij)Zgijpj:Ejﬁf vi &
(1—LT)Gp= Lig? vi &
(I-LHGp=Lis? &

pr=(I-LNHG)'Lis’

P = (I~ LHG) ' Lig?,

where the power vector has negative components even

thoughL! < 1,vi.

This is shown in the following example.
Example 1:Let

) 1 0.01 0.01 0.05
G=1]001 1 001, &2>=]0.05
0.01 0.01 1 0.05

Let the target total load be given byl = 0.6667 and L} =
L3 0.9951. This gives the equilibrium power and SIR
vectors

p* = [-0.1, 10, 107, 4* = [-0.6667, 0.9853, 0.9853]".

The system in the example is infeasible, since there are no
non-negative powers giving the desired total load target: F
thermore the equilibrium SIR corresponding to the negative
power is negative.

The following proposition shows that this is always the
case.

Proposition 4: Assume thatij €[0,1),Vi. Then a nega-
tive element of the power vector corresponds to a negative
SIR.

Proof: A proof is given in the appendix. [ ]

Remark 2:Total load is a decentralized measure and

The condition for existence of non-negative powers can t@lobal information is needed to avoid infeasibility. In Sec
written as((I—L1)G)~'LT52 > 0, which can be rewritten to tion VIII we will consider the properties of an infeasible

G~YI-L")"'L'52 > 0. Since(I - L") is a diagonal matrix System.

it can easily be inverted, givingl — L)~

! = diag, (47

Multiplying with Lt and 52 we get a vector with elements

V. CONGESTION ANDQOS PROPERTIES
In this section we show the relation between the total load,

a2, Vi. Sufficient and necessary conditions for the exisdetermining the congestion, and the SIR, determining the

LT i

tence of non- negative powers can hence be stated as in (@youghput, or QoS. Any feasible power vector corresponds

Note thatG—! exists with probability one. [ ]
Inspired by this we make the following definition.

to a total load and a SIR. Through the powers, for given
system parameters, we obtain a relation between the total

Definition 1: The joint system is feasible if there exist/0ad and the SIR.
finite non- negatwe powers CorrESpondmg to the targe“ tota 1Recall that if there is an integrator in the inner loop, theikiorium

load.

SIR and the target SIR are equal.



First consider using the target total Ioalﬂcfll =0.8,Vi. This
gives the equilibrium powers and SIRs

| ] P = [0.1590,0.0731,0.1582]7 and
' = [1.7469,0.4135,1.7230] " .

06 08 1 Let the sum of the Shannon capacities be a measure of the
joint throughput. Then the throughput is equal(t@188.

Now consider increasing the total load of user two. Let the
new assignment of total load be given BYy* = L{? = 0.8
& o | and ng = 0.82. The new equilibrium powers and SIRs are
given by

- - - s - 1 P = [0.1320,0.1224,0.1313]7 and
4% = [1.1186,0.7883,1.1068] .

Fig. 5. The relation between total load target and transwisgowers and We note that the SIR of user two has increased, and that

SIR for an example. Note that the y-axis is in logarithmic scalkereas

the x-axis is in linear scale. the SIRs of the other tw_o users have decreased. .T.he new
throughput is—0.0243, which is lower than for the original
total load target assignment.

) ) The exact relation between total load and SIR is given in
Example 2:Consider the system given by the following proposition.
Proposition 6: Assume that the system is feasible with

1.0000°0.0010 0.0050 0.05 respect to a given SIR,*. Then the target total load,!, is

G =] 0.0250 1.0000 0.0025 and &%= | 0.05 i o _
0.0100 0.0010 1.0000 0.05 positive and is given componentwise by
. L s ET _ Mi5'2
In Figure 5 we can see the equilibrium power and SIR as i T U M)io?’

functions of the total load target, which is set equal for all
users. An increase in the total load target leads to an isereawhere M := G(I — T*A~'F)~'T'*A~1,

of the SIR and the transmission powers. Assume that the system is feasible for a given total load,
The example indicates that to maximize the throughput, the'. Then the SIRT'*, is positive and is given componentwise
total load target should be chosen as high as possible. Thg
following proposition confirms this rule of thumb.

\/ ¢ =2
Proposition 5: T — No
(A1 + A-1FN)ig2
Ttot _ 1. B ~ . [ . _ - _ ~
Yi = inii? and Lt =" + I?, where N := ((I — LH)G)~LT.

1-1L; it Proof: A proof is given in the appendix. [ ]

where K; is given by VI. STABILITY ANALYSIS

= Z#i 9ijDj The stability analysis in this section is of a rather general

form and we discuss more about the problem structure and

study some important examples in more detail in a later

In e.g. [19] K; was shown relate to stability of the innersection. We first rewrite the system to a more compact

power control loop. form. Then we consider the resulting blocks as operators
Proof: A proof is given in the appendix. m on a Banach space and apply Lipschitz analysis to obtain

The relation between the total load target and the SIR Bufficient conditions for stability and convergence of the

however not always intuitive. This is due to the nonlineapystem.

relation through the equilibrium powers. The following ex- The analysis is made using logarithmic scale and is based

ample illustrates how an increase of the total load target f®n the existence of an equilibrium poinpt;,. We consider the

one user leads to an increased SIR for the same user, butdyamics of deviations around the equilibrium poiat—=

the cost of a larger decrease of the SIRs for the other users— p* and disturbances .

> iz 91D T 07

Example 3:Let The full system model, depicted as a block diagram in
Figure 3, can equivalently be rewritten into the system in
1.0000 0.5500 0.0050 0.05 Figure 6, where an artificial lower and upper loop is added

G = | 0.4000 1.0000 0.4000 and &%= |0.05|. with gain C, whereC = diag,(C;). This results in®°«

0.0100 0.5500 1.0000 0.05 being dependent of'. Note that this way of rewriting the



pout Lipschitz constant is defined as

F - F
Pin L[F;X] = sup H (21) (ZQ)HX
21,22€X,21#22 Hzl - Z2||X

where || - ||x denotes the norm oX. For us it will be

+ K2 N A Kia R interesting to consider the Lipschitz constant on a subset
(Z)_. ' —t@—— ‘ of X defined by how large deviations around the equilibrium
- Kn2 Kn1 we consider. Define
F(z1)— F(z
o L[F; Bx] i= sup [£(21) = Flz2) ] x
21,22€Bx ,z1#22 ”Zl - ZQHX
Fig. 6. Rewritten block diagram of joint outer and inner loafith an For linear operators the gain and Lipschitz constants

artificial lower loop with gainC. coincide. Thel;-norm of a linear systen#; is defined as

[(I)in) (I)out}T ||Hz||1 = Z |hz[k]|7
k=0

whereh;[k] is the impulse response at tikeFor a diagonal
matrix H, H(q) = diag;(H;), the induced norms fron,,

Z o+ + 07

(H,, H) andl; ., become (see e.g. [7])
[H 1o —10e = [1H[1 := max([|Hx[1, ..., [[Hnll1)
Fig. 7. Input output form of the joint system. oo
1H |ty otz < IH |11 5= B[R],
k=0
system is only for analysis purpose. We have used thghere we used the matrix norml|, = |M|gn —gn =
following notation. maxi<;<n Y7y |Mi;|. Clearly||H||y < [|H||1.1, and equal-

(I)out(z) — [@TUt(Z),...,(pZut(Z)]T ity holds if H; .Z H]7V(Z7]) .

BN - i o (T Let X be either of the spaceg, or I3 .. Consider the
(2) = [@7"(2), ..., Ez)] set B € R", defined componentwise by < p; <
B (z) =1 > i1 Gijetre¥ + 57 pax Vi, wherepin pmax are lower and upper bounds on

; Z) =1 *
' D1 Gigeli e

the transmission powers of the users. The induced sets for
the deviations around the equilibrium point,are then given

P (z) :=1n (Z gijePie™ + 5,?) — ") — gii — } by
J#i
Ki(q) := diag,(K;1) = diag,(Ri(q)/(1 + Ri(q)))
Kg(q) = dlagL(Klg)
We now further rewrite the system to input output form
see Figure 7, where

) —|—C’izi —FLI

B* = {z € R : p™™ —p* <z, < p"™ —p* Vi} (8)

% - 7

By :={z € X : z[k] € B*,Vk}. 9)

For our analysis we need to consider the maximum interior
‘balls in B* and B%, which are defined as

Hi(q) == (I + Ki(q)K2(q)C) ™ K1(q) B*(7) :=={2 € R : [2]ec <7},
Hy(q) == (I + K1(q)K2(q)C) " K1(q9)K2(q). Bx(7) :=={z € X : 2[k] € B*(7), Vk},
The analysis will be performed in the following signalwhere~ := min; {min{p} — p*", pax — p*11.
spaces Proposition 7:
() I :={2: N>R : ||z]|eo < o0} 4 . . , i}
(i) 5o = {2:N=RL : [2]2,00 < 00} L™ B (v)] = L[®"; By, _ (v)] = L[®*"; B*(v)]
where the norms are defined As||. := sup; |z[k]|- and = ma)(c : VO™ (2),
zEB* (v

[2]l2,00 = (X pey |2[k]|%) /2. The spatial dimension will

often be suppressed. It has previously been establishéd tha — max Fi@_p*“mx <1

use of thd,-space is not appropriate for this kind of analysis, i 024 Fiep tzm ’

see e.g. [17] or [18] for a further discussion on choice of o e o e o s

signal spaces. where e? 7 = [ePrTAT L ePetEa ] and 2 =

max

Let F be a nonlinear operatoF : X — X such that Pi"" —p;,Vi.
F(0) =0 and X is a normed vector space. Then the global ~ Proof: See [17] or [19]. u



Proposition 8:

L[ B _(v)] = L[®*"; By, _(v)] = L[@°"; B*(7)]
max |V®(2)|

z€B*(7)
= max max = a’izFlep +i
i zeB*(y) \ (GieP % + G2)(Gler™+7)
+|C; — GGl e
TG+ o) (Gl )

Proof: A proof is given in the appendix. |
Note that the Lipschitz constant depends on the value
the paramete€.
We are now ready for our main theorem on stability.
Theorem 1:Assume that

[ H L[ L[ B ()] + || Hal1 L[ B*(7)] < 1,

then there exists a unique power trajectery B; _(v) for
all

07w <7(1 = [ 1| L[@™; B*(9)
(10)
— || Ha 1 L[@7 B (7)]).

If it in addition holds that||ér|;, .. < co and that

[ H 11, 1 o LI B (7)]
+ 1 1y, =t o L@ BT ()] < 1,

thenplk] — p* ask — oo.

Proof: A proof is given in the appendix. |

Remark 3:In the analysis we rewrite the system by intro-

ducing the direct feedback with gati to the system part of

the block diagram, see Figure 6. This loop transformation is

needed, since thig-norm of the integrator ink; is infinite.

VII. SCALING MULTIPLIERS AND LOCAL ANALYSIS

D1 0 Pin ]
{ 0 Dfl]‘* Ppout
[Hla HQ]
Fig. 8. Input output form of the joint scaled system.

of

To get to our stability result in the scaled signal space we
need to consider the Lipschitz constants for the signalespac
previously defined. Define

4 = min {min {;(pf — pin), d%(p?"‘”‘ - p?‘)}} :
and the sets
CH)={2€Re:—diy < 2z <
Cx(7) = {2 € X : 2[k] € C(), ¥k}
Csx (%) = {5r € X :|orilk]| < Adi(l — | Hy [, L3

j

Proposition 10: The scaled nonlinearitied™ : X — X
and®°“ : X — X are Lipschitz onC'x (%) with

L[&™; 01 (3)] = L[&™; O, ()] = LIS C ()
< max |D7'VO™ (2)D|y = LY
zEB*

ARSI

and
L& Cy (3)] = LI Cr, (7)) = L[ C(5)]
< max [D'VO*(2) D]y = L'

Proof: A proof ngn be found in [18] and [19]. m

Structure of the problem can be understood by introducin/e can now give conditions for stability.

scaling multipliers, see Figure 8. This gives the transtim
but equivalent system where

)
Hy(q) :== D™"Hs(q)D = Hs(q)
d™(2) := DT'®"(D3)
¢out(2) := D10 (D2)
Sri=D"6r,  2:=Dl2

forany D € D := {D = diag,(d;) : d; > 0}.

Proposition 9: The scaled nonlinearitie®™ : RZ, —
R7 and ®°ut : R — R™ are Lipschitz onD~1B* C R
with

L[®™; D7'B*] = max |\D7'V®™(2)D|, == LY
zeB*

and

L[®™; D71 B] = max |D~'V@* () Dy := L3

Proof: A proof is given in the appendix. ]

Corollary 1: If
|Hy WL + || Ha |1 LB < 1,

then there exists a unique power distributior C;__ () for
all or € Cs;_(9).
If it in addition holds that||d7|2,.c < oo and
[ Hy L + || H2 Ly' <1,

HZZ.oo_’l2,oo Hl2,oo_)l2,oc

thenz[k] — 0 ask — oo.
Proof: We study stability in the scaled signal space,

where 2 := D'z, z € C;_ (%) implies thatz € B} (%)
andér € Cs,;__ (%) implies that

16700 < 4(1 = 1L — | Hal L"),

Theorem 1 then proves the statement. [ ]

We can use more structure of the problem by an analysis of
the nonlinearities around the equilibrium point. As a fitsis
we study each nonlinearity by itself and then we show how
they relate and how this can be used in the analysis. This will
bring clarity and some intuition in how the system paraneter



relate to stability and performance of the system. We alsbhe Jacobian can be written elementwise as
propose how to choose the scalings in the equilibrium point.

Def|ne Vq)out(o) R 07 R « 1= >
L/ —52gi;ei . .
; giei e d T) = ding((2) @ tehaery 1#
i(2) = =——=——— an = diag (7:(2))-
g (Z) 0-1’2 + Fiep +z Z) gz(’y (Z 07 i = j7
Proposition 11: N %%%%6%7 i # 7,
V®™"(z) = diag (e?' 7*) "' ['(z) A~ Fdiag, (P +*) 0, i=j,
and C\FoT AR it
o(VO®™(2)) = o(T(2)A™'F). Hence
Remark 4:In particular the result implies that in the LIt
equilibrium point, the Jacobian of the inner power controly®°“/(0) = diag, S i A—lﬁdiagi(epz‘)’
; i i S A |
loop has the same eigenvalues as the matrix determining i i
feasibility of the inner power control loop. and the eigenvalue relation follows from similarity.
Proof: First note that -
GiiePi+e L gueritz  Both V&in(0) and Ve©ut(0) contain the matrixA~1F and
Yi(z) = P Fen © o+ Fle? T = ETON diagonal matrices. This makes it possible to write them as
k i functions of each other. We have
We have it
0 i Vo™ (0) = diag (LT : l(w + 1)) veort0), (12)
V(I)m(z)m = GiiePdT7i . . _i
W’ i # 7, , . LI—1 1 ;
i Voo (0) = diag, | ——— —— | V®"(0). (13)
0 i LI +1
) =17 g
N {Zﬂf}:ﬁ’ ¥i(2), i# 3] For glarity of n_qtaftion, d(_enote the scaled Lipschitz con-
’ stants in the equilibrium point = 0, by
This can be written as _ ..
| e . L (0) = L[&™; D™ B*(0)]
d"(z) = diag, (P t#)"IT(2) A~ Fdiag (ePi T ou pout. p—1 g
Vo (z) = diag (e )7 T(2) diag, (e ), Lo¥(0) = L[&°"; D~ B*(0)].
and henceV®™(z) is similar to[(z)A~'F and share the ¢ the equilibrium point we have
same eigenvalues. | ‘ . ‘
Now considerv®°“! in the equilibrium point, where = LB(0) = jnf |ID7'V®™(0)D]y = p(VE™(0))
0, with the choice . _
LY (0) = inf [D7'VO™(0)D]; = p(|VE**(0)])
G2gii€ePt , bep
Ci= (Gier” +52)(Gier”)’ vi, 1) wherep(-) is the spectral radius and | means component-

wise absolute value. By Theorem 8.4.4 in [12] it holds that
which implies that the diagonal elements Gf°“*(0) are if M/ is an elementwise positive and irreducible matrix, then
cancelled. p(M) = Apax(M) > 0 is a simple eigenvalue o#/ and
Proposition 12: there exists a corresponding eigenvector> 0 such that
- ., Mz = p(M)x. This implies that
V&°ut(0) = diag, ( L L1
i LT Ar+1

A~ Fdiag(eP?) n

1 .

) p(M) = ; E Mijwja V4.
L

and
=t B We now use this to determine the scaling multipliers. If
. Ll -1 #;f _— g ; ;
o (Voo (0)) = o | diag, T i AR . we take D = diag;(w;), wherex is the eigenvector corre-
LI v +1 sponding top(V®™), we get the lowest possible maximum

Remark 5:The equilibrium eigenvalues of the outer I00prow sum and Lipschitz constant for the inner loop. If we
feedback are given by a similar expression as for the inngfistead take the scalings to be the eigenvector correspgndi
loop. to p(V®°ut) we minimize the Lipschitz constant of the outer

Proof: We will use the relations loop.

Given a choice of scalings to minimize one of the non-
= — . linearities, we use the relation betwe&md" and V&°u!
Grer” +o7 37 +1 in (12), (13) to obtain the Lipschitz constant of the other.

7,(?"2* — liiz, and —Ju" i
Giep Lt
K3




We assume’ to be positive to ensure that the scalings are Case a}— | % .
strictly positive to avoid division by zero.
Proposition 13: Assume thaiG is a positive matrix. Let
the scalings be equal to the eigenvector corresponding to
: ; ; ; Caseby | B8 |
p(V®™(0)). Then the Lipschitz constants are given by ase q—a

LE(0) = p(V2™(0))

Fig. 9. Inner loop control options. a) The classical intégraontrol with

ET -1 1 . gain 8. b) Integrating control with pole placement.
1) < max| 2t ve o)
7 I Y;

Let the scalings be equal to the eigenvector corresponding _ _
to p(|V®°“*(0)|). Then the Lipschitz constants are given byA- Pole placement in the inner control loop

L(0) = p(|VPu(0)]) In this sgctlon we consider stgblllty gnd performancg for

- two cases in parallel. Case a) with an integrator in the inner

L7(0) < max | = L; (3 + 1)‘p(vq>out(0)|)_ loop and Cas_e _b) with a d_iffergnt pole place_ment. The inner
v i~ loop control is illustrated in Figure 9. The inner controlle

Proof: G positive implies thaZ®"(0) and|V®°“(0)|  is on either of the forms

are positive. We have from (13) that 3 3
I_/T -1 1 . a) R(Q) = ja b) R(Q) = — 0[7
Voo (0) = diagi< = )diagi (1) VoI (0). q q
L; Vi + which results in
Let D = diag,(w;), wherez is the eigenvector corresponding 3 3
to p(V®i(0)). Since@ is positive, D! is well defined. We a) Ki(g)=—-7—2,b) Ki(g)=——.
get qg—1+p g—a+p

In linear scale this corresponds to the following inner

T out _ —1
[VOT(0)l1 = D7 V®out (0) Dl power control algorithms

_ (Li—-1 1 )
= |d|agL< Z_T *>D_ VCI)”L(O)Dh ,7T B
L 7+l a)pilt +1] = (Z ) pilt],
i LI v +1 b) pift +1] = (7&]) pilt]*.
Note that we have equality if ’
- . The pole placement in Case b) does not change the decen-
Li—1_ 1 _ Ljf 11 (i, §). tralized structure whatsoever. Case b) only implies that th
LT 7 +1 L} 3+ 1 ’ mobile user weights its old power with. We can drop the
The second statement is proved similarly. - integrator in the inner loop in Case b), since the outer loop

guarantees that we reach the target total load in equititoriu
VIII. SIMULATIONS see Proposition 1.

In this section we consider several different aspects of the Let the outer loop controller be given by
joint system. First we consider pole placement in the fast K
inner power control loop. This is followed by a simple exam- Ks(q) = ! ,
ple where the stability conditions can be expressed exiglici q—1
in terms of the system parameters. Then we consider hand consider stability of the joint system. Direct applicat
the outer loop can prevent power rushes. This includes bothi the small gain theorem is not possible, since the
power rushes due to aggressive feedback in the inner loeprm of the term%l in the outer loop system is infinite.
and power rushes due to infeasibility of the inner loop. We&herefore we rewrite the system as in Figure 6 for analysis.
then simulate and discuss infeasibility of the joint sys&sn The /;-norms of H; and H, depend on the specific choice
defined in Definition 1. Finally we model and simulate theof parameters and can easily be computed.
WCDMA system. The time-scale model in Section IlI-C is For Case a) the values are typically approximately given
verified and we study how stability is effected by delayspy
controller gains and the target total load. 1

In most examples we study a typical scenario with data |Hil1 ~2, and |H:lh~ —=,
traffic users. In each cell there is one strong user and there ¢
is intercell interference between three cells. This inpliewhere hereC := max; C;. It is possible to establish these
that the interference connection between the data usersvaues as upper bounds on the gains, given #hatthe outer
stronger and more direct, compared to voice traffic scesarioloop gain, is small enough.
where the interference consists of the sum over many smallFor Case b) however, the values of tihgnorms are
interfering sources. different and depend on the values efand 5. If we let

(14)



a = § we can show the following upper bounds on the

l1-norms 0
3]
=0
28 c
[Hill < Ny T R 15 gy s w0 3 0
1 1 11 T T T T
H|h < =——. L
[ 2||1_C, = 13K,C %1.05\[\
n
This implies that we can makgH, ||, arbitrary low if we 0% s 10 15 g 2% w0 3 40
let « = 3 be sufficiently small. The value dfH:||; will be g ° ‘ ‘
approximatelyl /C as before. This means that the effect of e
the inner loop to the stability criterion in Corollary 1 car b g '
made arbitrarily small. This corresponds to a design wher F_y,4 ‘

X ) 5 10 15 §P 25 30 35 20
the inner loop tracks the reference value very fast with a lo\ ots

step size. Although this extreme may not be good for system

design, it indicates that pole placement in the inner loap Carig. 10.  Simulation of a simple example. The system is stablettfer

improve stability and convergence speed of the joint systerghoice of3 = 0.9 and K; = 0.5 when subject to an impulse disturbance.
Note that the powers, SIR and total load are in logarithmidesca

B. Stability for a special system

stability criterion is then approximately
Now consider the Lipschitz constants for a special sym-

metric case, where | Hy |1 L5 (0) + || Ha|l1 LE*(0)
R ~2LB0) + %Lg)ut(())
. o =2(n — 1)I7*
G = l 1 A and %= | : |. N 1 a2(n —1)ip:
ool 52 C (p; + (n = 1)lp; + 62)(p; + (n — 1)Ip;)
A A | =2(n—- 17"+ (n—1)!
< 1.

Let furthermoreij = ET,W. For simplicity we consider the . . . .
equilibrium values of the Lipschitz operators. By the sienpl FT0M this we get the following condition on the size of the
structure expressions can be simplified. In particular we u£ross-coupling gains

that the equilibrium powers of the users will be equal. Let | < 1
27"+ 1(n—1)’
L G2giel or the following condition on the equilibrium SIR
t (Gl +57)(Grer) 1—(n—1)
2 SO UL} (15)
_ o°Dp; 2(n — 1)l

—% _ Sk =2\ (7% _ AN .
(07 + (n = 1)lp; + 62)(p} + (n — 1)Ip}) For Case b) we can obtaifH, || L}2(0) < ¢, by letting

a = ¢ be sufficiently small. A similar stability analysis as

We have above gives the following condition on the size of the cross-
Ny Fip- (n—1)ip? coupling gains
LD (0) = Tiox o _ Sk —2 1—¢
Fp* + 73 (n—1)lp; +o I < .
_x n—1
= (TL - 1)l7 ) . . . _9
Consider a numeric example with= 0.1, ° = 0.05

and and the total load target equal for all users. For Case a)

we get the approximate boungl* < 2, by (15). This

G2Fip corresponds to the total load targes. Stability can hence

L%(0) = : be guaranteed fof.! = Lt < 0.8,Vi. A simulation for the

(Gler” +57)(Grer") system in Case a) witld = 0.9 and K; = 0.5 is shown
% (n — 1)1p; in Figure 10. The system is disturbed from the equilibrium
(p; + (n = )lp; +32)(p; + (n — 1)Ipy) by a pulse in the transmission powers. The system shows
good stability properties. The computédnorms are in this
Now consider the stability criterion in Corollary 1 for Casecase||H:||; ~ 1.98 and || Hz||; ~ C, which shows that the
a) and b) studied in the previous section. For Case a) tlig-norm-approximation is valid.




C. Prevention of power rushes

In this section we show how power rushes can be pre
vented by using an outer control loop. Let

) 1 0.001 0.005 0.05
G=1002> 1 00025]|, &%2=10.05
0.01 0.001 1 0.05

Note that the system parameters are the same as in 1
example in Section V, where the QoS was shown as
function of the total load. Here we use the total load targe

) 08 0 0
L=l 0 08 0 |,
0 0 08

which corresponds to the equilibrium powefg, and equi-

hri T *
librium SIRs, I'", Fig. 11. A power rush is caused by a single delay in the inngp tbogether

0.1988 3.8844 0 0 with too aggressive feedback. The powers are in logarithroédes
p*=101945 |, I'*= 0 3.5074 0
0.1978 0 0 3.7909

We consider two causes for power rushes in the inner loo gz

From e.g. [17] and [18] we know that a too high controller gzn&ﬁw&
gain together with a delay can make the system unstabl & ‘ ‘ ‘ 1
Another reason for power rushes is when the target SIR 0 100 Slots?® 300 3%0

set too high and the users start competing using increasi 6 ‘ ‘
powers. This problem is avoided in most literature by only f&
considering feasible systems, which means that these ca oL P T
are not considered. 125 100 3|ot52“° 300 350

1) Delay and high gain:Consider first the case with delay = O ‘
together with high gain. Let the controllers be given by gV

B K; g
R(q) = m7 Ks(g) = g—1’ |__20 100 200 300 350
Slots

where 3 = 0.8 and K; = 0.1 for all users and there is a

delay in the inner IOOp Fig. 12. Simulation where the inner loop by itself would caaspower
First consider the inner loop separately with constariish, but the joint system is stabilized by the outer corafgbrithm. Note

reference value. The simulation in Figure 11 shows thathat the powers, SIR and total load are in logarithmic scale.

although the system is feasible, a power rush is caused by

the single delay in combination with the relatively highuel

of 3. 12
Now consider stability of the joint system with use of

Corollary 1.

[ 1 L5 (0) + [[H2 1 L5 (0)
= 6.6302 * 0.0364 + 5.0298 * 0.0020
=0.2513 < 1.

A simulation of the joint system can be seen in Figure 1z
The joint dynamics are stable and converge to the equilifriu
point. For this example we can show local stability for
common total load targets up to aroufd5.

2) Infeasible inner loop:Now consider the second case of ‘ ‘ ]
with an infeasible inner loop system. Let the controllers b 0 100 200 gotg 300 400 500
given by

R _ B K o K 16 Fig. 13. Power rush caused by infeasible inner loop system.SIR-target
(Q) = r 1 2((1) - q— 1’ ( ) is set higher than any reachable SIR, which makes the usersetemjith
increasing transmission powers. The powers are in logarittstale.
where3 = 0.7 and K; = 0.1 for all users.
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o 0
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Fig. 15. Joint inner and outer loop simulation for an infeksitase. User
two leaves the system. The controllers are given in (16) Witk 0.4 and

K7 = 0.5. Note that the powers, SIR and total load are in logarithmic
scale.

Fig. 14. This figure illustrates how the outer loop can préverpower
rush and stabilize the system. Initially the SIR-target istee high and
the powers start to increase, just as in Figure 13. Howelkierekperienced
total load is above the total load target, so the outer coidnp decreases
the SIR-target, stabilizing the system. The simulation startequilibrium
and in time zero a step in the SIR is applied. Note that the paweiR
and total load are in logarithmic scale. . . .
behaviour that makes the system self-regulating, in cehtra
to the unstable behaviour of an infeasible inner power cbntr

) ) _loop. This is related to the problem of active link protentio
The maximal common feasible SIR-target of the innegy,gied in e 9. [2]
Ioop_ls given by the |Imlt_7p(&1p ~ 104, 1.e. 7 = Which user or users that will leave the system is not
4.64 in logarithmic scale. Figure 13 shows the inner poweppvious due to the dynamic behaviour of the system and

control loop separated with the constant SIR-target valug gepends on the initial states. To see this, consider the
~i = 4.65,¥i. The transmission powers of the users tend tfeasible example with

2

infinity. When applying the outer loop control to the system,

initialized with a SIR-target of about 7 in logarithmic scale, B 1 1 0.5 , 0.05
the system is stabilized, see Figure 14. G=|1 05 L |, =005
The controllers used in this example corresponds to Case 0.5 0.625 0.625 0.05
a) studied in Section VIII-A. We use the approximate valueglnol where it — diag (0.8). Let the controllers be as

of the gains in (14) and compute the equilibrium L|psch|tzIn (16), but with 3 — 0.4 and k; = 0.5 for all users.

constants with use of Proposition 11 and 13. We get th%n example with the same parameter values was also stud-
Lin(0) = 0.0364, L9 (0) = 0.0444 and C' = 0.1988. The ™ &xampie pare )
stability condition is fulfilled since led in Section V. Thg equilibrium power vector 3@ -
[-0.1, 0.2, 0.2]T, which corresponds to the equilibrium
| H1[l1 L5 (0) + || Ha |1 L% (0) SIRsy* = [—0.2857,0.6667,1]7. A simulation of the joint
— 1.9331 % 0.0364 + 5.0298 % 0.0020 system is shown in Figure 15. The transmission power of
— 0.0805 < 1 the second user goes to zero. The total load of all the users
- <L is stabilized, but for the second user it is too high, which

For this example we can show local stability for a commormplies that the target SIR is continuously decreased. This

total load target up to around 0.99. outcome may seem reasonable since the second row of the
) o G-matrix has the largest off-diagonal elements. However,
D. System infeasibility the infeasible equilibrium point suggests that the firstruse

An important issue in cellular networks is the robustness iwould get negative powers, so another guess could be that
the system to introduce new users and changes in the systtre powers of user one would go to zero.
parameters. If the changes are too large, the system mayRepeating the simulation with different values on the
become infeasible. This corresponds to that the experienciitial conditions and different controller gains, anathoeit-
total load is higher than the target total load for at least oncome is obtained. The powers of both user one and three go
user. Dynamically this implies that the base station of atp zero, and only user two remains active, see Figure 16. This
affected user decreases the target SIR, which typicallysleasuggests that it is non-trivial to predict the final allooat.
to lower transmission powers. Since no positive powers exis )
such that the experienced total load is equal to the target WCDMA modelling
total load, this drives the transmission powers of the user In this section we model the WCDMA system with time-
to zero, i.e. the user leaves the system. This is a desiraldeale difference and delays. We use the same example to
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Fig. 16. Joint inner and outer loop simulation for an infelesitase. User

one and three leaves the system. The controllers are gived@nwith  Fig. 17. WCDMA system with use of Simulink blocks for down- and

B8 = 0.7 and K; = 0.9. Note that the powers, SIR and total load are inupsampling as indicated in Figure 4. We can see that the SIpdated

logarithmic scale. only every 15:th time step. The time-scale difference betvtherinner and
outer loop is set td5 and an additional delay df5 is modelled in the outer
loop. The inner loop is modelled with a delay ®f Note that the powers,
SIR and total load are in logarithmic scale.

validate the model derived in Section Ill and to study
how stability and performance is affected by the choice of
controller gains, delays and the choice of total load target

The WCDMA system typically has a time-scale difference 0
of 15 slots and an additional delay df= 15 slots. We use
the outer loop controllei(q) = % and this corresponds
to the outer loop transfer function ‘

0 100 200 Siots 300 400 500
- - 1—q 1 15 ; ; ;
K — 7dK 15 L
20) = ¢ RKolg ™) Lg) 1—q7! oc“M :
15 Kr . 1-— q_15 D13 Ly 1
- q 15 L( ) —1 1.2 I I I I
g —1 1—gq 0 100 200 g 1300 400 500
Ky A
= =5 L) g I ]
(-1 " =os |1 :
. o]
where the cut-off frequency of the low-pass filter should b 5
. -1 ‘ ‘ ‘ ‘ ]
given byw, = . 0 100 200 g0 300 400 500
The inner power control loop typically has a delay of two.
This renders the inner loop transfer function
Fig. 18. The same WCDMA system as simulated in Figure 17, but with
(q) _ g the derived time-scale model in the outer loop controller. @pproximation
q2(q — 1)' is good, although a low order low-pass filter is used. Stgbitian be
. guaranteed by Corollary 1. Note that the powers, SIR and total are
Let the system parameters be given by in logarithmic scale.

i 1 0.001 0.005
G=1002 1 00025 |,
0.01 0001 1

0.05 08 0 0 1) Time-scale modellingFirst consider a simulation us-
52 =1005 and I'=1 0 o8 o |. ing a Simulink model with designated blocks for downsam-
0.05 0 0 08 pling and upsampling by zero order hold. This is shown in

] o - - Figure 17. Then consider the same simulation with the time-
This corresponds to the equilibrium powegs, and equilib-  gca1e model from Section 111 in Figure 18. The derivation of

rium SIRs, ™, the transfer function is based on the assumption of an ideal
0.1988 3.8844 0 0 low-pass filter, and in this example only a low order filter

p*=101945 |, T*= 0 3.5074 0 . was used. Still the dynamics of the models are quite similar,
0.1978 0 0 3.7909 which justifies analysis on the simplified model.

Let 3 = 0.5 and K; = 0.05 and assume we are using the 2) Stability and controller parametersNow consider

simple low-pass filtel(¢) = ;5557075 stability. In the equilibrium point the joint system gain is
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Fig. 19. The joint system gain for the WCDMA example as a fumctd ] . . ) .

- i Fig. 20. Joint system simulation for the WCDMA example with ndagle
the controller gaing3 and K. Stability of the system can be guaranteed; 5o inner loop. Note that the powers, SIR and total loadrategarithmic
for all combinations giving a value less than scale

given by

[ L5 (0) + [ H2 1 L5 (0) L/

= 12.6 % 0.0364 + 5.03 % 0.0020 = 0.4694 < 1, L ‘ ‘
coom "™ slots

_Powers

so by Corollary 1 we expect the system to be stable i
a neighbourhood around the equilibrium point. This wa:
already verified by the simulation in Figure 18.

For design it is interesting how the joint system gair
depends on the design parametgrand K;. In Figure 19
the joint system gain is shown for varyingyand K;. Local
stability is guaranteed for all values below one.

3) Stability and delay:System performance heavily de-
pend on the size of the delays in the system. In Figure 2 e w w o w g
21 and 22 we consider the cases where the inner loop h

zero, one and two delays respectively. Higher delay in the
§:ig. 21. Joint system simulation for the WCDMA example with oléasgt

inner |(?Op together .Wlth a higher ".mer |Opp gain give in the inner loop. Note that the powers, SIR and total loadrategarithmic
an oscillatory behaviour with a relatively high frequency.gcqe.
Stability of the joint system can easily be affected, for
example if the outer loop is too slow to prevent a powe
rush. To some extent the choice of outer loop gain ca
improve the performance, but it cannot remove the oscijato
behaviour completely. An example is shown in Figure 23
where the inner loop has one delay and a high gain. In th B L T
case, stability can still be achieved using a very low oute
loop gain. Setting a low outer loop gain typically makes the
system more robust, but to the cost of a slower convergen
rate. ‘
If the inner loop has no delay and an appropriate valu ; slots
of the gain, it will track the reference value of the outer
loop without difficulty. However, since the outer loop also i
delayed, a too high outer loop gain can also lead to instgbili
This is shown in Figure 24. I L~ e

4) Stability and total load:Another design parameter is
the target total load. In Figure 25 we can see the Lipschitz
constants of the outer and inner loop in equilibrium agig. 22. Joint system simulation for the WCDMA example with tvedays
functions of the total load targef,j — ﬁT7i =1,2,3. Two in the inner loop. Note that the powers, SIR and total loadrategarithmic

values are plotted for each Lipschitz constant. The satid li scale.
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Fig. 23. Joint system simulation for the WCDMA example whereitimer ~ Fig. 25. Lipschitz constants as functions of the total lcaget. All users

loop is delayed and has a high gain. The system is stabiligedsing a  are given the same total load target and the congfaistchosen as in (11).

low gain in the outer loop controller. Note that the powertR @nd total  The solid line is for the case when the scaling multipliers evesen with

load are in logarithmic scale. respect to the inner loop nonlinearity, and the dashed linennchosen with
respect to the outer loop nonlinearity. As expected, thesthiftz constants
are lower in the case when they are optimized on.
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Fig. 24. A simulation for the WCDMA example where a high gain ie th $s 06 0.7 . 08 0.9 1
outer loop controller causes instability of the joint systeNote that the L

powers, SIR and total load are in logarithmic scale.

Fig. 26. Joint system gain in the equilibrium. Stability canguaranteed by
Corollary 1 when below zero. For this example stability cangbaranteed
for LT <0.9.

represents when the optimization of the scaling multiplier

is done with respect to the inner loop and the dashed

line when it is done with respect to the outer loop. The

Lipschitz constants have a fundamentally different betavi

The inner loop Lipschitz constant is large whéh is close linear. From Proposition 2 we have that determines the

to one and is then critical for system stability. The outeequilibrium point, which effects bottL (0) and L%(0).

loop Lipschitz constant, on the other hand, decreases &ima@#his was also seen in Figure 25. Furthermore, our choice

linearly with increasingL’. We make the conclusion that of the constant’ is dependent on the equilibrium point, so

to prove stability for higher values of the total load targetalso || H||; and ||H:||; are affected. In Figure 26 the joint

it is a good choice to optimize the scalings over the innesystem gain is plotted in logarithmic scale as a function

loop Lipschitz constant. In [18] and [19] the problem ofof the target total load. For this example and method, the

optimizing scaling multipliers for the inner loop was stedi highest total load target for which stability can be guaeanit

in detail. is around0.9. The joint system gain in the equilibrium is,
Finally consider the joint system gain in the equilibriumas indicated in Figure 19, also dependent on the choice of

as a function of the total load target. We use the choicg and K;. For other combinations of them, system stability

of C given in (11), which makes the relation highly non-can be guaranteed for significantly higher values.of
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B. Proof of Proposition 3

Proof: Assume first thap(I*A~'F) < 1. By letting
the expression for SIR in (2) be equal I we obtain the
following expression of the equilibrium powers

p* — (I —T*A~1F) 1 T*A 162

SinceI'*A~'F is elementwise non-negative and, under the
condition p(T*A~1F) < 1, the inverse expression can be

written as the convergent, infinite supi;~(I*A~"F)" of
non-negative terms. Since furthermore the element$“of

andA~! are non-negative ang? is positive, the powers are

non-negative.
Now consider

P =(I-LHa)'Lig? > 0.

D. Proof of Proposition 5

Proof: We have that

> i1 Gijbj
> i1 Gijbj + 07
_ Gubi + 254 9iiPs
 Giibi + 204 9iiPj + 07
221 9iiPj
> i 9ijPi 07
+1

Ftot _
Ly =

GiiPi
2l 9P t+E]
- giiPi

Zj#i, gi]jﬁj"r&?
%+ > 21 9iiP;
T 324 9iD5 407
i +1
_ it K
Yi+1

Similarly we have that

SinceG is a non-negative matrix we can equivalently write

or

which implies thatL! € [0, 1), Vi.

C. Proof of Proposition 4

Proof: Consider the powers
p= (- LHa) ' Lfa?,
or equivalently
Gp* = (I - LN 'LT5%

L € [0,1),Vi, guarantees thaf/p* > 0. Assume that at
least one elemeng;, of p* is negative. Then

JkkDy,
> ik GkiPj + 0},

Vi ( > gD + 5;%) = GkkDy-
7k

%

Ve =

SinceGp* > 0 anda? > 0, we have that
(ngjﬁ; + 5;%) >0,
J#k

and by assumptiogy.p; < 0. This implies thaty; < 0. ®

Lot — ¥ + K; o
’ i+ 1
(1 +3) L =7 + K, &
(1—-Liy =L - K; &
_ Lt — K;
Vi =

E. Proof of Proposition 6

Proof: Under the assumption thatT*A~'F) < 1,
the following equation gives the power as a function of the
SIR

p=I-T*"A'F)"'T*A 152

Under the same assumption the powers are non-negative.
Now set this equal to the powers given by the total load

(T —ING) ' Lia% = (1 - T*A1F)'T*A 152

and solve forL' as a function off**.

L e
T I+ M



Now assume that the system is feasible with respect tehich shows that,[®°%¢; By,

given L, and solve fol* as a function ofL!.
(I -LHG)'Lig? = (I -T*A~1F)~ir~ A
(I— f*A—lﬁ)((I —ILHa)'Lte? =T*A'a
—~I*A'F((I - LHG) Lg% =

F*(A +ATYR((I - LNHG)™ 1LT)52 -
(I - LHG) Lg%
Define N = ((I — L")G)~'L!. We then gefl™* from
Nig?
AT LA TEN)G?

5 =
(

F. Proof of Proposition 8

54
=

_(0)] < L[@°; B*(7)]. We
now show that the mequallty in fact is an equality. Since
B*(v) C RZ is compact, there existf, 25 s.t. |[®°U!(2]) —
DUt (23)|0o = L[®°“; B*(7)]|27 — 25|c0. Equality is then
reached above for the signals

* *
_ 21 _ 225
21 = z22 =
0, 0,

The case wher@°“! : [; ., — 5 » is analogous and hence
L@ By, (v)] = L[®°"; B _(v)] = L[®*""; B*(v)].

Obviously ®°** is continuously differentiable and
the Jacobian is Lipschitz. We will now show that
L[®°“; B*(y)] = max,ep«(y) |[VP?(2)];. To see that
equality can be achieved we assume

k=0
otherwise

k=0
otherwise.

(I)out = fi *
max [V (2)]1 1= fi(27)

wherei* is the maximizing index ane* is the corresponding
maximizing solution. We know the existence of such since

Proof: Let us first consider the interference nonlinearity|vV®°“(z)| is a continuous function an8*(v) is compact.

as a multivariable functionde“t :
follows that

@7 (2) -

oy / Vo (y + 0z — y))(x — y) 0o

7 (y)]oo

1
< [ 1907y + 6(a ~ p)adbfe -yl
0

< sup |V (2)|1]2 — Yoo

2€B*(7)
This gives the Lipschitz bound

Ll B ()] < sup [V (2)],

2€B*(7)

72Fiep*+z
o ((Glel’ 4 52)(Gier )

)

o; g”epl e?
GleP 2 +5; )(GZeP +2)
This can be seen since

+ ’0

i@out( ) g gljep;ez.
0z; T (Gier tz 4 62)(Gier'+2)
0 o; 25,€Pi g%
P (2) = C;.
821 (Z) (G‘@p +z + 0- )(Glep +z) +

B*(y) — B*(7).

It

Furthermore, letz be a unit length vector ifR?, such that
VDUl (2%)5z2] 0, = |[VPU!(2*)|;. Let 2 be an interior point
of B*(y) such that|z — 2*|,, < n. Now lety := Z and
x:=%—ebz. We get

1
1|00 (2) — O (3] = | / VIO (5 — 052)52d0)o.
0
> Ve ()],

| / (I)out

> Ve (")) — (e +n)L[VE™™; B ()]

— VOO (5 — €052)) 528 oo

where L[V ®°“; B*(v)] denotes the Lipschitz bound of the
JacobianV®°“! : B*(y) — R}*" and R} *" is the vector
space of real valued x n matrices equipped with the matrix
| - [1-norm. Hence

671|¢OUt(1’) _ q)out(y”C>C
> [VO™ ()1 — (e +n) LIV B*(v)],
and since ¢ and n are arbitrary it follows that

L[CDOUt;B*(’Y)] > |V(I)°“t(z*)‘1_ We conclude that
L[@o; B*(7)] = VO () 1. .

Note that we can interchange the order of maX|m|zat|09 Proof of Theorem 1

between index andz. We then have
12 (1) — 2 (z2)

=\ Do feet el -
k=0

Dot (zo[k]) 2

oo

< L[(bout; B*(’Yﬂ Z |Zl [kj] — Zg[k’Hgo

k=0
= L[@"; B*(7)]ll21 — 22ll2,00,

Proof: We first establish that the system is a contraction
under the assumptions. To prove that the system is contrac-
tive, we need to introduce a saturation. Define the saturatio
sat_,1.,1) : R” — R™ whosei'" component is

v if oz >y
sat_141)(2)ii=q & f —y <z <y
—y if z; < =y

and let

P (2) = (sAt_r1,41)(2))-



Define F(z) := H,®2"(z) + Hy®"*(z) + ér. Then whereB* is given in (8). To see that equality can be achieved

1P (1) = Plz2)loo = [ HL(O2 (1) — 5 (22)) e assHme
b H @ (21) — By ua22)) L = max [D7VO()D] = fie (),
< (\\H1|\1L[<I>i”;B*(’y)] where i* is the maximizing index and* is the maxi-
mizing argument. Such index and argument exists, since
+ HHzHlL[‘I’O“t;B*(V)])||21 — 22[lo |D='V®°u(2)D|; is a continuous_function and the opti-
<21 — 22lloes V21 # 2. mization is over a compact set. L&t := D=6z be a unit

) _ ) length vector inR7, such that|D*1V<I>°“t(z*)DzSAzL><> =
Hence F is a contraction di, and according to the Banach D-1V°ut(z*)D|,. Let Z be an interior point ofB* such

ﬁxed pqint theor_em*there efists a unique solutidnto the that |2 — 2*|.o < 7. Furthermore, let; := D15 — 5> and
f|xed point equation™* = E(z ) Afssume now that the bound §:= D13 We then get
in (10) holds. Then the fixed point* satisfies

. . 1 2 out [ o Fout [~
12 loe = 1F(z")lloo = [H1 @™ (2%) + Ha®% (2%) + 67l ¢ |27 () = 27 (@)l

i 1
< (M L[@™s B* ()] + [ B L™ B* )] )l le = / V& (§ + 0z — §))(E — §)d0]os
€
+ 107]loo o
_ —1 out ~ S ~ ~ ~
which is equivalent to = g|/O D= Vo (Dg + DO(& — 9))D(& — §)db|s
] * ou * * 1 .
(1= L L™ B ()] + [ Hah Lo B* () 12 e — | | vz — gy iz
< 0
>~ ||57’||oo Z |D_1V<I>°“t(z*)D|1
and 1 N
HZ*H < H(STHOC - ‘ /0 D_l (VCI)OUt(Z*) - VCI)OUt(Z - 9652))D52d9‘oo
* = T (L L@ B*(7)] + [Ha L[@7 B*(7)]

_ > |D7IV®U (2" D) — (1 + ed) L[D~'V®°“ D; B*]
<7.

7 _ 7. -1 out 1. R*
Since||z*||« < 7, there exists a unique power distributionWhere d = max;d; and L[D~"V®*'D; 5] denotes

with ||z]| < v to the real system because the saturation ithe Lipschitz bound of the scaled Jacobian &P,
oo =7 4 b-1veoup . pr R}*™ andRT*" is the vector space

the definition of®, is inactive. . : .
. f real valuedn x n matrices equipped with the matrjx|;-

The last statement in the theorem follows from the boun{ . P . .

_ norm. ObviouslyV®°“* is Lipschitz on B*, and hence we
12" 1]2,00 < (1 — [ H1llty, oo =0, oo L@ B*(7)] have that aIscD—1V<I>"“tl? is Lipschitz. Sinces andn are
1 arbitrary it follows thatZ[®°%t; D=1 B*] > L9, []
out *
1l ot IO B ()]) 107

which is derived in the same fashion as the previous bound.
|

2,00

H. Proof of Proposition 9

Proof: The first statement was proved in [18] and [19]
and the second follows the same lines.

Let # := D71z, 9 := D~'y. Note thatV (M ®°%(x)) =
MV®Ut(z), M € R"™" and V(®°“(Mzx)) =
Voout(Mz)M, where VO°ut(x) is the Jacobian ofbout,
We have

Bout (2) — 5o ()] oo
oy / VU (§ 4 02 — §))( — §)d0)ne
-y / D'V (D + DO(# — §))D(# — §)d0]s

1
< / ID-IVE (y + 0z — 4))D]1d0J3 — g0
0

< max |D7IV®U (2) D1 |2 — §oo-
zeB*
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